ON REDUCIBLE BRAIDS AND COMPOSITE BRAIDS by STEPHEN P. HUMPHRIES

(Received 27 October, 1992)

1. Introduction. The braid group on *n* strings B_n has a presentation as a group with generators $\sigma_1, \ldots, \sigma_{n-1}$ and relations

$$\sigma_i \sigma_j = \sigma_j \sigma_i, \quad \text{if} \quad 1 \le i, j \le n-1 \text{ and } |i-j| > 1;$$

$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \quad \text{for} \quad 1 \le i < n-1.$$

If 0 < m < n, then we will think of B_m as being the subgroup of B_n generated by $\sigma_1, \ldots, \sigma_{m-1}$. If (α, n) is an *n*-braid, then its closure will be denoted by $\hat{\alpha}$. Markov's theorem [1] says that if two braids have the same closures, then they are equivalent under repetitions of the following two operations;

 M_1 : replace (α, n) by (β, n) where β is a conjugate of α .

 M_2 : replace (α, n) by $(\alpha \sigma_n^{\pm 1}, n+1)$ (or vice versa).

The algebraic link problem is to determine whether two braids are equivalent under the Markov "moves". The M_1 equivalence problem (i.e. the conjugacy problem in B_n) has been solved [2]. In Section 2 we give an algorithm which determines whether a braid γ in B_n can be written in the form $\alpha \sigma_{n-1}^{\pm 1}$, or, more generally, in the form $\alpha \sigma_{n-1}^{\pm 1} \beta$ with α and β in B_{n-1} . Braids conjugate to such braids are called *reducible*. This thus gives a partial answer to question 6 of [1, p. 216].

A braid γ in B_n is called *composite* if it can be represented by a word $U(\sigma_1, \ldots, \sigma_i)V(\sigma_{i+1}, \ldots, \sigma_{n-1})$ for some 0 < i < n-1. In Section 3 we give an algorithm which determines whether a braid is composite. Note that if γ is a composite braid and U and V represent non-trivial knots, then $\hat{\gamma}$ is a composite knot.

2. The algorithm. Let $\pi_n: B_n \to S_n$ be the permutation representation of B_n onto the symmetric group. Let P_n , the group of *pure braids*, be the kernel of π_n . We will think of braids as "geometric braids" [1], where the composition $\alpha\beta$ consists of placing β on top of α . (See Figure 1.) For each subset $I \subset \{1, 2, ..., n\}$ there is a map $\varphi_I: B_n \to B_n$ which consists of taking a braid α in B_n and for each $i \in I$ pulling out the string which ends up in the *i*th position after doing α , and putting it back in as a straight string to the right of all the other strings (and then relabelling the strings accordingly). We have by [3]:

LEMMA 2.1. Let $I \subset \{1, 2, ..., n\}$ and $\alpha, \beta \in B_n$. Then $\varphi_I(\alpha\beta) = \varphi_J(\alpha)\varphi_I(\beta)$, where $J = \pi(\beta^{-1})(I)$.

The next result shows that a braid of the form $\alpha \sigma_{n-1}^{\pm 1} \beta$ can be recovered from its images under the functions φ_i .

LEMMA 2.2. Let $\gamma = \alpha \sigma_{n-1}^{\epsilon} \beta$, where $\alpha, \beta \in P_{n-1}$ and ϵ is an odd integer, be a braid in B_n . Let $\gamma_1 = \varphi_n(\gamma)$, $\gamma_2 = \varphi_{n-1}(\gamma)$, $\gamma_{21} = \varphi_{n-1}(\gamma_2)$ and $\gamma_{12} = \varphi_{n-1}(\gamma_1)$. Let $\gamma_3 = \gamma_2 \gamma_{12}^{-1} \gamma_1$. Then $\gamma_1 = \varphi_{n-1}(\alpha)\beta$, $\gamma_2 = \alpha \varphi_{n-1}(\beta)$, $\gamma_{12} = \gamma_{21} = \varphi_{n-1}(\alpha)\varphi_{n-1}(\beta)$, $\gamma_3 = \alpha\beta$ and

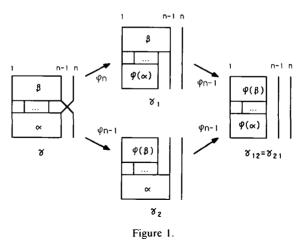
$$\gamma = \gamma_3 \gamma_1^{-1} \sigma_{n-1}^{\epsilon} \gamma_{12} \gamma_2^{-1} \gamma_3.$$

Proof. The first three equalities are easily seen from Figure 1. We thus have

$$\gamma_{3} = \gamma_{2} \gamma_{12}^{-1} \gamma_{1} = (\alpha \varphi_{n-1}(\beta))(\varphi_{n-1}(\alpha) \varphi_{n-1}(\beta))^{-1}(\varphi_{n-1}(\alpha) \beta) = \alpha \beta.$$

Glasgow Math. J. 36 (1994) 197-199.

STEPHEN P. HUMPHRIES



Note that $\varphi_{n-1}(\alpha)$ and $\varphi_{n-1}(\beta)$ are both in the subgroup of B_n generated by $\sigma_1, \ldots, \sigma_{n-3}$ and so commute with σ_{n-1} . We now have

$$\gamma_{3}\gamma_{1}^{-1}\sigma_{n-1}^{\epsilon}\gamma_{12}\gamma_{2}^{-1}\gamma_{3} = (\alpha\beta)(\varphi_{n-1}(\alpha)\beta)^{-1}\sigma_{n-1}^{\epsilon}(\varphi_{n-1}(\alpha)\varphi_{n-1}(\beta))(\alpha\varphi_{n-1}(\beta))^{-1}(\alpha\beta) = \alpha\sigma_{n-1}^{\epsilon}\beta = \gamma.$$

COROLLARY 2.3. Let $\{y_1, \ldots, y_{(n-1)!}\}$ be a set of coset representatives for P_{n-1} in B_{n-1} . If $\delta = \alpha \sigma_{n-1}^{\epsilon} \beta$, where $\alpha, \beta \in B_{n-1}$ and $\epsilon = \pm 1$ then there are $1 \le i, j \le (n-1)!$ such that if we let $\gamma = y_i \, \delta y_j$, $\gamma_1 = \varphi_n(\gamma)$, $\gamma_2 = \varphi_{n-1}(\gamma)$, $\gamma_{21} = \varphi_{n-1}(\gamma_2)$, $\gamma_{12} = \varphi_{n-1}(\gamma_1)$, $\gamma_3 = \gamma_2 \gamma_{12}^{-1} \gamma_1$, then $\gamma = \gamma_3 \gamma_1^{-1} \sigma_{n-1}^{\epsilon} \gamma_{12} \gamma_2^{-1} \gamma_3$.

Proof. Suppose that the cosets y_i , y_j represent the cosets of α^{-1} , β^{-1} respectively. Then $y_i \alpha$ and βy_i are both in P_{n-1} and the result now follows from Lemma 2.2.

We now describe our algorithm for deciding if a braid has the form $\alpha \sigma_{n-1}^{\epsilon} \beta$ for some $\alpha, \beta \in B_{n-1}$. This is based on the above results and the fact that the word problem is solved in B_n .

Step 1. Find a set $\{y_1, \ldots, y_{(n-1)!}\}$ of coset representatives for P_{n-1} in B_{n-1} .

Do Steps 2(i, j) for each choice of i, j = 1, ..., (n-1)!. If δ has the form $\alpha \sigma_{n-1}^{\epsilon} \beta$ for some $\alpha, \beta \in B_{n-1}$, then we shall succeed in showing this for some value of i and j, by Corollary 2.3. If not, then δ does not have this form.

Step 2(*i*, *j*). Let $\gamma_{i,j} = y_i \, \delta y_j$. Calculate $\gamma_1 = \varphi_n(\gamma_{i,j}), \, \gamma_2 = \varphi_{n-1}(\gamma_{i,j}), \, \gamma_{12} = \varphi_{n-1}(\gamma_1), \, \gamma_3 = \gamma_2 \gamma_{12}^{-1} \gamma_1$ and $\tau(\epsilon) = \gamma_3 \gamma_1^{-1} \sigma_{n-1}^{\epsilon} \gamma_{12} \gamma_2^{-1} \gamma_3$. Here we calculate the braids $\varphi_n(\gamma_{i,j}), \, \varphi_{n-1}(\gamma_{i,j})$, etc. using Proposition 2.3 of [3]. Apply the solution of the work problem found in [2] or [1] to determine whether the words $\tau(\epsilon)$ and $\gamma_{i,j}$ are equal for $\epsilon = \pm 1$.

REMARK. The above algorithm can easily be modified to detect words of the form (a) $\alpha \sigma_{n-1}^{\epsilon} \beta$ for any odd ϵ where $\alpha, \beta \in B_{n-1}$; or (b) $\alpha \sigma_i^{\epsilon} \beta$ for any odd $\epsilon, 0 < i < n$, and words α, β not involving σ_i .

3. The algorithm for composite braids. If m < n, then we will think of B_m as being a subgroup of B_n . If n > i + j - 1, then we let $\prod_i : B_j \to B_n$ be the monomorphism determined by $\prod_i (\sigma_k) = \sigma_{k+i-1}$, for all $k = 1, \ldots, j - 1$.

LEMMA 3.1. Let $\gamma = U(\sigma_1, \ldots, \sigma_i)V(\sigma_{i+1}, \ldots, \sigma_{n-1})$ for some 0 < i < n-1 be a composite braid where U, V are pure braids. Let $\gamma_1 = \varphi_{\{i+2,\ldots,n\}}(\gamma), \gamma_2 = \varphi_{\{1,\ldots,i\}}(\gamma)$. Then $\gamma_1 = U(\sigma_1, \ldots, \sigma_i), \Pi_{i+1}(\gamma_2) = V(\sigma_{i+1}, \ldots, \sigma_{n-1})$ and $\gamma = \gamma_1 \Pi_{i+1}(\gamma_2)$.

Proof. By Lemma 2.1 we have

$$\gamma_{1} = \varphi_{\{i+2,\dots,n\}}(\gamma) = \varphi_{\{i+2,\dots,n\}}(U(\sigma_{1},\dots,\sigma_{i}))\varphi_{\{i+2,\dots,n\}}(V(\sigma_{i+1},\dots,\sigma_{n-1}))$$

= $U(\sigma_{1},\dots,\sigma_{i});$
$$\gamma_{2} = \varphi_{\{1,\dots,i\}}(\gamma) = \varphi_{\{1,\dots,i\}}(U(\sigma_{1},\dots,\sigma_{i}))\varphi_{\{1,\dots,i\}}(V(\sigma_{i+1},\dots,\sigma_{n-1}))$$

= $\Pi_{i+1}^{-1}(V(\sigma_{i+1},\dots,\sigma_{n-1})).$

As in 2.3 above we now obtain

COROLLARY 3.2. Let 0 < i < n-1 and let $\{y_1, \ldots, y_{(i+1)!}\}$ be a set of coset representatives for P_{i+1} in B_{i+1} and let $\{z_1, \ldots, z_{(n-i)!}\}$ be a set of coset representatives for $\Pi_{i+1}(P_{n-i})$ in $\Pi_{i+1}(B_{n-i})$. Suppose that $\gamma = U(\sigma_1, \ldots, \sigma_i)V(\sigma_{i+1}, \ldots, \sigma_{n-1})$. Then there are j, k such that if $\delta = y_j\gamma z_k$, $\delta_1 = \varphi_{\{i+2,\ldots,n\}}(\delta)$, and $\delta_2 = \varphi_{\{1,\ldots,i\}}(\delta)$, then $\delta_1 = U(\sigma_1, \ldots, \sigma_i)$, $\Pi_{i+1}(\delta_2) = V(\sigma_{i+1}, \ldots, \sigma_{n-1})$ and $\delta = \delta_1 \Pi_{i+1}(\delta_2)$.

We now describe our algorithm for deciding if a braid is composite. Do Step 1(i) for each 0 < i < n - 1.

Step 1(i). Find a set $\{y_1, \ldots, y_{(i+1)!}\}$ of coset representatives for P_{i+1} in B_{i+1} and a set $\{z_1, \ldots, z_{(n-i)!}\}$ of coset representatives for $\prod_{i+1}(P_{n-i})$ in $\prod_{i+1}(B_{n-i})$.

For fixed *i* do Steps 2(k, j) for each $0 < k \le (i + 1)!$ and each $0 < j \le (n - i)!$. If γ is composite, then we shall succeed for some values of *i*, *k*, *j*, by Corollary 3.2. If we do not succeed at all, then γ is not composite.

Step 2(k, j). Let $\delta_{k,j} = y_k \gamma z_j$. Calculate $\delta_1 = \varphi_{\{i+2,\ldots,n\}}(\delta_{k,j})$, and $\delta_2 = \varphi_{\{1,\ldots,i\}}(\delta_{k,j})$. Again we calculate the braids $\varphi_{\{i+2,\ldots,n\}}(\delta_{k,j})$, etc. using Proposition 2.3 of [3]. Apply the solution of the word problem found in [2] or [1] to determine whether the words $\delta_1 \prod_{i+1} (\delta_2)$ and $\delta_{k,i}$ are equal.

REFERENCES

1. J. Birman, Braids, links and mapping class groups, Annals of Math. Studies 82 (Princeton University Press, 1985).

2. F. A. Garside, The braid groups and other groups, Quart. J. Math. (Oxford) 20 (1969), 235-254.

3. S. P. Humphries, Split braids, Proc. Amer. Math. Soc. 113 (1991), 21-26.

DEPARTMENT OF MATHEMATICS BRIGHAM YOUNG UNIVERSITY PROVO, UTAH 84604 USA