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Perfect maps on convergence spaces

Robert A. Herrmann

The concept of the perfect map on a convergence space (X, q) ,

where q is a convergence function, is introduced and

investigated. Such maps are not assumed to be either continuous

or surjective. Some nontrivial examples of well known mappings

between topological spaces, nontopological pretopological spaces

and nonpseudotopological convergence spaces are shown to "be

perfect in this new sense. Among the numerous results obtained

is a covering property for perfectness and the result that such

maps are closed, compact, and for surjections almost-compact.

Sufficient conditions are given for a compact (respectively

almost-compact) map to be perfect. In the final section, a major

result shows that if f : {X, q) •+ (Y, p) is perfect and

g : (X, q) -*• (Z, s) is weakly-continuous into Hausdorff Z ,

then (/, g) : {X, q) -> (Y*Z, p*s) is perfect. This result is

given numerous applications.

1. Introduction

Throughout this paper, we adhere to the following notational

conventions. For a set X , F{X) (respectively U(X) ) denotes the set

of all filters (respectively ultrafilters) on X . If F £ F(X) , then

i/(F) is the set of all ultrafilters on X finer than F . If

A c P(X) , the power set of X , and A has the finite intersection

property, then [A] denotes the filter on X generated by A . If

A £ P(X) , A # 0 , then [A] is the principal filter generated by A .

In [6], Kent defines a convergence function on X to be a map
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q : F(X) •* ?{X) such that

(A) for each x € X , x i q([{x}]) ;

(B) if F, G € F(X) and F c G , then q{¥) c q(G) .

A pa i r {X, q) , where q i s a convergence function on X , i s a

convergence space. In [ 7 ] , Kent ca l l s a convergence function which

satisfies

(C) i f x 6 q(¥) , F € FiX) , t h e n a; € q ( F A {*}) ,

a convergence structure. In recent years, the convergence space definition

has required q to be a convergence structure [£], [9], [70], [7 7].

Throughout this paper, we shall have no need for the additional axiom (c).

Thus all spaces we consider are convergence spaces as we have defined them

and all undefined concepts are the usual ones associated with convergence

space theory and which do not require axiom (C) in their formulation.

The symbols (X, q), (Y, p), (Z, s) denote convergence spaces and

(X, x ) , (X, T) topological spaces with topologies x and T ,

respectively. For (X, q) , a filter F £ F(X) is said to q-converge to

x € X if x £ q{¥) , and we sometimes denote this by F > x or simply

F -»• x . For F € F{X) , and A <= X , F n A means that F n A ? 0 for

each F € F . Let f : X •+ Y . Then for F € F(Z) [respectively

F € F(Y) and F n /[*] ) , /(F) = [{/[F] | F € F}] [respectively

rX(F) = IrV] | F € F} ).

In [70], Kent and Richardson, assuming axiom (C), say that a

continuous surjection f : iX, q) •* (7, p) is proper if

(l) whenever U i U{Y) and 0 * j/ € Y , then for each 1/ € £/U)

such that f(V) = U , there exists some x ( f iy) such that

1/ -»• x .

If / is also a quotient map, then it is called perfect in [73].

A natural question which arises is whether or not it is desirable to

retain the "continuity" or "surjective" portions of the definition for

proper maps, or whether there are interesting convergence spaces and maps which

satisfy condition (l), but which are not continuous or not surjective. In

[4], a not necessarily continuous nor surjective map / : iX, T ) -»• (7, T)
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is called perfect if it is closed and has compact point inverses. It

follows from Whyburn's results in [76] that for (X, x) and (Y, T)

considered as convergence spaces, perfect as defined by Iliadis and Fomin

[4] is equivalent to condition (l).

We make the following two important observations for nonsurjective

maps and condition (l) . If / : (X, q) •*• (Y, p) is nonsurjective,

U € u{Y) and f[X] f U , then there does not exist a 1/ f U(X) such that

/(f) = U . Hence for all such ultrafilters condition (l) holds vacuously.

Therefore, in order to establish that condition (l) holds, we need only

consider those U € U(Y) such that f[X] € U . Also, if / satisfies

condition (l) , U € U(Y) such that f[X] € U and U •+ y € Y , then

U € f[X] . For if we assume that y $ f[X] then we have the contradiction

that f1^) = 0 and there exists some V € U(X) such that f(V) = U .

EXAMPLE 1.1. This is an example of a map between convergence spaces

which satisfies condition (l) but which is not continuous. Let (X, x) be

a topological Hausdorff and nonregular space. Let m(X) be the absolute

of X . Then I Iiadis and Fomin [4] show that there exists a noncontinuous

map f : w{X) -* (X, x) which satisfies condition (l).

EXAMPLE 1.2. This is an example of a simple convergence space

generated by a topological space {X, x) for which the identity map

satisfies condition (l) for a slightly weaker topological space but which

does not satisfy (l) for {X, x) . Let (X, x) be a nonsemiregular space

and x the semiregular topology generated on X by the set of alls

regular-open subsets of X . The identity I : [X, x ) •* [X, x )

trivially satisfies (l) as a convergence space map, but since (X, x) is

not topologically homeomorphic to [X, x ) , then I : (X, x) •+ [X, x )

does not satisfy (l).

EXAMPLE 1.3. This is an example of a nontopological pretopology

generated by {X, x) which is of considerable interest to topologists [/],

[2], [4], and for which the identity satisfies (l) but does not satisfy (l)

for {X, x) . Let (X, x) ,be a topological Hausdorff non-Urysohn, non-

semiregular space, where a space X is Urysohn if distinct x, y £ X have

disjoint closed neighborhoods. Define the convergence function

8 : F(X) -+ ?(X) as follows: for each F € F(X) , x Z 9(F) if for each
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G € T SUch tha t x € G there exists some F i ¥ such that F c c l G .
si

Then (X, 0) i s a pretopological space. We show elsewhere [2] , that the

'8-closure is idempotent i f and only i f X i s almost-regular. Thus Theorem

h [?] implies tha t 9 i s not topological. The ident i ty
I : (X, t) •+ [X, T J i s continuous and does not satisfy ( l ) . However,s

I : (X, 0) ->• [x, 6 J , where 6 is the 9-convergence function defineds s

by T , sa t i s f i e s ( l ) and is often said to be B-perfeot [7] , [2] .s

REMARK I . I . In Section 2, we show that the identi ty map onto any

nonpseudotopological convergence space is perfect from i t s

pseudotopological modification "but not continuous. Moreover, in Section 3,

we show that there exist many well known noncontinuous and nonsurjective

maps between convergence spaces,which sat isfy ( l ) .

2. Perfect maps

The previous examples and remark indicate that a foundational

investigation into the nature of maps which satisfy condition (l) should "be

of interest to convergence space theorists. Throughout the remainder of

this paper, no map will "be assumed continuous nor surjective. Moreover,

the concept of "perfect" as we now define it does not correspond to perfect

as used in [7 3] even though it does correspond to the definition given in

[41 for topological spaces as well as that found in [/] for the

6-convergence spaces.

DEFINITION 2.1. A map f : (X, q) •* (7, p) is perfect if whenever

U € U(Y) and U + j E J , then for each V € U(X) such that /(I/) = U

there exists some x (. f (y) such that V -*• x .

Prior to showing that perfect maps may be characterized by a coverning

property, we introduce the following notation and terminology, where X is

a convergence space. For A c X , let

U(A) = {x | [a: € U(X)] A 3y[y € A ] A [x -* y}} .

We call a set A c X , B-compaot if B c X and for each U € U(X) such

that A € U there exists some b (. B such that U •+ b . Observe that the

empty set is S-compact for each Be X , and if B = 0 , then A is

B-compact if and only if A = 0 . For A c X , a filter base F on X is
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A-compaot if for each U £ U([F]) there exists some x £ A such that

U •* x . Notice that A c: X is ^-compact if and only if it is compact in

the usual convergence space sense and A is almost-compact [15] or

absolutely bounded [5] if and only if it is X-compact. For A c X , let

s(U(y4)) be the set of all choice sets generated by U(A) . Also notice

that if 0 + A c X , then U(A) + 0 . The next result relates the concept

of 4-compact filters to finite covers.

THEOREM 2.1. For a space (X, q) and nonempty A c X a filter base

¥ on X is A-compact if and only if for each S £ s(ll(4)) there exists

a nonempty finite subset S~ c 5 and some F E F such that F c US „ .

Proof. For the necessity, assume that F is 4-compact. For some

fixed S £ s[li{A)) and some G € S , if F € F and F - G = 0 , then the

result follows. Hence assume that for each F € F , F - G ? 0 . The set

6G = {F-C I F € [F]} is a filter base on X and [F] c [6 ] . Observe

that G { [GG] . Assume that V{ [G^] | G € 5} = G # P U ) . Then there

exists U € U([F]) such that G c 0 . Since F is ^-compact, then

U € 11(4) . Thus there exists G' (. S such that G' t U . However,

[GG,] C G implies that U € ̂ ([Gg,]) . Since X - G' € [G ,] , we have

the contradiction that G' $ U . Thus v{ [G ] | G € 5} = P U ) implies

that there exists a natural number n such that f\{F.-G. \ i i n) = 0 ,

G. ? F and G. £ S for each i € n . Let F € F such that
U Is

F c n{F. I i 6 n} . Then n{F-G. \ i £ n] = 0 implies that

F c U{C. | i € w} .

For the s u f f i c i e n c y , l e t U € W([F]) and assume t h a t U / x for any

x € A . Then U f 11(4 ) . Thus for each V € U(4) t h e r e e x i s t s some

'/ £ 1/ and (/ € U such t h a t K n £/ = 0 . ;:Ow cons ider the s e t

K = {(V, U) | 3 l / [ [ l / £ U(A)] h [V £ \J] tK [U £ U] t\ [V n U] = 0 ] } .

Then the f i r s t projection P^K) £ S[U(A)) . Hence there exis ts an F £ F

and {l^, . . . , K }̂ c P^K) such that F c '/ u . . . u V . How U n F + 0

for each U £ U . Consider {(/.,, U^ , ..., (7^, {/ )} c X . Then

(W, n . . . n i / J n F t 0 implies that
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0 * {Vx u ... u Vn] n ((/1n...nl/B)cU(7.nl/, | i = 1, . . ., n} •= 0 .

The sufficiency follows from this contradiction and the proof is complete.

REMARK 2.1. We have proved Theorem 2.1 for filter bases rather than

filters since it is applicable to these useful objects. For the remainder

of this paper, we concentrate upon filters even though most of the

following results may be shown to hold, at least in part, for filter bases.

The next result characterizes perfectness in terms of ^-compactness.

THEOREM 2.2. Let f : (X, q) - (I, p) . Then f is perfect if and

only if whenever U € U(Y) , f[X] € U and U -*• y f v , then /~1(U) is

f~ (y)-compact.

Proof. Let f[X] € U € U(x) . If N u{f~X{U)) , then f"1(U) <= V

implies that U c W(r1(U)) <=/((/) . Hence U = f{V) . On the other hand,

if V € u(X) such that f(V) = U , then /""""(U) c 1/ implies that

y € Wl/"1!")) . Thus 1/ Z U(X) such that /(I/) = U if and only if

V (. y(/^1(U)) . The result now follows from the definition of f~X{y)-

compactness and the observation that we need only consider those U € Ll(x)

such that f[X] € U .

REMARK 2.2. If we include in Fix) the trivial "filter" P(x) ,

then the requirement that fix] € U in Theorem 2.2 can be removed. For if

f[X] f U , then f1^) = P(X) and l/lf

We now extend Theorem 2.2 to include all filters on X which

intersect f[X] .

THEOREM 2.3. Let f : (X, q) •* (Y, p) . Then f is perfect if and

only if whenever F 6 F{X) , F n fix] and T + y Z Y , then /""""(F) is

/ (j/)- compact.

Proof. The sufficiency is apparent from Theorem 2.2. For the

necessity, assume that / is perfect, F £ F{X) , F n fix] and

F + y £ Y . Notice that if U 6 U(F) , then /[*] € U . It is easy to

verify that uif'1^)) = ^{uif'1^)) | U € U(F)} . Hence let
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V € y(/~1(F)) • Then there exis ts li € tf(F) such that /(I/) = U . Since

U + y , then perfectness implies that for some x (. f {y) , V -*• x .

Consequently, f (F) i s f (i/)-compact and the proof i s complete.

Recall that for each A c X , the q-closure (or simply closure) of 4

c l (-4) = {* | [a; € X] A 3y [[I / € £/(*)] A [4 € z, ] A [J/ + x ] ] } .

The ^ - c l o s u r e i s of ten denoted "by T [ I ] , [ 2 ] , [ 9 ] , [ 7 0 ] . A s e t A c X

i s q-closed (or simply eZ-osed) i f A = c l (-4) . Kent [JO] def ines

c l (i4) = A , c l (A) = c l (4) ; i f a i s an o r d i n a l number and a - 1

e x i s t s , then c l {A) = c l c l {A)\ and i f a i s a l i m i t o r d i n a l , then

cia(A) = l l jc l U ) | f5 < ct[ . The smal les t o r d i n a l y such t h a t

cl'iA) = c l Y + 1 ( '4 ) for each A c X i s denoted by y and i s the length of

the decomposition series for (X, q) [ 7 0 ] . For a f i l t e r base F on X ,

the q-adherence (or simply adherence) of F i s

aq{f) = {x | [x € AT] A 3z/[[j/ € */(*)] A [[F] c y] A [j/ -> x ] ] } .

Note t h a t for A c X , cl (A) = a {{A}) . Given (X, q) we def ine t h e

pseudotopological modification (X, q*) as follows: x t q*(F) if and

only i f x € q(U) for each U € i/(F) [ 6 ] . Observe that U (X) = U ^(X) .

We now characterize ^-compactness in terms of q-adherence and give a

major characterizat ion for perfectness.

THEOREM 2 .4 . For (X, q) , let F € F(X) . Then for each G (. F(X)

such that F c G , it follows that a (G) n A f 0 if and only if F i s

A-compact.

Proof. For the s u f f i c i e n c y , assume t h a t F i s i4-compact and

F c G f F(X) . Let U € U{G) . Then U 6 y(F) impl ies t h a t U •*• x fo r

some x 6 4 . Hence x \ a {G) r> A .

For t he n e c e s s i t y , assume t h a t F i s not /1-compact. Then t h e r e

e x i s t s some U € £/(F) such t h a t U -f- x for any x i A . Since F c G
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and a (U) nA + 0 , then for some x' i A , (J ->• x' . This contradiction

completes the proof.

Notice that i f F, G € F(X) , F c G , A c X , and F i s 4-compact,

then G is /5-compact.

THEOREM 2 . 5 . A map f : (X, q) •+ (Y, p ) i s perfect if and only if

for each F € F(X) , i t follows that a ( f (F)) c f[a (F ) ] .

Proof. For the necessi ty , le t t/ 6 a (/(F)) , F € F(AT) . Then there

e x i s t s U € y ( J ) s u c h t h a t / ( F ) c U and U -»• y <L Y . C l e a r l y , we h a v e

t h a t f[X] € U , / " 1 ( F ) v U = U and /""""(U) v F # P(X) . Mow

v F

and / "being perfect imply that the filter f (U) V F is /~1(y)-

compact. Since u(f~X(U) v F) + 0 and ̂ (/""1(U) v F) c y(F) , it follows

that there exists V € U{X) such that F c 1/ and V ->• x for some

* e /~1(y) • Hence a: € a (F) and /(a;) = y imply that z/ € f [a (F)] .

For the sufficiency, let F (f(l) , F n /[X] , F -»• j/ , G €

and /""""(F) c G . Since F c / f f V ) ) c /(G) , then f(G) -+y . Thus

y e a (/(G)) implies that t/ € /[« (G)] . Hence a (G) n f"1^) ̂  0 .

Since G is an arbitrary filter finer than f~ (F) , Theorem 2.h implies

that f~ (F) is f (j/)-compact. The sufficiency follows from Theorem

2.3.

COROLLARY 2.5.1. If f : (X, q) •* (Y, p) is perfect, a is an

ordinal nuirber^and B c X , then cl [f[B]) c / cia(S) .

Proof. This follows from a slight modification of the proof of

Proposition 3-2 in LI02.

COROLLARY 2.5.2. If f : (X, q) •* (Y, p) is perfect and Be X is

closed, then f[B] is closed.
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A map / : {X, q) -*• [Y, p) is weakly-continuous (respectively
continuous) if for each U € U(X) (respectively F € F(X) ) such that
U •+ x (respectively ¥ -*• x ) , f(U) (respectively f( F) )
p-converges to fix) . Clearly, continuity implies weak-continuity.
However, if the space (X, q) is a non-pseudotopological convergence
space (that is q t q* ) , then there exists some F € F(X) such that
F | U{X) and F q*-converges to some x € X but does not q-eonverge to
x . Then, in this case, the identity J : {X, q*) •*• (X, q) is weakly-
continuous, "but not continuous. Observe that I is also perfect. We now
characterize weak-continuity.

THEOREM 2 . 6 . I f / : (X, q) •+ (Y, p) is weakly-continuous, then for

each F € F(X) , f[aq(F)] c ap{f(F)) .

Proof. Obvious.

THEOREM 2 . 7 . If f -. (X, q) •* (I, p) and for each U € U{Y) such

that f[X] € U , f[a (U)] c a (/(U)) „ t?zen / is weakly - continuous.

Proof. This follows easily by contradiction.

COROLLARY 2 . 7 . 1 . A map f : {X, q) -* (y , p) i s weakly-continuous if

and only if for each F i. F(X) , f [a (F)] c a ( / (F)) .

COROLLARY 2 . 7 . 2 . l / / : U , q ) - > - ( y , p ) is weakly-continuous, then

for each ordinal number a and B c X , f cla(B) c cl (/[B]) .

Proof. This follows by a straightforward transfinite induction proof.

COROLLARY 2.7.3. If f : {X, q) •* (Y, p) is weakly-continuous and

perfect, then for each ordinal a and B c X , f cla(B) = cia(/[B]) .

For each F € F(X) , let cl (F) = F . For an ordinal number a , if

a - 1 exists, le t cla(F) = |cia(F) | F (. FV . If a is a limit

ordinal, le t cl"(F) = A|C1^(F) | 6 < al . For a space {X, q) , define

t h e pretopological modification, q , a s f o l l o w s : x € q[f) i f and o n l y i f

N ( x ) = A{U | U Z U({x})} c F . The topological modification, \{q) , i s

the topology generated by the set of complements of the ^-closed subsets
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of X .

THEOREM 2.8. Let f : (X, q) + (Y, p) .

(i) If f is weakly - continuous, then for each F € F(X) and ordinal

a , cl£(/(F)) c/[ciJ(F)] .

(ii) If f is perfect, then for each F € F{X) and ordinal a ,

(Hi) If f is a weakly-continuous and perfect surjection, then

Y — Y

(iv) If f is a weakly-continuous and perfect surjection and q is

a topology, then p is a topology.

Proof, (i) and (ii) follow from Corollaries 2.5.1 and 2.7.2. (Hi)

and (iv) follow as in the proof of Proposition 3.3 [7 0] and by Theorem 2.U

in [6].

REMARK 2.3. If / : (X, q) -»• {Y, p) and F i F{x) , then it follows

that U[f(F)) = {/(U) | U € U(F)} . This yields that if f is weakly-

continuous, then / : (X, q*) -*• (Y, s) is continuous for each

s € {p*, p, X(p)) . Moreover, following Kent [£] it is not difficult to

show that / : {X, q) •* {Y, s) is continuous for each s i {p X(p)} .

Indeed, let A c y be p-closed. Then assuming that / is weakly-

continuous, we have that

implies that / : [X, X(.q)) •* [Y, X(p)) is continuous.

COROLLARY 2.8.1. If q = \{q) and p * X(p) , then there does not

exist a weakly-continuous and perfect surjection from (X, q) onto

U, p) •

Recall that S c X is compact if B is compact in the convergence

function q' induced on B . The function q' is defined as follows:

F € F(B) is q '-convergent to x € B if [F] is ^-convergent to x .

Thus B c X is compact if and only if for each F € F(B) , a ,(F) # 0 if

and only if for each F € F(S) , a ([F]) n B ? 0 if and only if for each
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U d U{B) , U is q '-convergent to some x d B if and only if for each

U d U(X) such that B d U, U i s q'-convergent to some x € B if and only

if for each U € W(X') such that B d U , U i s (^-convergent to some

x £ B . A set B c: X i s almost-compact [ 5 ] , [ I 5] , i f and only i f for each

li d U(X) such that B d U , U is ^-convergent to some x € X if and

only i f B i s ^-compact. The set of a l l almost-compact subsets of X

forms a bornology [ 3 ] . Obviously, if A, B c X are almost-compact, then

A u B i s almost-compact. If /I c B c X and B i s almost-compact, then

A i s almost-compact. A map / : (X, q) -»• (Y, p) i s compact (respectively

almost-compact) if for each compact (respectively almost-compact) B cz y ,

/ " [B] is compact (respectively almost-compact). I t i s a strightforward

exercise to show that the weakly-continuous image of a compact

(respectively almost-compact) set is compact (respectively almost-compact).

THEOREM 2.9. If Bey is compact (respectively almost-compact) and

f : (X, q) ->• (y, p) is perfect (respectively and surjective), then

f [B] is compact (respectively almost-compact).

Proof. For the compact case, assume that f [B] f 0 . Let

F £ F[f~X[B]) and G be the f i l t e r on B generated by [f[F] \ F i F} .

Then a (G) n B * 0 implies that there exis ts U € U{X) finer than G ,

such that U -»• y € B . Hence y Z a (/(F)) . Theorem 2.5 yields that

y € jf[a (F)] . Therefore, there i s an x € a (F) such that y = fix) and

f(x) € 5 . Consequently, x € a (F) n /~1[S] implies that /"1[B] i s

compact.

For the almost-compact case, l e t U 6 (/(#) such tha t / " [B] d U .

Then / [ T 1 [ B ] ] = B € /(li) € £/U) . Hence /(li) -• y d Y . Perfectness

implies that /~1(/(U)) i s /""""(y)-compact. Thus i f V d U[f1 [f(U))) ,

then V •* x for. some x d f"1(y) . Since li d £/(/~1(/(U))) , then U ->• x

for some x d f iy) implies that / " [B] i s almost-compact.

COROLLARY 2.9.1. If f •. ix, q) -»- (7, p) i s perfect, then f is a

closed map with compact point inverses.
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COROLLARY 2.9.2. If f : (X, q) •* (Y, p) is perfect (respectively

ayid surjective), then f is a compact (respectively almost-compact) map.

The various convergence functions definable on X may be ordered as

follows: q 5 q2 if and only if <?2(F) c q (F) for each F 6 F{X) . If

q < q2 , then we say that q is coarser than q~ or that ^ 2 is finer

than <7. . The modifications of (X, q) have the ordering

\(q) ± q < q* S q [61. It follows from the definition that if

/ : (X, t) •* (Y, s) is perfect, where t 5 q and s 2 p , then

/ : [X, t ) ->• (j, s ) is perfect, where t 5 t and s 5 s 5 p . The

next result exhibits an interesting phenomenon associated with this ordered

behavior and shows that perfect maps have an additional strength.

THEOREM 2.10. If f : (X, t) •* (Y, s) is perfect, where

\{q) 5 t 5 q and s = \(p) or p 5 s £ p , then f : [X, X(q)} -> [Y, s ) ,

\{p) £ s - p , is perfect.

Proof. Since for the space {Y, p) , A c. y is A(p)-closed if and

only if cl (A) = A , cl-U) = cl {A) = cl (A) and
p p s p

f : (X, X(q)) •* (Y, s) is perfect, then it follows that

/ : [X, A(<?)) •* [Y, A(p)) is a closed map with compact point inverses.

Using Whyburn's classical result 1161, this implies that / is

topologically perfect. The proof is completed by application of the

observation preceding this theorem.

COROLLARY 2.10.1. If f : (X, q) •+ (Y, p) is a weakly-continuous

and perfect surjection with q = \(q) , then f : (X, q) -*• (Y, p) is a

topological continuous and perfect surjection.

Proof. Theorem 2.8 part (iv) implies that p = \{p) . By Remark 2.3

we have that / : (X, q) -*• (Y, p) is continuous.

In the proof of Theorem 2.10 we use Whyburn's classical result that a

closed map with compact point inverses is perfect for topological spaces.

The following example shows that this is not the case for convergence

spaces. Hence a future investigation into conditions under which a closed

map with compact point inverses is perfect should prove profitable.

EXAMPLE 2.1. Let (X, q) be a pseudotopological space which is not
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pretopological. Since {X, q) and (X, q) have the same closed sets and

each x 6 X is q and q-compact, then the identity map

I : (X, q) -* {X, q) is closed and has compact point inverses. However,

there exists some U € U(X) and x € X such that U is ^-convergent to

x , but not (^-convergent to x . Consequently, a~(-T(U)J <£ I[a (U)J

implies that J is not perfect.

Whyburn [7 6] gives an example of a compact map between topological

spaces which is not perfect.

A space {X, q) is locally (respectively almost-locally) compact if

each convergent ultrafilter contains a compact (respectively almost-

compact) set. We note that there exist in the literature other distinct

definitions for locally compact spaces. For example, a Hausdorff space,

assuming axiom (C), may be called locally compact if it is open in each

Hausdorff compactification [72]. In [75], Vinod-Kumar apparently shows

that this latter type of local compactness is equivalent to almost-local

compactness. Recall that a space (X, q) is Hausdorff if for each

F i. F(X) , q(?) contains at most one element. A surjection

/ : [X, q) -*• (y, p) is biquotient if (I ( U(Y) and U -*• y , then there

exists some x if (y) and V € U(X) such that 1/ •+• x . Clearly, a

perfect surjection is biquotient, and if (X, q) is locally compact

(respectively almost-locally compact), / : {X, q) -* (Y, p) is a weakly-

continuous biquotient map, then Y is locally compact (respectively

almost-locally compact). Moreover, Corollary 2.9.2 implies that if

/ : {X, q) •*• (/, p) is a weakly-continuous perfect surjection and (y, p)

is locally compact (respectively almost-locally compact), then X is

locally compact (respectively almost-locally compact). We now give a

sufficient condition for a compact (respectively almost-compact) map to be

perfect.

THEOREM 2.11. Let B e V{Y) be such that for each U i U(Y) there

exists some B £ B such that B i U . If f : {X, q) •+ (y, p) is weakly-

continuous and for each B € 8 , f [B] is almost-compact and Y is

Hausdorff, then f is perfect.

Proof. Let F i F{X) and y € a (/(F)) . Then there exists

U € U(Y) such that U -* y and /(F) c: U . Also there exists some B £ B
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such tha t B f U and / [B] i s almost-compact. Let !/ E U and F € F .

Then f[F] n U ? 0 implies tha t F n f"1(F) . Thus

G = f~1(U) v F ?t P(X) . Since B ( 0 , then /~1[B] € G . Almost-

compactness implies tha t there exists V t U{X) such that \l -*• x t X and

/~1(U) c 1/ . Weak-continuity implies that f(\J) •* fix) . However,

U c f{f~1{U)) c /(I/) and Hausdorff imply tha t 0 = f{V) and /(a;) = 2/ .

Since F c 1/ , then a; £ a (F) . Thus y € / ( a (F)] . Application of

Theorem 2.5 completes the proof.

COROLLARY 2.11.1. Let (Y, p) be locally compact (respectively

almost-locally compact) and Hausdorff. If f : (X, q) •*• (Y, p) is weakly-

continuous and compact (respectively almost-compact)s then f is perfect.

REMARK 2.4. Further investigations into the relation between

compact, almost-compact,and perfect maps should "be a useful exercise.

Theorem 2.5 has other immediate and interesting applications. For

example, if / : {X, 17) •*• (Y, p) is a perfect surjection and X is

Hausdorff, then Y is Hausdorff. Moreover, it immediately implies that

the composition of perfect maps is a perfect map. We conclude this section

with a sufficient condition for a map to be perfect and show that a perfect

map can not be extended to a proper extension of its domain such that it is

weakly-continuous.

THEOREM 2.12. Let f : (X, q) + (Y, p) be weakly-continuous, f[X]

closed in Y and Y Hausdorff. If for each F € F(X) , /(F) converges

to y € Y implies a (F) # 0 , then f is perfect.

Proof. Let F € F{Y) , F •+ y , and F n fix] . Now y € f[x] since

f[X] is closed in Y and /~1(F) i F(X) . Assume that G £ F(X) and

/"-"-(F) c G . Then Fc/(/~1(F)) c f(G) implies that f(G) •* y . Hence

y € a [f{G)) . Now since Y is Hausdorff, a (/(G)) = {y} . However

a (G) c f~X[a (f(G))) = f~X(y) by weak-continuity. Since a (G) t 0 ,

then a (G) n /~ {y) t 0 implies by Theorem 2.k that /""''(F) is /~1(y)-

compact. Hence Theorem 2.3 yields that / is perfect.
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COROLLARY 2.12.1. Let f : (X, q) ->• (y, p) be weakly-continuous, X

compact, Y Hausdorff, and f[X] closed in Y . Then f is a perfect

map.

REMARK 2.5. Observe that / : (X, q) •+ (Y, p) i s perfect i f and

only if / : (X, q*) + (Y, p*) i s perfect .

A subspace [X, q') of (Z, q) is dense i f for each z £ Z there

exists U £ U(Z) such that U + z and U n X . If U , <?') i s a sub-

space of (Z, q) , then Z - X is separated from X if U £ U(Z) and

U ^-converges to r € Z-A" , then U does not ^-converge to any x £ X .

Observe that if Z is Hausdorff, then for any subspace X i t follows that

Z - X i s separated from X . For a topological space, i f Z i s Hausdorff

except for X , then Z - X i s separated from X .

THEOREM 2 . 1 3 . Let (X, q') be a proper dense subspace of (Z, q)

and Z - X be separated from X . If f : (X, q') •+ {Y, p) is perfect,

then there does not exist an extension F of f onto Z such that

F : (Z, q) -*• (Y, p) is weakly-continuous at any r £ Z-X .

Proof. Let r 6 Z-X , U € £/( Z) q-converge t o r , U n X . Now l e t

F = U^ be the t r a c e u l t r a f i l t e r on X . Then s ince Z-X i s separa ted

from X , a ,(F) = 0 . Now / be ing p e r f e c t impl ies t h a t a (/"(O) = 0 •

Assume t h a t t h e r e e x i s t s F : (Z, q) -*• (Y, p) such t h a t F\x = f and tha t

F i s weakly-continuous a t r . Then F(U) •* F{r) . However, / ( F ) = F(U)

and F(U) 6 U(Y) imply t h a t F{v) i a ( / (F) ) . This c o n t r a d i c t i o n

completes t h e proof.

3. A product result

In this final section, we establish a product space result for perfect

maps which has numerous interesting applications. For spaces {X, q) ,

(Y, p) the product convergences function r = q x p On X x y j_s defined

as follows: for each F £ F(X * Y) , (x, y) £ r(F) if and only if

« € q(P1(F)) and y Z p(P2(F)) , where ^ and P2 are the projections

of X x y onto ^ and T , respectively. For two maps

/ : (X, q) •* (y, p) and g : (X, <?) -> (Z, s) , we define the map

(/, 9) : U , <?) * (J'xZ, p*s) by (/, ?)(x) = (/(*), g{x)) for each

x £ X .
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THEOREM 3 . 1 . Let f : (X, q) -> (Y, p) and g : (X, q) + (Z, s) be

continuous (respectively weakly-continuous). Then (f, g) is continuous

'(respectively weakly-continuous).

Proof. For the weakly-continuous case, l e t U € ll{x) be

^-convergent to x € X . Then f(U) •+ fix) and g(U) -*• g(x) . Now from

the defini t ion i t follows that if, g)(U) € U{¥ x Z) . Notice that

) and P2U
f> g ) { u ) } = g{u) • ^ ^

, g(x)) .

For continuity, it is a straightforward argument to show that for each

F £ F(X) such that F -»• x , /(F) c P1((f, #)(F)) ->• /(a;) and the result

is easily established.

THEOREM 3.2. If f : (X, q) •* (Y, p) is perfect and the map

g •• (X, q) -*" (Z, s) is weakly-continuous into Hausdorff Z , then

(f, g) : (X, q) •* (7><Z, p*s) is perfect.

Proof. Let U € U(Y x Z) be such that ( / , g)[X] € U and U is

r-convergent to {y, z) , r = p x s . Now, for each -4 c 7 x Z ,

Thus /"1[P1(U)) v ff"1(P2(U)) c ( / , gr
X(U) . Since / i s perfect and

P±(U) •* y , then /i~1(P1(U)) i s f"1(j/)-compact. Hence for each 1/ €

such tha t / " (P (U)) c 1/ there exists some xy € f~1(j/) such that

! / - * „ . Since ^ ( P ^ " ) ) c (/, ffJ^tU) and ^(P^U)) c (/,

then for any W € i/((/, g)"1(U)) there exists x 6 f~1(i/) such that

xw and g [P (U)) cz W . By w e a k - c o n t i n u i t y , g(lO) •+ g(x ) . Row

P2(U) •+ z and P2{U) c g\g 1 (P2(U))j c ?(W) imply that g(W) •* z . The

hausdorffness of Z yields that g(x) = z . Consequently, for each

W € U[(f, ^)~1(U)) there exis ts some x^ e /""""(y) such that

xw € ( / , ff)"1!!/, 3) . Thus ( / , g) i s perfect .
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COROLLARY 3.2.1. If f : {X, q) -* (Y, p) is perfect (respectively

weakly-) continuous, g : {X, q) •* (Z, s) is (respectively weakly-)

continuous into Hausdorff Z , then (f, g) : (X, q) -> (7xZ, pxs) is

(respectively weakly-) continuous and perfect.

COROLLARY 3.2.2. If f : (X, q) •* (Y, p) is perfect and the map

g : {X, q) •*• (Z, s) is weakly-continuous into Hausdorff Z , then

(f, g)[X] is a closed subset of Y x z .

COROLLARY 3.2.3. If f : (X, q) -*• {Y, p) is weakly-continuous and

Y is Hausdorff, then the graph of f is a closed subspace of X x Y .

Let (X, q) be compact, Y Hausdorff, / : {X, q) •+ (Y, p) a

weakly-continuous surjection and g : (X, q) -*• (Z, s) weakly-continuous.

Then ( / , g) : (X, q) •* (Y*Z, pxs) is a weakly-continuous and perfect map

by application of Corollary 2.12.1 and Theorem 3.2.

A bijection / : (X, q) -*• [Y, p) is a (respectively weak-)

homeomorphism if / and / are (respectively weakly-) continuous. If

the injection / : (X, q) -*• (Y, p) is not a surjection, then / is a

( r e s p e c t i v e l y weak-) embedding i f f : (X, q) -»- (f[X], p ' ) i s a

(respectively weak-) homeomorphism.

THEOREM 3.3. If there exists a weakly-continuous and perfect map

f : (X, q) •+ (Y, p) and a weakly-continuous injection

g : [X, q) -*• (Z, s) , where Z is Hausdorff, then {X, q) is weakly-

homeomorphic to a subspace of Y x Z .

Proof. From Corollary 3 . 2 . 3 , ( / , g)[X] i s closed in Y x Z and

Theorem 3.1 implies t ha t ( / , g) i s a weakly-continuous in jec t ion onto

( / , g)W = V • We show t h a t for r' = (p x s ) ' ,

( f , g ) ' 1 : (W, r') + (X, q)

is weakly-continuous. Let U € U(W) be such that U is r'-convergent to

w i \-l . Then there exists a unique x £ X such that (/, g)(x) = w .

From the perfectness of (/, g) , we have that (/, g)~1([U]) is

(f» g)~X(w) = {x}-compact by Theorem 2 . 3 . Hence i f 1/ € u[(f, g)~1([U])) ,

t h e n 1/ •* x . S i n c e ( / , g) i s an i n j e c t i o n , t hen

(/, 9')"1([f]) = (/, g)~1(U) is an ultrafilter on X . Hence
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COROLLARY 3 . 3 . 1 . If there exists a continuous and perfect map

f : (X, q*) ->• (y , p) and a continuous injection g : (X, q*) •*• (Z, s) ,

then [X, q*) is homeomorphic to a closed subspace of Y x Z .

We next present some interesting results which are easily verified and

which are used to establish the last major proposition in this present

investigation.

THEOREM 3 . 4 . If f : (X, q) -* (Y, p) is a weakly-continuous

injection, then f : f([X], p') -*• (X, q) is perfect.

Proof. Assume that U £ U(X) and U •+ x . We need to show that

(/"^"^•(U) = f(U) i s (f~1)~1(a;) = /(a;)-compact. Thus for each u l t r a -

f i l t e r V on f[X] such tha t f{U) cr \J , we must show that V -* f(x) .

However, f{U) = V and weak-continuity imply tha t V •+ f(x) .

COROLLARY 3 . 4 . 1 . Let f -. (X, q) •* (Y, p) be a weak-embedding.

Then f and f1 : if[X], p') •* [X, q) are perfect.

We extract the following resul t from the proof of Theorem 3.3.

THEOREM 3.5. Let f : (X, q) •* [Y, p) be a perfect injection.

Then f • (fix], p') •+ (X, q) is weakly - continuous.

COROLLARY 3 .5 .1 . A weakly-continuous and perfect injection is a

weak-embedding.

COROLLARY 3.5.2. Let f : (X, q) -* (Y, p) be weakly-continuous and

Y Hausdorff. Then (I, f) : (X, q) •* (X*Y, qxp) [respectively

(I, f) : [X, q*) ->• [x*Y, (qxp)*) ) is a weak-embedding [respectively an

embedding), where I is the identity on X .

THEOREM 3.6. Let f : (X, q) + (Y, p) and g : [Y, p) •* (2, s)

both be weakly - continuous. If gf : (X, q) •*• ( Z, s) is perfect and Z is

Hausdorff, then f is perfect.

Proof. Let h = (f, gf) . Clearly gf i s weakly-continuous. Hence

h i s perfect . Let I be the identi ty on Y . Then

(I, g) : (Y, p) •+ (Y*Z, pxs) i s a weak-embedding. Hence

(J> g)~ '• [G(g)-, (pxs)') •* (Y, p) , where G(g) i s the graph of g , i s
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perfect. Now h is perfect on any subspace of Y . Thus

h : (X, q) •* [G{g), (pxs)1) is perfect. The composition ((I, g)~ )h = f

is perfect and this completes the proof.

We leave to the reader other applications of the results from this

section. We point out, however, two more useful propositions. If

/ : U , q) -»• {f[X], p') is perfect and f[X] is p-closed, then

f : (X, q) -> (Y, p) is perfect. If / : (X, q) -* (Y, p) is perfect and

A <= x is <?-closed, then / : (-4, q') -*• (Y, p) is perfect. Finally, we

mention that many of the results in this paper hold for structures that

only satisfy axiom (B).
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