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ABSTRACT. The effect of tidal perturbation to stellar pulsation is a relatively underdeveloped 
problem in the theory of variable stars. We derive amplitude equations describing the resonances 
between pulsational modes and orbital motion taking into consideration the rotation of stars as 
well. In the case of δ Scuti stars the two-mode-tidal resonance was found to be the most powerful 
effect. If the difference between frequencies of excited and damped mode is close to the orbital 
frequency, parametric excitation of the damped mode may occur, while the other mode loses energy. 
We discuss this effect for a wide range of parameters. 

1. Introduction 

Some prehminary discussion of the general appearance of oscillations generated by the gravitational 
tide have already appeared at the end of the last century. After these prehminary studies Cowling 
(1941), Zahn (1977) and others discussed the oscillations of a star by tidal interaction. 

If we consider an intrinsically pulsating variable star which is a component of a close binary system 
we can expect a modification in its oscillation behaviour comparing with a single counterpart. (There 
are e.g. observational allusions that multiperiodic variables can be found with higher probability 
among the components of binaries.) 

We have learned in the last decade that in realistic models the oscillation modes will not be 
independent and there will appear an interaction between them. The behaviour of these nonlinear 
systems can be treated as if the modes of linear approximation would be excited but with variable 
amplitudes in time. Physically this means that energy transfer would be possible between the excited 
and damped modes. Dziembowski,Krolikowska and Kosovitchev (1988) have found on this way that 
the amplitude of δ Scuti stars will be limited through this mode coupling by the rotation. 

Papaloizou and Pringle (1981) extended the description of a rotating star incorporating an ex-
ternal time dependent force into the equations representing the tidal interaction. From the derived 
equations for the amplitude variations can be concluded that resonance requirements giving rise to 
mode coupling can be fulfilled by πισχ — ησ2 = riîri however, the order of magnitude of coupling 
coefficients cannot be seen from their formalism. 
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2. The equations of tidal perturbation 

Dziembowski, Krolikowska and Kosovitchev (1988) generalized the formalism of the pulsation of 
rotating stars developed by Lynden-Bell and Ostriker (1967). The second order adiabatic momentum 
equation for the displacement vector £, including a forcing term is 

at* po at po Po 

where Β and C are the linear operators described by Lynden-Bell and Ostriker (1967), Ν is the 
nonlinear operator introduced by Dziembowski, Krolikowska and Kosovitchev (1988) and Ti and 
T2 are the first and second order (in ζ) operators of the tidal perturbation. The tidal operators are 
derived from the gravitational potential of interaction ]Cm=-oo Z7m (r)e*m i ï i , (Ζ7* = Ï7*fc) as follows: 

m m 

τ 2 ( ί , ί ) = Σ τ ^ ' ί ί , ί Κ " * 1 " = i y j ( t t v v ) ( v t / m K " * n ' . (2) 
m m 

For the standard perturbation method we use the eigenfunctions hjb(r)e ,a,fct of the unperturbed, 
linear-equation (Ν = Τχ = T2 = 0). Since the operators Β and C have Hermitian behaviour, the 
hfc eigenfunctions are orthogonal. We used the normalization Jpohjk,h/c?r = 6kj. 

In order to obtain the equations for the amplitudes in the case of tidal resonance we introduce 
the trial function: 

2 
( (r , t )= Σ Quit)**'**', (3) 

fc=-2,fc^0 

where Qk = h* = h^ fc, u>k = — Inserting this function to Eq. (1), multiplying by 
Pohjé"*** and integrating over the volume we get 

Σ Q f c e ' ^+^ 'O i , , h*) + » V J Q . e ^ + ^ f o , 2w»h» + —B(h.))+ 

Σν*^""*1"*"*^· —N(h*,h,)>+y;c? ) t e «("* + ^+ T O ") t {h J 1 T
(r ) (h ) È ))+ 

Σ QkQiei(uk+u'+u*+mit)t(kj,TÎ')(bk< Μ) = 0 (4) 
k,l,m 
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where (f, g) = Jy p0fgdr. 
Resonance coupling occurs in the above equations, if one of the exponential functions varies slowly 

compared to the others. Averaging out the rapidly varying time (integrating over the fast time) we 
get the amplitude equations for resonance. The resonance ωχ — ω2 4- ω^ + Δω, |Δω| <C |ω*| leads 
to the three-mode-resonance of single stars described by Dziembowski, Krolikowska & Kosovitchev 
(1988). 

In the following we take into consideration the resonances with the orbital frequency Ω arising 
through tidal interaction. 

2.1. TWO-MODE-TIDAL RESONANCE 

Two modes interact with the tidal perturbation, when the frequencies satisfy one of the criteria 

α; 1 -α ;2 = Ω + Δω, or ωχ + ω2 = Ω + Δω, (5) 

where |Δω| <C |ω*| for k = 1,2. For the first case, the Eq. (4) integrating over the fast time leads 
to the following forms for j = — 1 and j = —2 

i Q i W . i w i h ! + - B ( I u ) ) + Q 2 e - i A w t ( h ; , T (

1

+ 1 ) ( h 2 ) ) = 0 (6) 
Po 

iQ 2 (h; ,2 W 2 h 2 + - B ( h 2 ) ) + Q i e ^ ^ h î . T I - ^ i h x ) ) = 0 (7) 
Po 

2.2. MONO-MODE-TIDAL RESONANCE 

Similarly, a pulsation mode may be in direct resonance with the tidal force, if twice the mode 
frequency is close to the orbital period or its harmonics: 2ωχ = Ω + Δω with similar calculations as 
in the case of two-mode-tidal resonance we get the amplitude-equation for the tidal excitation: 

ÎQi(hî, 2wih! + - B ( h i ) ) + Qïe - ' A w t (h ï ,T (

1

+ 1 ) (h ï ) ) = 0 (8) 
Po 

By similar calculations we also can derive equations for second order two-mode-tidal resonance 
with the following criteria: 2ωχ -f ω2 = Ω + Δω or 2ωχ Η- ω2 = Ω + Δω. 

3. The two-mode-tidal resonance 

Let us see the two-mode-tidal resonance in more detail. To calculate the coupling coefficients we 
use the perturbation potential introduced by Zahn (1977). 

To take into consideration nonadiabatic effects we introduce the linear damping and driving 
rates 7* (for more information see Dziembowski 1982). We also introduce a cubic damping (see 
e.g. Buchler and Goupil 1984 ) for the excited mode to balance the fixed amplitude solution for the 

https://doi.org/10.1017/S0074180900122314 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900122314


2 9 2 

unperturbed oscillation. We get the final form of the amplitude equations of the two-mode-tidal 
resonance by introducing the new variables Qk = qkex*h> X = $2 — $i — Δα><: 

4i = 7i9i - <XÇ.I - Cx sm(X)q2 (9) 

U2 = 72Ç2 + C2 sin(X)q1 (10) 

X = ^-Çfl)coS(X)-A„ (11) 
92 qi 

where C\ and C2 are the coupling coefficients of tidal interaction. One can easily derive the 
following identities for the fixed point solution (i.e. when the temporal derivatives are equal to 
zero): 

i i = (^)1/2(l + ^ s i n W / 2 , (12) ct\ 7i72 

Ç2 = -C2/72sin(JC)çi, (13) 

where X satisfies the following equation: 

, -72 , CiC 2sin(X), 
( . , v x + —L) cos(X) = Δω. (14) vsin(X) 72 

We can see from (12) that the ratio of the perturbed and unperturbed value of çi is independent 
from the cubic damping i.e. the amplitude of the pulsation. 

Eq. 14 leads to a cubic equation for sin(X). We solved the above equations numerically and 
tested the stability of the fixed point solutions. 

The amplitudes derived from the equations 12 - 14 for typical 6 Scuti parameters (see e.g. 
Dziembowski and Krolikowska 1985) were calculated. In all cases the amplitude of the damped 
mode remained in a low level (thousands of the excited mode). The value of the excited mode, 
however, may be changed significantly. 

We found, that the tidal perturbation can kill the oscillation for a wide range of parameters. As 
the amplitude decreases, it losts its stability and in some cases the non-zero fixed point disappears. 

From the above consideration we can conclude, that the tidal perturbation may change signifi-
cantly the observed amplitude of δ Scuti stars. 

References 

Buchler, J. P. and Goupil, M.-J.: 1984, Astrophys. J.,279, 394. 
Cowling, T. G.: 1941, M.N.R.A.S, 101, 367. 
Dziembowski, W.: 1982, i4c<a j4s*rcm.,32,147. 
Dziembowski, W. and Krolikowska, M. and Kosovitchev, Α.: 1988, j4cfo Astron.>38, 61. 
Dziembowski, W. and Krolikowska, M.: 1985, Acta Astron.,35, 5. 
Linden-Bell, D. and Ostriker, J.P.: 1967 M.N.R.A.S, 136, 293. 
Papaloizou, J. and Pringle, J.E.: 1981 M.N.R.A.S, 196, 371. 
Zahn, J.-P.: 1977 Astron. Astrophys., 57, 383. 

https://doi.org/10.1017/S0074180900122314 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900122314

