FINITE PROJECTIVE DISTRIBUTIVE LATTICES

BY
G. GRÄTZER(¹) AND B. WOLK

The theorem stated below is due to R. Balbes $\left({ }^{2}\right)$. The present proof is direct; it uses only the following two well-known facts: (i) Let K be a category of algebras, and let free algebras exist in K; then an algebra is projective if and only if it is a retract of a free algebra. (ii) Let F be a free distributive lattice with basis $\left\{x_{i} \mid i \in I\right\}$; then $\wedge\left(x_{i} \mid i \in J_{0}\right) \leq \bigvee\left(x_{i} \mid i \in J_{1}\right)$ implies $J_{0} \cap J_{1} \neq \phi$. Note that (ii) implies (iii): If for $J_{0} \subseteq I, a, b \in F, \bigwedge\left(x_{i} \mid i \in J_{0}\right) \leq a \vee b$, then $\bigwedge\left(x_{i} \mid i \in J_{0}\right) \leq a$ or b.

Theorem. A finite distributive lattice L is projective in the category of (finite) distributive lattices if and only if the join of two meet-irreducible elements is again meet-irreducible.

Proof. Let L be projective, so by (i) we can assume that $L \subseteq F$, where F is free on $x_{i}, i \in I$, and ρ is a retraction: $F \rightarrow L$. Let a and b be meet-irreducible, and let $a \vee b$ be meet-reducible, that is, for some $c, d \in L, a \vee b \geq c \wedge d, a \vee b \neq c, a \vee b \neq d$. Let $c=\bigvee\left(\bigwedge C_{k} \mid k\right), d=\bigvee\left(\bigwedge D_{l} \mid l\right)$, where C_{k} and D_{l} are finite subsets of $\left\{x_{i} \mid i \in I\right\}$. Then $c=c \rho=\bigvee\left(\bigwedge C_{k} \rho \mid k\right), d=d \rho=\bigvee\left(\bigwedge D_{l} \rho \mid l\right)$, and both are $\ddagger a \vee b$. Therefore there exist k and l such that $\wedge C_{k} \rho$ and $\bigwedge D_{l} \rho \neq a \vee b$. At the same time $\wedge C_{k} \wedge \wedge D_{l} \leq c \wedge d \leq a \vee b$, therefore $\wedge C_{k} \wedge \wedge D_{l} \leq a$ or b by (iii). Applying ρ we get $\wedge C_{k} \rho \wedge \wedge D_{l} \rho \leq a$ or b, which means that either a or b is not meet-irreducible, a contradiction.

Conversely, let L satisfy the condition of the theorem, and let $m_{i}, i \in I$ be the meet-irreducible elements of L. Let F be the free distributive lattice on $x_{i}, i \in I$, and let α be the homomorphism of F onto L extending $x_{i} \rightarrow m_{i}, i \in I$. Let G be the joinsubsemilattice of F generated by the $x_{i}, i \in I$. Now we define a map $\left.{ }^{3}\right) \varphi: L \rightarrow F$ by

$$
a \varphi=\bigwedge(x \mid x \in G, x \alpha \geq a) \text { for } a \in L
$$

Intuitively, $a \varphi$ is the smallest element in the subset $a \alpha^{-1}$ of F.
Distributivity shows that $(a \vee b) \varphi=a \varphi \vee b \varphi$, since any x in G such that $x \alpha \geq a \vee b$ is of the form $x=y \vee z, y \in G, y \alpha \geq a, z \in G, z \alpha \geq b$, and conversely. To show that φ preserves meets, note that, by the assumptions of the theorem, $x \alpha$ is meet-irreducible

[^0]for all x in G. Thus $x \alpha \geq a \wedge b$ is equivalent to the condition: $x \alpha \geq a$ or $x \alpha \geq b$. This proves that φ is a homomorphism of L into F.

Finally, we have $a=\bigwedge\left(m_{i} \mid m_{i} \geq a\right)$ for every element a of L. Thus $a \varphi \alpha=a$, and so L is a retract of F, and thus projective.

University of Mantoba,
Winnipeg, Manitoba

[^0]: ${ }^{(1)}$ Research supported by the National Research Council of Canada.
 $\left.{ }^{(}{ }^{2}\right)$ Pacific J. Math. 21 (1967), 405-420.
 $\left(^{3}\right)$ The $\operatorname{map} \varphi$ is by necessity the same as in R. Balbes, loc. cit.

