FINITE PROJECTIVE DISTRIBUTIVE LATTICES

BY

G. GRÄTZER(¹) AND B. WOLK

The theorem stated below is due to R. Balbes(²). The present proof is direct; it uses only the following two well-known facts: (i) Let K be a category of algebras, and let free algebras exist in K; then an algebra is projective if and only if it is a retract of a free algebra. (ii) Let F be a free distributive lattice with basis $\{x_i \mid i \in I\}$; then $\bigwedge (x_i \mid i \in J_0) \leq \bigvee (x_i \mid i \in J_1)$ implies $J_0 \cap J_1 \neq \phi$. Note that (ii) implies (iii): If for $J_0 \subseteq I$, $a, b \in F$, $\bigwedge (x_i \mid i \in J_0) \leq a \lor b$, then $\bigwedge (x_i \mid i \in J_0) \leq a \text{ or } b$.

THEOREM. A finite distributive lattice L is projective in the category of (finite) distributive lattices if and only if the join of two meet-irreducible elements is again meet-irreducible.

Proof. Let L be projective, so by (i) we can assume that $L \subseteq F$, where F is free on $x_i, i \in I$, and ρ is a retraction: $F \to L$. Let a and b be meet-irreducible, and let $a \lor b$ be meet-reducible, that is, for some $c, d \in L, a \lor b \ge c \land d, a \lor b \ge c, a \lor b \ge d$. Let $c = \bigvee (\bigwedge C_k \mid k), d = \bigvee (\bigwedge D_l \mid l)$, where C_k and D_l are finite subsets of $\{x_i \mid i \in I\}$. Then $c = c\rho = \bigvee (\bigwedge C_k \rho \mid k), d = d\rho = \bigvee (\bigwedge D_l \rho \mid l)$, and both are $\le a \lor b$. Therefore there exist k and l such that $\bigwedge C_k \rho$ and $\bigwedge D_l \rho \le a \lor b$. At the same time $\bigwedge C_k \land \bigwedge D_l \le c \land d \le a \lor b$, therefore $\bigwedge C_k \land \bigwedge D_l \le a \circ r b$ by (iii). Applying ρ we get $\bigwedge C_k \rho \land \land D_l \rho \le a \circ r b$, which means that either a or b is not meet-irreducible, a contradiction.

Conversely, let L satisfy the condition of the theorem, and let m_i , $i \in I$ be the meet-irreducible elements of L. Let F be the free distributive lattice on x_i , $i \in I$, and let α be the homomorphism of F onto L extending $x_i \rightarrow m_i$, $i \in I$. Let G be the join-subsemilattice of F generated by the x_i , $i \in I$. Now we define a map(³) $\varphi: L \rightarrow F$ by

 $a\varphi = \bigwedge (x | x \in G, x\alpha \ge a)$ for $a \in L$.

Intuitively, $a\varphi$ is the smallest element in the subset $a\alpha^{-1}$ of F.

Distributivity shows that $(a \lor b)\varphi = a\varphi \lor b\varphi$, since any x in G such that $x\alpha \ge a \lor b$ is of the form $x = y \lor z$, $y \in G$, $y\alpha \ge a$, $z \in G$, $z\alpha \ge b$, and conversely. To show that φ preserves meets, note that, by the assumptions of the theorem, $x\alpha$ is meet-irreducible

10-с.м.в.

⁽¹⁾ Research supported by the National Research Council of Canada.

^{(&}lt;sup>2</sup>) Pacific J. Math. 21 (1967), 405-420.

⁽³⁾ The map φ is by necessity the same as in R. Balbes, loc. cit.

for all x in G. Thus $x\alpha \ge a \land b$ is equivalent to the condition: $x\alpha \ge a$ or $x\alpha \ge b$. This proves that φ is a homomorphism of L into F.

Finally, we have $a = \bigwedge (m_i \mid m_i \ge a)$ for every element a of L. Thus $a\varphi \alpha = a$, and so L is a retract of F, and thus projective.

University of Manitoba, Winnipeg, Manitoba

140