
Adv. Appl. Prob. 44, 87–116 (2012)
Printed in Northern Ireland

© Applied Probability Trust 2012

LIMITING DISTRIBUTIONS FOR A CLASS
OF DIMINISHING URN MODELS

MARKUS KUBA ∗ ∗∗ and

ALOIS PANHOLZER,∗ ∗∗∗ Technische Universität Wien

Abstract

In this work we analyze a class of 2 × 2 Pólya–Eggenberger urn models with ball
replacement matrix M = (−a 0

c −d ), a, d ∈ N and c = pa with p ∈ N0. We determine
limiting distributions by obtaining a precise recursive description of the moments of
the considered random variables, which allows us to deduce asymptotic expansions
of the moments. In particular, we obtain limiting distributions for the pills problem
a = c = d = 1, originally proposed by Knuth and McCarthy. Furthermore, we
also obtain limiting distributions for the well-known sampling without replacement urn,
a = d = 1 and c = 0, and generalizations of it to arbitrary a, d ∈ N and c = 0.
Moreover, we obtain a recursive description of the moment sequence for a generalized
problem.
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1. Introduction

1.1. Pólya–Eggenberger urn models

Pólya–Eggenberger urn models are defined in the following way. We start with an urn
containing n white balls and m black balls. The evolution of the urn occurs in discrete time
steps. At every step a ball is drawn at random from the urn. The color of the ball is inspected
and then the ball is returned to the urn. According to the observed color of the ball there are
added/removed balls due to the following rules. If a white ball has been drawn, we put into
the urn a white balls and b black balls, but if a black ball has been drawn, we put into the urn
c white balls and d black balls. The values a, b, c, d ∈ Z are fixed integer values and the urn
model is specified by the 2 × 2 ball replacement matrix

M =
(
a b

c d

)
.

This definition extends naturally also to higher dimensions. Urn models are simple, useful
mathematical tools for describing many evolutionary processes in diverse fields of application,
such as analysis of algorithms and data structures, statistics, and genetics. Owing to their
importance in applications, there is a huge literature on the stochastic behavior of urn models;
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see, for example, [12] and [18]. Recently, a few different approaches have been proposed, which
yield deep and far-reaching results for very general urn models; see [5], [6], [10], and [11].
Most papers in the literature impose the so-called tenability condition on the ball replacement
matrix, so that the process can be continued ad infinitum, or no balls of a given color being
completely removed. However, in some applications, there are urn models with a very different
nature, which we will refer to as diminishing urn models. We refer the reader to [9] for a
detailed description of diminishing urn models.

A well-known example of a diminishing urn model is the classical sampling without replace-
ment urn model with transition matrix

M =
(−1 0

0 −1

)
.

In this model, balls are drawn at random one after another from an urn containing balls of two
different colors and not replaced. What is the probability that k balls of one color remain when
balls of the other color are all removed? Another famous diminishing urn model is the so-called
OK Corral urn, which serves as a mathematical model of the historic gun fight at the OK Corral.
The ball transition matrix of the OK Corral urn model is given by

M =
(

0 −1
−1 0

)
.

This problem was introduced by Williams and McIlroy [23], and can be viewed as a mathemat-
ical model for warfare and conflicts; see [14] and [15]. It was studied by several authors using
different approaches, leading to very deep and interesting results; see, for example, Stadje [21],
Kingman [13] and [14], and Kingman and Volkov [15], or the recent works of Puyhaubert [20],
Flajolet et al. [5], and Turner [22]. A vivid interpretation is as follows. Two groups of gunmen,
group A and group B (with n and m gunmen, respectively), face each other. At every discrete
time step, one gunman is chosen uniformly at random, who then shoots and kills exactly one
gunman of the other group. The gunfight ends when one group is completely ‘eliminated’.
Several questions are of interest: what is the probability that group A (group B) survives, and
what is the probability that the gunfight ends with k survivors of group A (group B)? Moreover,
one is also interested in the total number of survivors, regardless of the group. It turns out that the
limit laws arising in the OK Corral urn model are of a different nature compared to the limit laws
arising in the sampling without replacement urn model, which can easily be seen by comparing
the limit laws given in [5], [13], [14], [15], [20], and [21], basically normal distributions or
related distributions, with the limit laws—beta distributions, exponential distributions, and
geometric distributions—arising from the sampling without replacement urn model:

P{Xm,n = k} =
(
m− 1 + n− k

m− 1

)/(
m+ n

m

)
, 0 ≤ k ≤ n.

This explicit formula can be proven in various ways, e.g. via lattice path counting arguments
or generating functions [9]. Here Xm,n denotes the random variable representing the number
of white balls, when all black balls have been drawn, starting with n white and m black balls,
in the sampling without replacement urn model.

In this work we will analyze diminishing Pólya–Eggenberger urn models with ball replace-
ment matrix M given by

M =
(−a 0
c −d

)
, with a, d ∈ N and c = pa, p ∈ N0. (1)
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Throughout this work we use the notation N := {1, 2, 3, . . . } and N0 := {0, 1, 2, . . . }. We are
interested in the distribution of the random variable Xm,n, representing the number of white
balls, when all black balls have been drawn, starting with n white and m black balls. We
assume that the initial number of white balls is a multiple of a and that the initial number
of black balls is a multiple of d; equivalently, we consider the random variables Xdm,an with
m, n ∈ N0. The distribution of the random variable Xdm,an in the context of the evolution
of an urn, with ball replacement matrix given by M , may be described as follows. We have
a state space S := {(dm, an) | m, n ∈ N0}, where the evolution of the urn takes place. The
evolution stops at absorbing states A := {(0, an) | n ∈ N0}. The question is then to determine
the probability P{Xdm,an = k} that a certain state k ∈ A is reached, starting with an white
balls and dm black balls. The aim of this work is the derivation of limiting distributions of
the random variables Xdm,an for diminishing urn models, when the urn evolves according to a
ball replacement matrix M given by (1). We will see that different limiting distributions arise
according to the growth of m and n. Note that, when starting with an + α white balls, where
1 ≤ α < a, the urn model is no longer well defined. It may happen that at some stage only
α white balls are left, but we are forced to remove a white balls, when choosing a white ball.
The same problem occurs when the parameter c �= pa is not a multiple of the parameter a in
the definition of the ball replacement matrix.

1.2. Motivation

Our studies of the class of diminishing urns with a ball replacement matrix given by (1) is
motivated by the following problems.

1.2.1. The pills problem. The pills problem was originally proposed by Knuth and McCarthy
[17, p. 264]; the solution appeared in [16]. A vivid interpretation of the pills problem is the
following. In a bottle there are m large pills and n small pills. A large pill is equivalent to
two small pills. Every day a person chooses a pill at random. If a small pill is chosen, it is
swallowed, but if a large pill is chosen, it is broken into two halves, one half is swallowed and
the other half, which is now considered a small pill, is returned to the bottle. The problem,
proposed in [17], was to find the expected number of small pills remaining when there are no
more large pills left in the bottle. Brennan and Prodinger revisited this problem in [2], where
they showed how one can derive the exact moments of the pills problem (at least in principle),
and computed them up to the third moment. Furthermore, they also considered variations of the
problem, assuming, e.g. that a large pill is equal to p small pills, where they also succeeded in
computing the expected value. The pills problem corresponds to the derivation of the expected
value of Xm,n for a diminishing urn model with ball replacement matrix

M =
(−1 0

1 −1

)
.

In the recent work of Hwang et al. [9] the limiting distributions of the pills problem and a
related model, namely

M =
(−1 0

1 −2

)
,

were obtained by using generating functions. It was shown that the limiting distributions
significantly differ for these two problems. The generating functions approach of [9] has the
benefit that one not only obtains the limiting distributions, but also the exact distribution of
Xm,n for the two considered urn models. However, it seems difficult to extend the generating
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function approach to study the class with a ball replacement given by (1) in full generality.
Hence, the results of [9] motivated us to analyze the class of urns with replacement matrix

M =
(−a 0
c −d

)
.

1.2.2. Sampling without replacement. This classical urn model corresponds to the urn with ball
replacement matrix

M =
(−1 0

0 −1

)
.

The distribution of the types of balls after t draws is very well known (see, e.g. [5]), but here
we will focus on the limiting distributions of Xm,n. Note that this problem is often treated by
introducing two absorbing axes, i.e. {(0, n) : n ≥ 0} ∪ {(m, 0) : m ≥ 0}, but we rather simply
use the absorbing axis A = {(0, n) : n ≥ 0}, which is fully sufficient. We will also derive
limiting distributions for the generalizations

M =
(−a 0

0 −d
)
.

1.3. Weighted lattice paths

It is useful to describe and visualize the evolution of an urn with ball replacement matrix

M =
(
a b

c d

)

by weighted paths, which is described here in the case of urns with two types of balls. If the
urn contains m black balls and n white balls, and we pick a white ball, which appears with
probability n/(m+ n), this corresponds to a step (m, n) → (m+ a, n+ b), which has weight
n/(m + n), and if we pick a black ball, this corresponds to a step (m, n) → (m + c, n + d),
which appears with probabilitym/(m+n) and thus has weightm/(m+n). The weight of a path
after t successive draws consists of the product of the weights of every step. For a diminishing
urn, we find that the sum of the weights of all possible paths starting at state (m, n) and ending
at the absorbing state (i, j) ∈ A (which did not pass another absorbing state earlier) gives the
required probability that, when starting at (m, n), we end at (i, j).

Unfortunately, the weighted path approach is in general not effective for studying the
behavior of urn models. An example for a weighted path corresponding to the evolution of a
diminishing urn is given in Figure 1. The steps associated with a ball replacement matrix

M =
(−a 0
c −d

)

are visualized in Figure 2.

1.4. Goal

We will determine the structure of the moments ofXdm,an for urn models with ball replace-
ment matrix

M =
(−a 0
c −d

)
, a, d ∈ N and c = pa with p ∈ N0,
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Figure 1: An example of a weighted path from (6, 1) to the absorbing state (0, 2) for the so-called pills
problem with ball replacement matrixM = ( −1 0

1 −1

)
and the vertical absorbing axis A = {(0, n) : n ≥ 0}.
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Figure 2: The steps associated with the transition matrixM = ( −a 0
c −d

)
for c = 0 (left) and c > 0 (right).

as well as providing explicit formulae for the expectation and variance of Xdm,an. Moreover,
we will determine limiting distributions of the random variableXdm,an with replacement matrix
M as given in (1). As a byproduct we (re)obtain limiting distributions for the pills problem,
and also for generalizations of it.

For fixed m and n tending to ∞, we can show that Xdm,an/(an) tends to a so-called
Kumaraswamy-distributed random variable. Furthermore, we show that, for m tending to ∞,
the limiting distribution for c ≥ 0 changes according to the quotient a/d, with a, d ∈ N, and the
proportion of m and n. We will also encounter Weibull distributions as limiting distributions.

1.5. Notation

We denote by Xn
L−→ X the weak convergence, i.e. the convergence in distribution, of the

sequence of random variables Xn to a random variable X. We use the notation X
L= Y for

the equality in distribution of the random variables X and Y . Furthermore, we define Hn :=∑n
k=1 1/k to be the nth harmonic number and H(2)

n := ∑n
k=1 1/k2 to be the nth second-order

harmonic number. We denote by
[
n
k

]
the unsigned Stirling number of the first kind, and by

{
n
k

}
the Stirling numbers of the second kind; see, e.g. [7]. Furthermore, throughout this work, we
use the Pochhammer symbol for the falling factorial (x)� := x(x−1) · · · (x−�+1). Note that
in combinatorics (x)� is used for the falling factorial, whereas in the theory of special functions
the same notation is used for the rising factorial. Alternate notation for the falling factorials
include x�, as propagated by Graham et al. [7]. Moreover, we use standard asymptotic notation,
such as the big-O notation, small-o notation, and also the asymptotic equivalence of functions
f ∼ g ⇔ lim(f/g) = 1.
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1.6. Plan of the paper

The main results of this work are the characterization of the limiting distributions ofXdm,an
depending on the ball replacement matrix M and the initial states, which are contained in the
next section. In Section 4 we give a recursive description of the moments of Xdm,an together
with the derivation of the expectation and the variance. Section 5 is devoted to the proofs of
the limiting distribution results. A generalization of the considered urn model is then discussed
in Section 6.

2. Preliminaries

In the following we collect some basic facts about important probability distributions
appearing later in our analysis.

The Kumaraswamy distribution with parameters α, β > 0 is the distribution of a random
variable K = K(α, β) with density f (t) = fK(t) and distribution function given by

f (t) = αβtα−1(1 − tα)β−1 and P{K ≤ x} = 1 − (1 − xα)β, x ∈ [0, 1]. (2)

The sth moment of a Kumaraswamy-distributed random variable K = K(α, β) is given by

E(Ks) = �(β + 1)�(1 + s/α)

�(1 + β + s/α)
, s ≥ 1, (3)

and the Kumaraswamy distribution is uniquely determined by its sequence of moments
(E(Ks))s∈N. The Kumaraswamy distribution is closely related to the beta distribution: a
Kumaraswamy-distributed random variableK = K(α, β) can be expressed in terms of a beta-

distributed random variable B
L= B(1, β) with parameters 1 and β as follows: K

L= B1/α .
The Weibull distribution with parameters k, λ > 0 is the distribution of a random variable

W = W(k, λ) with support [0,∞), where the density function and distribution function are
given by

f (t) = k

λ

(
t

λ

)k−1

e−(t/λ)k , t ≥ 0, P{W ≤ x} = 1 − e−(x/λ)k , x ≥ 0.

The sth moment of W is given by

E(Ws) = λs�

(
1 + s

k

)
, s ≥ 1,

and it is known that, for k ≥ 1, the Weibull distribution is uniquely determined by its sequence
of moments (E(Ws))s∈N. Special instances of the Weibull distribution are the exponential
distribution k = 1 and the Rayleigh distribution k = 2. Note that it is known that the Weibull
distribution can be expressed as the (1/k)th power of a standard exponentially distributed
random variable ε

L= Exp(1) with intensity 1 times λ, i.e. W
L= λ(ε)1/k .

For a given parameter ρ > 0, there exists a discrete distribution Y = Yρ , with probability
mass function given by

P{Y = �} = ρ�

�!
d

a

∫ ∞

0
x�+d/a−1e−xd/a−ρx dx, (4)
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such that the factorial moments of Y are essentially given by the power moments of a Weibull-
distributed random variable W with parameters k = d/a and λ = 1:

E((Y )s) = ρs�

(
1 + as

d

)
, E(Y s) =

s∑
j=1

{
s

j

}
ρj�

(
1 + aj

d

)
.

Moreover, the moment generating function ϕ(z) = E(ezY ) of Y is related to the moment
generating function ψ(z) = E(ezW ) of W , if it exists, by

ϕ(z) = ψ(ρ(ez − 1)).

This can easily be verified by a direct computation: the sth factorial moment E((Y )s) satisfies

E((Y )s) =
∑
�≥0

(�)s P{Y = �}

=
∑
�≥s
(�)s

ρ�

�!
d

a

∫ ∞

0
x�+d/a−1e−xd/a−ρx dx

= ρs
∑
�≥s

ρ�−s

(�− s)!
d

a

∫ ∞

0
x�+d/a−1e−xd/a−ρx dx

= ρs
d

a

∫ ∞

0
xs+d/a−1e−xd/a−ρx ∑

�≥0

ρ�x�

�! dx

= ρs
d

a

∫ ∞

0
xs+d/a−1e−xd/a dx

= ρs�

(
1 + as

d

)
.

This implies the stated results for the ordinary moments E(Y s) = ∑s
j=1

{
s
j

}
E((Y )j ). The

moment generating function of Y is given by

ϕ(z) = E(ezY )

=
∑
�≥0

ez� P{Y = �}

= d

a

∫ ∞

0
xd/a−1e−xd/a−ρx ∑

�≥0

ρ�

�! x
�ez� dx

= d

a

∫ ∞

0
xd/a−1e−xd/a+ρx(ez−1) dx

= ψ(ρ(ez − 1)).

For d/a ≥ 1, or, equivalently, a/d ≤ 1, the moment generating function ψ(z) of the Weibull
distribution exists, and, therefore, by the result above, the moment generating function ϕ(z) of
the discrete distribution Y exists too, and the discrete distribution of Y is characterized by its
moments.
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3. Results

Next we state our limiting distribution results for Xdm,an, divided into three cases, namely,
c = 0, c �= 0 and a/d ≤ 1, and c �= 0 and a/d > 1. We start with the simplest case
c = 0, which seems to be well known (at least implicitly), and is covered here for the sake of
completeness and as another application of our approach.

3.1. Limiting distributions for c = 0

Theorem 1. For the ball replacement matrix

M =
(−a 0

0 −d
)
,

the random variable Xdm,an, representing the number of white balls when all black balls
have been removed, starting with an white and dm black balls, has the following limiting
behavior.

1. For fixed m and n → ∞, the scaled random variable Xdm,an/(an) converges in distri-
bution to a Kumaraswamy-distributed random variable:

Xdm,an

an

L−→ K

(
d

a
,m

)
.

2. For m, n → ∞ such that ma/d = o(n), the scaled random variable ma/dXdm,an/(an)
converges in distribution to a Weibull-distributed random variable:

ma/dXdm,an

an

L−→ W

(
d

a
, 1

)
.

3. For m, n → ∞ such that n ∼ ρma/d , with ρ ∈ R
+, the random variable Xdm,an/a

converges to a discrete random variable X with moments

Xdm,an

a

L−→ X, with E(Xs) =
s∑
�=1

{
s

l

}
ρ��

(
1 + a�

d

)
.

4. For m → ∞ and n = n(m) = o(ma/d), the random variable Xdm,an converges to a
limit X, which has all its mass concentrated at 0:

Xdm,an
L−→ 0.

Remark 1. For a = d = 1, we obtain the limit laws for the well-known sampling without
replacement urn model

M =
(−1 0

0 −1

)
,

which seem to be mathematical folklore, although we could not find a proper reference to the
literature. In particular, as mentioned in the introduction, we obtain a beta limiting distribution
for fixed m and n → ∞, an exponential distribution for m, n → ∞ such that m = o(n), and
geometric distributions for m, n → ∞ such that n ∼ ρm.

Remark 2. Strictly speaking, for a/d > 1, we can only show moment convergence in (2) and
(3) by our approach. However, it is possible to improve to general a, d ∈ N using different
approaches. First, we would like to mention a generating functions approach similar to the
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works [6] and [9] to obtain a closed-form expression:

P

{
Xdm,an

a
= k

}
= m

a

(
n

k

) ∫ 1

0
q1/a+k/d−1(1 − q1/a)m−1(1 − q1/d)n−kdq, (5)

valid for 1 ≤ k ≤ n. By using the definition of the beta function, we readily obtain the
expressions

P

{
Xdm,an

a
= k

}
=

m∑
�=1

(−1)�−1
(
m

l

)(
k − 1 + �d/a

k

)/(
n+ �d/a

n

)

=
n∑
�=k
(−1)�−k

(
n

�

)(
�

k

)/(
m+ �a/d

m

)
,

which allow us to extend the results to general a, d ∈ N. Second, as pointed out to us by the
referee, it is possible to use a decoupling approach; see, for example, [11] and [15]: we consider
two independent linear death processes, Wt (white) with death rate 1, and Bt (black) with rate
µ = d/a, starting at time 0 with nwhite balls andm black balls. Let τ = inf t>0{Bt = 0} be the
time when the black process dies out. ThenWτ = Xdm,an/a. By the independence assumption
P{τ < t} = (1 − e−µt )m, the number of white balls is determined by the binomial distribution
B(n, p) with parameter p = e−t . Consequently, we can strengthen part 1 of Theorem 1 to
almost-sure convergence, and readily (re)obtain the closed-form expression (5) after a simple
substitution.

3.2. Limiting distributions for c �= 0 and a/d ≤ 1

Theorem 2. For the ball replacement matrix

M =
(−a 0
c −d

)
,

where c = pa > 0 with p ∈ N, and a/d ≤ 1, the random variable Xdm,an, counting the
number of white balls when all black balls have been removed, starting with an white and dm
black balls, has the following limiting behavior.

1. For fixed m and n → ∞, the random variable Xdm,an/(an) converges in distribution to
a Kumaraswamy-distributed random variable K(d/a,m):

Xdm,an

an

L−→ K

(
d

a
,m

)
.

2. For m → ∞ and arbitrary n = n(m), possibly constant or a function of m, the random
variableXdm,an/gm,n converges in distribution to aWeibull-distributed random variable:

Xdm,an

gm,n

L−→ W

(
d

a
, 1

)
.

The normalization values gm,n are given as

gm,n = gm,n(a, c, d) =

⎧⎪⎨
⎪⎩
an+mcd/(d − a)

ma/d
for

a

d
< 1,

an

m
+ c logm for

a

d
= 1.

Remark 3. The special case a = c = d = 1 of Theorem 2 has already been proved by Hwang
et al. [9]. Furthermore, the special case a = c = 1, d = 2 of Theorem 2 reproves the Rayleigh
limiting distribution for

√
mXn,2m/(n+ 2m), also stated in Hwang et al. [9].
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3.3. Limiting distributions for c �= 0 and a/d > 1

Theorem 3. For the ball replacement matrix

M =
(−a 0
c −d

)
,

where c = pa > 0 with p ∈ N, and a/d > 1, the random variable Xdm,an, representing the
number of white balls when all black balls have been removed, starting with an white and dm
black balls, has the following limiting behavior.

1. For fixed m and n → ∞, the scaled random variable Xdm,an/(an) converges in distri-
bution to a Kumaraswamy-distributed random variable:

Xdm,an

an

L−→ K

(
d

a
,m

)
.

2. For m, n → ∞ such that ma/d = o(n), the moments of the random variable
ma/dXdm,an/(an) converge to the moments of the Weibull-distributed random variable
W(d/a, 1).

3. Form, n → ∞ such that n ∼ ρma/d , with ρ ∈ R
+, the moments of the random variable

Xdm,an converge:

E(Xsdm,an) → as
s∑
�=0

ρ��

(
1 + a�

d

) s∑
r=�

{
s

r

}
ϑr,�;�,0, s ≥ 1.

The values ϑs,�;h,g satisfy a system of recurrence relations given in Proposition 1 below.

4. Form → ∞ and arbitrary n = n(m) satisfying n = o(ma/d), the moments of the random
variable Xdm,an converge:

E(Xsdm,an) → as
s∑
r=0

{
s

r

}
ϑr,0;0,0, s ≥ 1.

The values ϑs,�;h,g satisfy a system of recurrence relations given in Proposition 1 below.

Note that we can prove convergence of the moments, but we are not able to show that the
resulting moment sequences define a unique distribution.

4. The structure of the moments

4.1. A recurrence for the moments

By the definition of Pólya–Eggenberger urn models with ball replacement matrix given by
(1), the probability generating function hm,n(v) := ∑

k≥0 P{Xdm,an = k}vk ofXdm,an satisfies
the recurrence (recall that c = pa, p ∈ N0)

hm,n(v) = an

an+ dm
hm,n−1(v)+ dm

an+ dm
hm−1,n+p(v) for n ≥ 0, m ≥ 1, (6)

with initial values given by h0,n(v) = van for all n ≥ 0.
Our aim is to derive limiting distributions of Xdm,an for max{m, n} → ∞. To do this, we

will give a precise description of the moments, which enables us to obtain an exact expression
for the expected value, and to determine the limiting distributions using the so-called method
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of moments, i.e. by applying the moment convergence theorem of Fréchet and Shohat, the
second central limit theorem; see, e.g. [19]. Of course, it follows from (6) that the moments
e
[s]
m,n := E(Xsdm,an) satisfy the recurrence

e[s]m,n = an

an+ dm
e
[s]
m,n−1 + dm

an+ dm
e
[s]
m−1,n+p for n ≥ 0, m ≥ 1, (7)

with initial values e[s]0,n = asns for n ∈ N0.
Our first observation for determining the structure of the moments is that e[s]

m,n is a polynomial
of degree s in n; in other words, the sth moment is of the form e[s]

m,n = ∑s
�=0 λs,�,mn

�, where
the numbers λs,�,m are independent of n. In the following we obtain an explicit result for λs,s,m,
and a recursive description of the quantities λs,�,m, 1 ≤ � ≤ s − 1, in terms of λs,i,j , with
�+ 1 ≤ i ≤ s and 1 ≤ j ≤ m.

Lemma 1. The sth moments e[s]m,n = E(Xsdm,an) of the random variable Xdm,an satisfy the
expansion e

[s]
m,n = ∑s

k=0 λs,k,mn
k , where λs,s,m = as/

(
m+as/d

m

)
. Furthermore, the values

λs,�,m, 1 ≤ � ≤ s − 1, satisfy the recurrence relations

λs,�,m =
m−1∑
k=0

(
m
k

)
(
m+a�/d

k

)µs,�,m−k,

where

µs,�,m := a

a�+ dm

s∑
k=�+1

(
k

�− 1

)
(−1)k−�−1λs,k,m + dm

a�+ dm

s∑
k=�+1

(
k

�

)
pk−�λs,k,m−1.

For � = 0, we have

λs,0,m =
m−1∑
k=0

µs,0,k, with µs,0,m :=
s∑
k=1

pkλs,k,m.

The initial values are given by λs,s,0 = as and λs,�,0 = 0 for 0 ≤ � ≤ s − 1.

Proof. In order to prove the stated expansion of e[s]m,n, we start with the ansatz e[s]m,n =∑s
�=0 λs,�,mn

�, and obtain from the recurrence relation (7) the equation

(an+ dm)

s∑
�=0

λs,�,mn
� = an

s∑
�=0

λs,�,m(n− 1)� + dm

s∑
�=0

λs,�,m−1(n+ p)�. (8)

By comparing the coefficients of n� for 0 ≤ � ≤ s + 1 in (8) we obtain a system of s + 2
equations, i.e.

λs,s,m = λs,s,m,

dmλs,�,m + aλs,�−1,m = a

s∑
k=�−1

(−1)k−�+1λs,k,m

(
k

�− 1

)

+ dm

s∑
k=�

pk−�λs,k,m−1

(
k

�

)
, 1 ≤ � ≤ s,

λs,0,m =
s∑
k=0

pkλs,k,m−1,
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with initial values λs,s,0 = as and λs,�,0 = 0 for 0 ≤ � ≤ s − 1, which are determined by
e
[s]
0,n = asns . The first equation is trivially true, so there remain s+1 equations, which determine

the values λs,�,m, 0 ≤ � ≤ s. The term λs,�−1,m on the left-hand side cancels with the first
summand of

∑s
k=�−1(−1)k−�+1λs,k,m

(
k
�−1

)
on the right-hand side, and we obtain

dmλs,�,m = −a�λs,�,m + a

s∑
k=�+1

(−1)k−�+1λs,k,m

(
k

�− 1

)
+ dmλs,k,m−1

+ dm

s∑
k=�+1

pk−�λs,k,m−1

(
k

�

)
, 1 ≤ � ≤ s.

The key step is to note that, for computing the values λs,�,m for 1 ≤ � ≤ s, only values λs,i,m
and λs,i,m−1 with � + 1 ≤ i ≤ s are needed, which allows us to recursively describe these
values. Hence, we can obtain, for the values λs,�,m, the recurrence relations

λs,�,m = dm

dm+ a�
λs,�,m−1 + µs,�,m for 1 ≤ � ≤ s,

with

µs,�,m := a

dm+ a�

s∑
k=�+1

(
k

�− 1

)
(−1)k−�−1λs,k,m + dm

dm+ a�

s∑
k=�+1

(
k

�

)
pk−�λs,k,m−1.

In the case � = 0 we directly obtain

λs,0,m = λs,0,m−1 +
s∑
k=1

pkλs,k,m−1

and, further,

λs,0,m = λs,0,m−1 + µs,0,m−1 with µs,0,m :=
s∑
k=1

pkλs,k,m.

Using induction with respect tom and n, we conclude that recurrence (7) has a unique solution
for the given initial values λs,s,0 = as and λs,�,0 = 0 for 0 ≤ � ≤ s − 1.

Now we will compute λs,s,m. We have

dmλs,s,m + aλs,s−1,m = −saλs,s,m + aλs,s−1,m + dmλs,s,m−1,

leading to
(dm+ as)λs,s,m = dmλs,s,m−1.

This gives

λs,s,m = dm

dm+ as
λs,s,m−1 and, further, λs,s,m = m!

(m+ as/d)m
= as(

m+as/d
m

) ,
where (m+as/d)m = (m+as/d) · · · (1+as/d) is written using the falling factorials notation.

By Lemma 1 we can derive arbitrarily high moments ofXdm,an. In particular, we will derive
the expectation of Xdm,an, and use Lemma 1 to prove our limiting distribution results.
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4.2. Factorial moments and an explicit formula for the moments in the case c = 0

The computation of several moments using Lemma 1 suggested that an alternative description
of the moments can be obtained. Let

e(s)m,n = E

((
Xdm,an

a

)
s

)
= E

(
Xdm,an

a

(
Xdm,an

a
− 1

)
· · ·

(
Xdm,an

a
− s + 1

))

denote the sth factorial moment of the normalized random variableXdm,an/a, with initial value
e
(s)
0,n = (n)s . In the following we obtain an alternative expansion for e(s)m,n in terms of (n)s , the

falling factorial powers of n.

Lemma 2. The sth factorial moments e(s)m,n = E((Xdm,an/a)s) of the normalized random vari-
ableXdm,an/a satisfies the expansion e(s)m,n = ∑s

�=0�s,�,m(n)�, with�s,s,m = 1/
(
m+as/d

m

)
and

�s,�,m, 1 ≤ � ≤ s − 1, recursively described by

�s,�,m = 1(
m+a�/d

m

)
m−1∑
k=0

(
k + a�/d

k

) s∑
j=�+1

(
j

�

)
(p)j−��s,j,k.

The initial values are given by �s,s,0 = 1 and �s,�,0 = 0 for 0 ≤ � ≤ s − 1.
Moreover, the values λs,�,m, with e[s]m,n = E(Xsdm,an) = ∑s

�=0 n
�λs,�,m, arising in the expan-

sion of the ordinary moments of Xdm,an, are related to �s,j,m via

λs,�,m = as
s∑
r=�

r∑
j=�
(−1)j−�

{
s

r

}[
j

�

]
�r,j,m, 0 ≤ � ≤ s,

where
[
n
k

]
denotes the unsigned Stirling numbers of the first kind and

{
n
k

}
denotes the Stirling

numbers of the second kind.

As an immediate consequence of the above result, we obtain explicit results for all moments
in the case c = 0.

Corollary 1. In the case c = 0 the sth factorial moment E((Xdm,an/a)s) of the normalized
random variable Xdm,an/a is given by

E

((
Xdm,an

a

)
s

)
= (n)s(

m+as/d
m

) .
Consequently, the ordinary sth moment of Xdm,an is given by

E(Xsdm,an) = as
s∑
�=0

n�
s∑
j=�
(−1)j−�

{
s

j

}[
j

�

]/(
m+ aj/d

m

)
.

Proof of Lemma 2. First we note that the factorial moments e(s)m,n satisfy the same recur-
rence relations (7) as their ordinary counterparts e[s]m,n, only the initial condition changes to
e
(s)
0,n = E(X0,an/a)s = (n)s .We proceed as in the proof of Lemma 1 and obtain, by the ansatz

e
(s)
m,n = ∑s

k=0�s,k,m(n)s , the equation

(an+ dm)

s∑
�=0

�s,�,m(n)� = an

s∑
�=0

�s,�,m(n− 1)� + dm

s∑
�=0

�s,�,m−1(n+ p)�. (9)
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Next we use the facts that

(an+ dm)(n)� = (a(n− �)+ a�+ dm)(n)� = a(n)�+1 + a�+ dm(n)�,

n(n− 1)� = (n)�+1,

and the binomial theorem for falling factorials

(a + b)n =
n∑
k=0

(
n

k

)
(a)k(b)n−k, (10)

in order to write (9) as

s∑
�=0

�s,�,m(a(n)�+1 + (a�+ dm)(n)�)

= a

s∑
�=0

�s,�,m(n)�+1 + dm

s∑
j=0

(n)j

s∑
�=j

(
�

j

)
(p)�−j�s,�,m−1.

The equation above simplifies to

s∑
�=0

�s,�,m(a�+ dm)(n)� = dm

s∑
j=0

(n)j

s∑
�=j

(
�

j

)
(p)�−j�s,�,m−1.

Comparing the coefficients of (n)�, the falling factorial powers of n, we obtain the equations

�s,s,m(as + dm) = dm�s,s,m−1, � = s,

�s,�,m(as + dm) = dm�s,�,m−1 + dm

s∑
j=�+1

(
j

�

)
(p)j−��s,j,m−1, 0 ≤ � ≤ s − 1. (11)

Consequently, we obtain

�s,s,m = m

m+ as/d
�s,s,m−1 and, further, �s,s,m = 1(

m+as/d
m

) .
Moreover, we also obtain from (4.2) the stated recurrence relation for �s,�,m:

�s,�,m = m

m+ a�/d
�s,�,m−1 + m

m+ a�/d

s∑
j=�+1

(
j

�

)
(p)j−��s,j,m−1.

In order to obtain the stated relation between λs,�,m and �s,j,m, 0 ≤ �, j ≤ s, we use the
expansion of the ordinary moments into factorial moments using the Stirling numbers of the
first and second kinds:

E(Xsdm,an) = as E

(
Xdm,an

a

)s

= as
s∑
r=0

{
s

r

}
E

(
Xdm,an

a

)
r

= as
s∑
r=0

{
s

r

} r∑
j=0

(n)j�r,j,m
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= as
s∑
r=0

{
s

r

} r∑
j=0

�r,j,m

j∑
�=0

[
j

�

]
(−1)j−�n�

= as
s∑
�=0

n�
s∑
r=�

{
s

r

} r∑
j=�

�r,j,m

[
j

�

]
(−1)j−�.

On the other hand, E(Xsdm,an) = ∑s
�=0 n

�λs,�,m, which proves the stated result.

Proof of Corollary 1. In the case of c = ap = 0, or, equivalently, p = 0, we obtain from
Lemma 2 the result

e(s)m,n =
s∑
�=0

�s,�,m(n)� = (n)s�s,s,m = (n)s(
m+as/d

m

) ,
since all the terms �s,�,m, 0 ≤ � ≤ s − 1, are 0 due to the factor p:

�s,�,m = 1(
m+a�/d

m

)
m−1∑
k=0

(
k + a�/d

k

) s∑
j=�+1

(
j

�

)
(p)j−��s,j,k

= p(
m+a�/d

m

)
m−1∑
k=0

(
k + a�/d

k

) s∑
j=�+1

(
j

�

)
(p − 1)j−�−1�s,j,k.

This implies that the ordinary moments are explicitly given by

E(Xsdm,an) = as
s∑
�=0

n�
s∑
j=�
(−1)j−�

{
s

j

}[
j

�

]/(
m+ aj/d

m

)
.

4.3. The fine structure of the moments for a/d > 1

Next we are going to use Lemma 2 to obtain a refinement of the description of the factorial
moments.

Proposition 1. For a/d > 1 and c �= 0, the values �s,�,m, arising in the expansion of the sth
factorial moment e(s)m,n = E((Xdm,an/a)s) = ∑s

�=0(n)��s,�,m of the random variable Xdm,an,
satisfy

�s,�,m =
s∑
h=�

1(
m+ah/d

m

)
h−�∑
g=0

ϑs,�;h,gmg,

where the values ϑs,�;j,i satisfy ϑs,s;s,0 = 1,

ϑs,�;�,0 = −
s∑

j=�+1

(
j

�

)
(p)j−�

s∑
h=j

h−j∑
i=0

ϑs,j ;h,iqi
(
ah

d
,
a�

d

)
,

and, further, for �+ 1 ≤ h ≤ s − 1 and 0 ≤ g ≤ h− �,

ϑs,�;h,g =
min{h,h−g+1}∑

j=�+1

(
j

�

)
(p)j−�

h−j∑
i=max{0,g−1}

ϑs,j ;h,ipi,g
(
ah

d
,
a�

d

)
.

The quantities pi,�(X, Y ), 0 ≤ � ≤ i+1, and qi(X, Y ) arising here will be defined in Lemma 3
below.
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In order to give the proof of the result above, we need the following identity.

Lemma 3. The sum
1(

m+Y
m

)
m−1∑
k=0

(
k+Y
k

)
(
k+X
k

)ki

can be expanded as

1(
m+Y
m

)
m−1∑
k=0

(
k+Y
k

)
(
k+X
k

)ki =
i+1∑
�=0

m�pi,�(X, Y )(
m+X
m

) − qi(X, Y )(
m+Y
m

) ,

assuming that Y + h+ 1 −X �= 0 for 0 ≤ h ≤ i, i ≥ 0, with

pi,�(X, Y ) =
i+1∑
j=�

[
j

�

]
(−1)j−�

×
i∑

h=max{0,j−1}

(
h+1
j

)
(X)h+1−j

(Y + h+ 1 −X)

i∑
f=h

(−X)i−f
(
i

f

){
f

h

}
, 0 ≤ � ≤ i + 1,

qi(X, Y ) =
i∑

h=0

i∑
f=h

(−X)i−f
(
i

f

){
f

h

}
(X)h+1

(Y + 1 + h−X)
.

Proof. We use the identity,

m−1∑
k=0

(
k+Y
k

)
(
k+X
k

) (k +X)j =
(
m+Y
m

)
(m+X)j+1

(j + 1 + Y −X)
(
m+X
m

) − (X)j+1

j + 1 + Y −X
, (12)

with j+1+X−Y �= 0 and j ≥ 0, which can be proven using induction with respect tom. The
identity was observed by the authors for small values of j using a computer algebra system,
and then proved in general by induction. In order to apply the above result to the sum

1(
m+Y
m

)
m−1∑
k=0

(
k+Y
k

)
(
k+X
k

)ki,

we expand ki in the following way:

ki = (k +X −X)i

=
i∑

f=0

(
i

f

)
(−X)i−f (k +X)f

=
i∑

f=0

(
i

f

)
(−X)i−f

f∑
h=0

{
f

h

}
(k +X)h

=
i∑

h=0

(k +X)h

i∑
f=h

(
i

f

){
f

h

}
(−X)i−f .
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Consequently, we obtain

1(
m+Y
m

)
m−1∑
k=0

(
k+Y
k

)
(
k+X
k

)ki

=
i∑

h=0

1(
m+Y
m

)
m−1∑
k=0

(
k+Y
k

)
(
k+X
k

) (k +X)h

i∑
f=h

(
i

f

){
f

h

}
(−X)i−f

=
i∑

h=0

(
(m+X)h+1

(h+ 1 + Y −X)
(
m+X
m

) − (X)h+1

(h+ 1 + Y −X)
(
m+Y
m

)
) i∑
f=h

(
i

f

){
f

h

}
(−X)i−f .

This proves the stated result for qi(X, Y ). In order to obtain the expressions for pi,�(X, Y ),
0 ≤ � ≤ i + 1, we have to expand (m+X − h)

(
m+X
h

)
in terms of ordinary powers of m. We

use the binomial theorem for falling factorials (10), and also the expansion

(m)j =
j∑
�=0

[
j

�

]
(−1)j−�m�.

Consequently, we obtain

(m+X)h+1 =
h+1∑
j=0

(
h+ 1

j

)
(m)j (X)h+1−j

=
h+1∑
j=0

(
h+ 1

j

) j∑
�=0

[
j

�

]
(−1)j−�m�(X)h+1−j

=
h+1∑
�=0

m�
h+1∑
j=�

(
h+ 1

j

)[
j

�

]
(−1)j−�(X)h+1−j .

Interchanging summations then leads directly to the stated results for pi,�(X, Y ).

Proof of Proposition 1. We proceed by induction with respect tom and �. We readily observe
that �s,s,m satisfies the stated expansion. Assuming that the values �s,j,k have the stated
expansion for all k < m and � + 1 ≤ j ≤ s, we obtain, by Lemma 2 and the induction
hypothesis,

�s,�,m = 1(
m+a�/d

m

)
m−1∑
k=0

(
k + a�/d

k

) s∑
j=�+1

(
j

�

)
(p)j−��s,j,k

=
s∑

j=�+1

(
j

�

)
(p)j−�

s∑
h=j

h−j∑
i=0

ϑs,j ;h,i
1(

m+a�/d
m

)
m−1∑
k=0

(
k+a�/d

k

)
(
k+ah/d

k

)ki .

Before we can apply Lemma 3 we need to check that the conditionsY+1+g−X �= 0 are satisfied
for Y = a�/d , X = ah/d , and 0 ≤ g ≤ i. We have 1 ≤ 1 + g ≤ i + 1 ≤ h− j + 1 ≤ h− �,
with equality only in the case j = �+ 1. Hence, from our assumption that a/d > 1 we obtain
1 + g ≤ h− � < a(h − �)/d , such that 1 + g − a(h− �)/d �= 0, 0 ≤ g ≤ i. We obtain, by
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Lemma 3,

�s,�,m =
s∑

j=�+1

(
j

�

)
(p)j−�

s∑
h=j

h−j∑
i=0

ϑs,j ;h,i
( i+1∑
g=0

mgpi,g(ah/d, a�/d)(
m+ah/d

m

) − qi(ah/d, a�/d)(
m+a�/d

m

)
)
.

This implies the stated result for ϑs,�;�,0. Furthermore, we obtain

s∑
j=�+1

(
j

�

)
(p)j−�

s∑
h=j

h−j∑
i=0

ϑs,j ;h,i
i+1∑
g=0

mgpi,g(ah/d, a�/d)(
m+ah/d

m

)

=
s∑

h=�+1

1(
m+ah/d

m

)
h−�∑
g=0

mg
min{h,h−g+1}∑

j=�+1

(
j

�

)
(p)j−�

h−j∑
i=max{0,g−1}

ϑs,j ;h,ipi,g
(
ah

d
,
a�

d

)
,

which leads to the stated results.

4.4. Derivation of the expected value

Next we will derive the explicit expressions for the expectation of Xdm,an using Lemma 1.

Proposition 2. The expectation of Xdm,an is given as

E(Xdm,an) =

⎧⎪⎪⎨
⎪⎪⎩

an

m+ 1
+ cHm for

a

d
= 1,

an(
m+a/d
m

) + c

d − a

(
dm+ a(
m+a/d
m

) − a

)
for

a

d
�= 1.

Proof. In order to obtain the expected value of Xdm,an, we use Lemma 1 to obtain

E(Xdm,an) = λ1,1,mn+ λ1,0,m,

where the values λ1,1,m and λ1,0,m are given by

λ1,1,m = a(
m+a/d
m

) , λ1,0,m = λ1,0,m−1 + p1λ1,1,m.

This implies that λ1,0,m can be written as

λ1,0,m = p

m−1∑
k=0

λ1,k,m = pa

m−1∑
k=0

1(
k+a/d
k

) .

We have to distinguish between the cases a/d = 1 and a/d �= 1. First, assume that a/d = 1.
We obtain

m−1∑
k=0

1(
k+a/d
k

) =
m−1∑
k=0

1(
k+1
k

) =
m−1∑
k=0

1

k + 1
= Hm,

and, further, E(Xdm,an) = an/(m+ 1)+ cHm. For the case a/d �= 1, we use the summation
formula

m−1∑
k=0

1(
k+X
X

) = m+X

(1 −X)
(
m+X
X

) − X

1 −X
,
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which can be easily deduced from another summation formula, namely (see [7, p. 188]),

k∑
�=0

(
k

�

)
(−1)�

X + �
= 1

X
(
k+X
k

) ,

using the fact that
∑m−1
k=0

(
k
�

) = (
m
�+1

)
. We obtain

m−1∑
k=0

1(
k+a/d
k

) = dm+ a

(d − a)
(
m+a/d
m

) − a

d − a
,

which directly leads to the result

E(Xdm,an) = an(
m+a/d
m

) + c(dm+ a)

(d − a)
(
m+a/d
m

) − ca

d − a
.

4.5. Asymptotic expansions of the expected value

Next we derive asymptotic expansions of the expected value E(Xdm,an) for max{m, n} →
∞. These expansions serve as an indicator for the normalizations used in Theorems 1–3 for
the random variables Xdm,an.

Lemma 4. Form ∈ N fixed, n → ∞, and arbitrary a, c, and d, the expected value of Xdm,an,
as given in Theorem 2, is asymptotically given by

E(Xdm,an) = an(
m+a/d
m

) + O(1).

For m → ∞, a/d ≤ 1, c �= 0, and arbitrary n = n(m), the expected value of Xdm,an always
tends to ∞:

E(Xdm,an) ∼

⎧⎪⎪⎨
⎪⎪⎩

an

m
+ c logm for

a

d
= 1,

�

(
1 + a

d

)
an+ cdm/(d − a)

ma/d
for

a

d
< 1.

For m → ∞, a/d > 1, or a/d ≤ 1 together with c = 0, we have the following three regions
in the asymptotic behavior of the expected value of Xdm,an.

• For ma/d = o(n), we have

E(Xdm,an) = �

(
1 + a

d

)
an

ma/d
+ O

(
n

ma/d+1 + c

ma/d−1 + 1

)
.

• For n ∼ ρma/d , with ρ ∈ R
+, we have

E(Xdm,an) = a�

(
1 + a

d

)
ρ + ca

a − d
+ O

(
1

m
+ c

ma/d−1 + 1

ma/d

)
.

• For n = n(m) such that n = o(ma/d), we have

E(Xdm,an) = ca

a − d
+ O

(
n

ma/d
+ c

ma/d−1

)
. (13)
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Remark 4. Our results above say in principle that the asymptotic behavior of Xdm,an is
governed by the quotient a/d , together with the (non)positivity of c. A similar situation occurs
in tenable triangular urn schemes; compare with [11]. A simple explanation for the above
results is as follows. For fixed m and n tending to ∞, the actual values of a, d, and c are
irrelevant. For m tending to ∞ such that a/d < 1 and c �= 0, the positivity of c ensures that
the random variable always tends to ∞. In the remaining cases with m tending to ∞ such
that a/d > 1, or c = 0 and arbitrary a, d , the random variable Xdm,an can be rather small,
depending on the growth of n = n(m) compared to m.

Proof of Lemma 4. We use the explicit results stated in Theorem 2. For fixedm and n → ∞,
we use Stirling’s formula for the gamma function, i.e.

�(z) =
(
z

e

)z√2π√
z

(
1 + 1

12z
+ 1

288z2 + O

(
1

z3

))
, (14)

and obtain, for arbitrary a, c, and d , the expansion

E(Xdm,an) = an(
m+a/d
m

) + O(1)

= an
�(m+ 1)�(1 + a/d)

�(m+ 1 + a/d)
+ O(1)

= �

(
1 + a

d

)
an

ma/d
+ O(1).

Next assume that m → ∞, a/d ≤ 1, and c �= 0, and that we have arbitrary n = n(m). We use
the asymptotic expansion of the harmonic numbers

Hm = logm+ γ − 1

2m
+ O

(
1

m2

)
,

where γ = 0.577 215 664 9 . . . denotes the Euler–Mascheroni constant, to obtain, for a/d = 1,
the result

E(Xdm,an) = an

m+ 1
+ cHm ∼ an

m
+ c logm.

For a/d < 1, we obtain

E(Xdm,an) = an(
m+a/d
m

) + c

d − a

(
dm+ a(
m+a/d
m

) − a

)

∼ �

(
1 + a

d

)
an

ma/d
+ cd

d − a
�

(
1 + a

d

)
m1−a/d ,

where we have again used Stirling’s formula (14). For m → ∞, a/d > 1, or a/d ≤ 1
together with c = 0, we proceed similarly to the previous cases. For example, assuming that
ma/d = o(n), we obtain, by Stirling’s formula (14), the result

E(Xdm,an) = an(
m+a/d
m

) + c

d − a

(
dm+ a(
m+a/d
m

) − a

)

= �

(
1 + a

d

)
an

ma/d

(
1 + O

(
1

m

))
+ O

(
c

ma/d−1 + 1

)
.
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5. Derivation of the limiting distributions

In the following we will present our proofs of Theorems 1–3. First we prove simultaneously
the limit laws of Theorems 1–3 in the case of fixed m and n tending to ∞. Then, we
separately provide the remaining proofs of Theorems 1–3 form tending to ∞ and n = n(m) in
Subsections 5.2, 5.3, and 5.4.

5.1. The case of fixed m

We assume that m is an arbitrary but fixed natural number, and derive the limit of Xdm,an
for n tending to ∞. Using Lemma 1, we can expand the sth moment of Xdm,an for arbitrary
values of a, d, c ∈ N in powers of n as

E(Xsdm,an) = e[s]m,n

=
s∑
k=0

λs,k,mn
k

= λs,s,mn
s +

s−1∑
k=0

λs,k,mn
k

= λs,s,mn
s + O(ns−1)

= asns(
m+as/d

m

) + O(ns−1),

since we assumed that m is an arbitrary but fixed natural number. Consequently, the moments
of the normalized random variable Xdm,an/(an) satisfy the following asymptotic expansion:

E

(
Xsdm,an

asns

)
= e

[s]
m,n

asns
= 1(

m+as/d
m

)
(

1 + O

(
1

n

))
= m!�(1 + as/d)

�(1 +m+ as/d)

(
1 + O

(
1

n

))
.

Hence, the sth moment of the scaled random variable Xdm,an/(an) tends to the sth moment
of a Kuramaswamy-distributed random variable K = K(d/a,m) with parameters α = d/a

and β = m for any s ≥ 1, i.e. E(Xsdm,an/(a
sns)) → E(Ks). The theorem of Fréchet and

Shohat, see [19], states that the moment convergence implies the convergence in distribution,
if the moments sequence determines a unique distribution. Hence, we obtain the convergence
in distribution of Xdm,an/(an) to K .

5.2. Proof of Theorem 1

We use the explicit results for the moments of Xdm,an in the case c = 0 and arbitrary a, d
stated in Corollary 1:

E(Xsdm,an) = as
s∑
�=0

n�
s∑
j=�
(−1)j−�

{
s

j

}[
j

�

]/(
m+ aj/d

m

)
.

Hence, using Stirling’s formula (14) we obtain, for m → ∞, the asymptotic expansions

1(
m+aj/d
m

) ∼ �(1 + aj/d)

maj/d
, E(Xsdm,an) ∼ as

s∑
�=0

n�
s∑
j=�
(−1)j−�

�(1 + aj/d)
{
s
j

}[
j
�

]
maj/d

.

(15)
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Assume first that m, n → ∞ such that ma/d = o(n). The dominant term in the expansion
above is given by asns�(1 + as/d)/mas/d , and we obtain

E

(
Xsdm,anm

as/d

asns

)
∼ �

(
1 + as

d

)
.

Hence, in the region m, n → ∞ such that ma/d = o(n), we can use the moment convergence
theorem of Fréchet and Shohat, and obtain the convergence in distribution ofXdm,anma/d/(an)
to W(d/a, 1) for a/d ≤ 1.

For m, n → ∞ such that n ∼ ρma/d , with ρ ∈ R
+, we obtain from (15) the expansion

E(Xsdm,an) ∼ as
s∑
�=0

(ρma/d)�
�(1 + a�/d)

{
s
�

}
ma�/d

= as
s∑
�=0

{
s

�

}
ρ��

(
1 + a�

d

)
.

Consequently,

lim
m,n→∞ E

(
Xsdm,an

as

)
= ηs, where ηs :=

s∑
�=0

{
s

�

}
ρ��

(
1 + a�

d

)
.

Hence, by (4), there exists a discrete distribution with the moment sequence as stated above.
Moreover, for a/d ≤ 1, we know that the moment sequence determines a unique distribution,
with probability mass function as given in (4).

In the remaining case m → ∞, with arbitrary n = n(m) satisfying that n = o(ma/d), we
obtain E(Xsdm,an) → 0 for all s ≥ 1, which proves the stated result.

5.3. Proof of Theorem 2

The limiting distributions of Xdm,an for a/d ≤ 1, c �= 0, and m → ∞, will be obtained
by giving precise estimates for the sth moments e[s]m,n. Lemma 4 suggests the right scaling
factors gm,n chosen according to the ratio a/d . We will provide the following estimates for the
moments of Xdm,an:

e[s]m,n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
�

(
1 + as

d

)(
an+mcd/(d − a)

ma/d

)s(
1 + O

(
1

ma/d

))
for

a

d
< 1,

s!
(
an

m
+ c logm

)s(
1 + O

(
1

logm

))
for

a

d
= 1.

Note that the above expansions will imply the limiting distribution results by applying the
method of moments, i.e.

E

(
Xsdm,an

gsm,n

)
= e

[s]
m,n

gsm,n
=

⎧⎪⎪⎨
⎪⎪⎩
�

(
1 + as

d

)(
1 + O

(
1

ma/d

))
for

a

d
< 1,

s!
(

1 + O

(
1

logm

))
for

a

d
= 1,

since the sth moment of Xdm,an/gm,n converges to the sth moment of a Weibull distribution
with suitably chosen parameters.

First we consider the case a/d < 1. Since we want to prove the asymptotic expansion

e[s]m,n = �

(
1 + as

d

)(
an+mcd/(d − a)

ma/d

)s(
1 + O

(
1

ma/d

))
,
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we have to determine the asymptotic growth of the coefficients λs,�,m appearing in the
recursive description of the moments e[s]m,n in Lemma 1. The shape of the sth moment e[s]m,n =∑s
�=0 λs,�,mn

� implies that we have to show the following asymptotic expansion of the numbers
λs,�,m:

λs,�,m = a��

(
1 + as

d

)(
s

�

)
ms−�−as/d (cd)s−�

(d − a)s−�

(
1 + O

(
1

ma/d

))
.

To show this, we will use induction with respect to � and apply Euler’s summation formula.
The statement is true for � = s, since we know by Lemma 1 that

λs,s,m = as(
m+as/d

m

) = as�

(
1 + as

d

)(
s

l

)
mas/d

(
1 + O

(
1

ma/d

))
.

Using the induction hypothesis for �+ 1 up to s − 1, we see that the dominant contribution to
µs,�,m is stemming from the term λs,�+1,m−1, and we obtain

µs,�,m ∼
(
�+ 1

�

)
dm

dm+ a�
pλs,�+1,m−1. (16)

Owing to Lemma 1 we also have

λs,�,m =
m−1∑
k=0

(
m
k

)
(
m+a�/d

k

)µs,�,m−k = m!
�(m+ a�/d + 1)

m∑
k=1

�(k + a�/d + 1)

k! µs,�,k. (17)

Using the induction hypothesis, we obtain the approximation

m∑
k=1

�(k + a�/d + 1)

k! µs,�,k = a�+1�

(
1 + as

d

)(
�+ 1

�

)(
s

�+ 1

)
p

(cd)s−�

(d − a)s−�

×
m∑

k=�logm


�(k + a�/d)ks−�−as/d

k!
(

1 + O

(
1

ma/d

))
.

Now an application of Euler’s summation formula (see, e.g. [7, p. 469]) leads to

λs,�,m = a�c�

(
1 + as

d

)(
�+ 1

�

)(
s

�+ 1

)
ms−�−as/d (cd)s−�−1

(d − a)s−�−1

×
∫ 1

0
t s−�−1−a(s−�)/d dt

(
1 + O

(
1

ma/d

))

= a�c�

(
1 + as

d

)(
s

�+ 1

)(
�+ 1

�

)
ms−�−as/dc (cd)s−�−1

(d − 1)s−�−1(s − �− a(s − �)/d)

×
(

1 + O

(
1

ma/d

))

= a��

(
1 + as

d

)(
s

�

)
ms−�−as/d (cd)s−�

(d − a)s−�

(
1 + O

(
1

ma/d

))
,

which proves the stated result for 0 < � ≤ s. For � = 0, we have, owing to Lemma 1,

λs,0,� =
m−1∑
k=0

s∑
i=1

piλs,i,k = p

m−1∑
k=0

λs,1,k

(
1 + O

(
1

ma/d

))
.
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Using Euler’s summation formula and the fact that c = ap, we obtain

λs,0,� = pa�

(
1 + as

d

)(
s

1

)
(cd)s−1

(d − a)s−1

∫ m

0
t s−1−as/ddt

(
1 + O

(
1

ma/d

))

= s�

(
1 + as

d

)
ms−as/d csds−1

(d − a)s−1(s − sa/d)

(
1 + O

(
1

ma/d

))

= �

(
1 + as

d

)
ms−as/d (cd)s

(d − a)s

(
1 + O

(
1

ma/d

))
.

This completes the proof of Theorem 2 for a/d < 1.
Now we consider the remaining case a/d = 1. We have to prove that

e[s]m,n = s!
(
an

m
+ c logm

)s(
1 + O

(
1

logm

))
.

This implies that we have to show the following asymptotic expansion of the numbers λs,�,m:

λs,�,m = s!
(
s

�

)
a�cs−�(logm)s−�

m�

(
1 + O

(
1

logm

))
.

We proceed exactly as in the previous case a/d < 1. Using (16) and (17), we finally obtain

λs,�,m = a�+1pcs−l�−1s!
(
�+ 1

�

)(
s

�+ 1

)
m!

(m+ �)!
∫ m

1

(log t)s−�−1

t
dt

(
1 + O

(
1

logm

))

= a�cs−�s!
(
�+ 1

�

)(
s

�+ 1

)
1

m�

(log(m))s−l�

s − �

(
1 + O

(
1

logm

))

= s!
(
s

�

)
a�cs−�(logm)s−�

m�

(
1 + O

(
1

logm

))
,

which proves the stated result for 0 < � ≤ s. The remaining case � = 0 is treated in a fully
analogous manner. Hence, for m → ∞, the limiting distribution is given by an exponential
distribution with parameter 1, which also proves the part a/d = 1 of Theorem 2.

5.4. Proof of Theorem 3

We use the results of Lemma 2, and (12), to study the moments

E(Xsdm,an) = as
s∑
�=0

n�
s∑
r=�

r∑
j=�
(−1)j−�

{
s

r

}[
j

�

] r∑
h=j

1(
m+ah/d

m

)
h−j∑
g=0

ϑr,j ;h,gmg

for m → ∞. Interchanging the summations gives

E(Xsdm,an) = as
s∑
�=0

n�
s∑
h=�

1(
m+ah/d

m

)
h−�∑
g=0

mg
s∑
r=h

h∑
j=g+�

(−1)j−�
{
s

r

}[
j

�

]
ϑr,j ;h,g.

Proceeding as in Subsection 5.2 we use the expansions 1/
(
m+ah/d

m

) ∼ �(1 + ah/d)/mah/d ,
and obtain

E(Xsdm,an) ∼ as
s∑
�=0

n�
s∑
h=�

�(1 + ah/d)

mah/d

h−�∑
g=0

mg
s∑
r=h

h∑
j=g+�

(−1)j−�
{
s

r

}[
j

�

]
ϑr,j ;h,g.
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First we consider the case m, n → ∞ such that ma/d = o(n), and directly obtain

E(Xsdm,an) ∼ as
ns

mas/d
�

(
1 + as

d

)
, E

(
mas/dXsdm,an

asns

)
∼ �

(
1 + as

d

)
.

We again use the moment convergence theorem of Fréchet and Shohat and obtain the converg-
ence in distribution ofXdm,anma/d/(an) to the Weibull-distributed random variableW(d/a, 1).

Next assume that m, n → ∞ such that n ∼ ρma/d , with ρ ∈ R
+. We have

E(Xsdm,an) ∼ as
s∑
�=0

(ρma/d)�
s∑
h=�

�(1 + ah/d)

mah/d

h−�∑
g=0

mg
s∑
r=h

h∑
j=g+�

(−1)j−�
{
s

r

}[
j

�

]
ϑr,j ;h,g

∼ as
s∑
�=0

ρ��

(
1 + a�

d

) s∑
r=�

{
s

r

}
ϑr,�;�,0.

It seems difficult to obtain suitable bounds onϑr,�;�,0 in order to prove that the moment sequence
determines a unique distribution, which is necessary to apply the theorem of Fréchet and Shohat.

In the remaining case n = o(ma/d), only the constant term being independent of n and m,
case � = h = g = 0, in the expansion of E(Xsdm,an) is relevant, and we obtain

E(Xsdm,an) ∼ as
s∑
r=0

{
s

r

}
ϑr,0;0,0.

Note that this expansion is consistent with ρ = 0 in the case considered before. Unfortunately,
again we are not able to show that the moment sequence determines a unique distribution.

6. Generalization: a biased Pólya–Eggenberger urn model

In the ordinary Pólya–Eggenberger urn model at every step a ball is chosen at random from
the urn. For example, if the urn contains n white andm black balls, the probability of choosing
a white ball is given by n/(m + n), whereas the probability of choosing a black ball is given
by m/(m + n). We now consider a biased Pólya–Eggenberger urn model defined as follows.
Starting with an urn with ball replacement matrix

M =
(−1 0
c −1

)
,

we associate with the states of the urn a sequence P of positive real numbers P = (pm)m∈N0 ,
with p0 = 0 and pm ∈ R

+, where P is independent of n. For the sake of simplicity, we
have chosen a = d = 1 in M . The cases d > 1 or a > 1 (with c = pa) can be reobtained
by properly choosing the sequence P = (pm)m∈N0 = (dm/a)m∈N0 . Assuming that the urn
contains n white andm black balls, for this class of biased diminishing urns, the probability of
choosing a white ball is given by n/(n+pm), whereas the probability of choosing a black ball
is given by pm/(n+ pm). Let Xm,n denote the random variable that represents the number of
white balls remaining in the urn when all the black balls have been removed. By definition we
have the following recurrence for P{Xm,n = k}:

P{Xm,n = k} = n

n+ pm
P{Xm,n−1 = k} + pm

n+ pm
P{Xm−1,n+c = k},
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with initial values P{X0,n = n} = 1 for n ∈ N0. We also have the following recurrence for the
moments e[s]m,n = E(Xsm,n):

e[s]m,n = n

n+ pm
e
[s]
m,n−1,m + pm

n+ pm
e
[s]
m−1,n+c,

with initial values e[s]0,n = ns for n ∈ N0. Obviously, the recurrence for the moment sequence
is almost identical to the previous recurrence (7). This suggests that, as before, the sth moment
is again a polynomial of degree s in n, with coefficients depending only on m. The next
result makes this precise—we recursively determine the moments ofXm,n for a given sequence
P = (pm)m∈N0 , and also obtain an alternative description for the factorial moments of Xm,n,
similar to Lemmas 1–2.

Proposition 3. The sth moment e[s]m,n = E(Xsm,n) of the random variable Xm,n satisfies the
expansion e[s]m,n = ∑s

�=0 λs,�,mn
k . The values λs,�,m are recursively given by

λs,s,m =
m∏
k=1

pk

pk + s
and λs,�,m =

m−1∑
k=0

µs,�,m−k
m∏

j=m+1−k

pj

pj + k
,

where

µs,�,m := 1

pm + �

s∑
k=�+1

(
k

�− 1

)
(−1)k−�−1λs,k,m + pm

pm + �

s∑
k=�+1

(
k

�

)
ck−�λs,k,m−1.

For � = 0, we have

λs,0,m =
m−1∑
k=0

µs,0,k, with µs,0,m :=
s∑
k=1

λs,k,mc
k.

The initial values are given by λs,s,0 = 1 and λs,�,0 = 0 for 0 ≤ � ≤ s − 1.
Furthermore, the sth factorial moment

e(s)m,n = E((Xm,n)s) = E(Xm,n(Xm,n − 1) · · · (Xm,n − s + 1))

of the random variable Xm,n satisfies the expansion e(s)m,n = ∑s
k=0�s,k,m(n)k . The values

�s,k,m are recursively given by �s,s,m = ∏m
k=1 pk/(pk + s) and

�s,�,m =
( m∏
h=1

ph

ph + �

)m−1∑
k=0

( k∏
h=1

ph

ph + �

) s∑
j=�+1

(
j

�

)
(c)j−��s,j,k−1,

with initial values given by �s,s,0 = 1 and �s,�,0 = 0 for 0 ≤ � ≤ s − 1.

The proof of the above result is fully analogous to the proofs of Lemmas 1 and 2, and is
therefore omitted. We refrain from studying this new generalized urn problem in full generality,
and only state the following immediate consequences.

Corollary 2. In the biased urn model with c = 0 the factorial moments E((Xm,n)s) =
E(Xm,n(Xm,n − 1) · · · (Xm,n − s + 1)) of the random variable Xm,n are given by

E((Xm,n)s) = (n)s

m∏
k=1

pk

pk + s
.
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Consequently, for c = 0 and any given sequence P = (pm)m∈N0 satisfying
∑
m≥1 1/pm < ∞,

we obtain the following limiting distribution results.

• For m fixed and n → ∞, the normalized random variable Xm,n/n converges in distri-
bution to a random variable Vm, with convergence of all moments:

Xm,n

n

L−→ Vm, E

(
Xsm,n

ns

)
→ E(V sm) =

m∏
k=1

pk

pk + s
.

Moreover, Vm can be written as the exponential of a weighted sum of m independent
exponential random variables εk

L= Exp(1):

Vm = exp

(
−

m∑
k=1

εk

pk

)
.

• For n fixed andm → ∞, the random variableXm,n converges in distribution to a random
variable Zn, with convergence of all moments:

Xm,n
L−→ Zn, E(Xsm,n) → E(Zsn) =

s∑
j=0

(n)j

{
s

j

} ∞∏
k=1

pk

pk + j
.

• For min{m, n} → ∞, the normalized random variableXm,n/n converges in distribution
to a random variable W , with convergence of all moments:

Xm,n

n

L−→ W, E

(
Xsm,n

ns

)
→ E(Ws) =

∞∏
k=1

pk

pk + s
.

Moreover, W can be written as the exponential of a series of independent exponential
random variables εk

L= Exp(1):

W = exp

(
−

∞∑
k=1

εk

pk

)
.

Moreover, the random variables Zn/n and Vm both converge in distribution to W , with
convergence of all moments, for n and m tending to ∞.

Note that related questions (and random variables) have been studied in the literature, for
example, in the context of random walks [4], or probability laws related to the Jacobi theta and
Riemann zeta functions [1], but questions directly related to the distribution of Xm,n were not
considered before, to the best of the authors’ knowledge.

Proof of Corollary 2. In the case c = 0 the factorial moments e(s)m,n of Xm,n are given by

e(s)m,n =
s∑
k=0

�s,k,m(n)k = (n)s�s,s,m = (n)s

m∏
�=1

p�

p� + s
,

since the values�s,k,m, 0 ≤ k ≤ s− 1, all have a factor c. The assumption
∑
m≥1 1/pm < ∞

on the sequence P ensures that the product
∏m
�=1 p�/(p� + s) converges for s ≥ 1 and m

tending to ∞. Consequently, the limiting distributions are obtained in a straightforward way
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using Fréchet–Shohat’s moment convergence theorem; see, e.g. [19]. In order to decompose the
random variables Vm andW into sums of exponential random variables, we proceed as follows.
Let ε

L= Exp(λ) denote an exponentially distributed random variable with parameter λ. The
Laplace transform E(e−tε) of ε is given by E(e−tε) = 1/(1+ t/λ). Let (ε�)�∈N be independent,
identically Exp(1)-distributed random variables. Using the fact that (1/λ)ε

L= Exp(λ), we
obtain

E

(
exp

(
−t

m∑
�=1

ε�

p�

))
=

m∏
�=1

E(e−tε�/p�) =
m∏
�=1

1

1 + t/p�
.

The moments of the random variables Vm and W are given by

E(V sm) =
m∏
�=1

p�

p� + s
=

m∏
�=1

1

1 + s/p�
, E(Ws) =

∞∏
�=1

p�

p� + s
=

∞∏
�=1

1

1 + s/p�
.

Hence, we obtain the stated decompositions

Vm
L= exp

(
−

m∑
k=1

εk

pk

)
and W

L= exp

(
−

∞∑
k=1

εk

pk

)
.

Remark 5. A particularly interesting case is the biased sampling without replacement urn

M =
(−1 0

0 −1

)

with sequence P = (pm)m∈N0 = (m2)m∈N0 . The factorial moments

E((Xm,n)s) = E(Xm,n(Xm,n − 1) · · · (Xm,n − s + 1))

and the ordinary moments of Xm,n are given by

E((Xm,n)s) = (n)s

m∏
k=1

1

1 + s/k2 , E(Xsm,n) =
s∑
j=0

{
s

j

}
(n)j

m∏
k=1

1

1 + j/k2 .

A closed-form expression for the product
∏m
k=1 1/(1 + s/k2) is readily obtained using the

Euler product form of the sine function, together with the product form of the gamma function:

sin(πz) = πz

∞∏
k=1

(
1 − z2

k2

)
, �(z) = e−γ z

z

∞∏
k=1

ez/k

1 + z/k
. (18)

Since sinh(z) = −i sin(iz), where i denotes the imaginary unit, we obtain sinh(πz) =
πz

∏∞
k=1(1 + z2/k2). Moreover, by (18) we have

�(m+ 1)2

�(m+ 1 + iz)�(m+ 1 − iz)
= (m+ 1)2 + z2

(m+ 1)2

∞∏
k=1

(1 + (m+ 1)/k)2 + z2/k2

(1 + (m+ 1)/k)2

= (m+ 1)2 + z2

(m+ 1)2

∞∏
k=1

(k +m+ 1)2 + z2

(k +m+ 1)2

=
∞∏

k=m+1

(
1 + z2

k2

)
.
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Consequently, we obtain, for the product
∏m
k=1 1/(1 + s/k2) appearing in E((Xm,n)s), the

expression

m∏
k=1

1

1 + s/k2 = π
√
s�(m+ 1)2

sinh(π
√
s)�(m+ 1 + i

√
s)�(m+ 1 − i

√
s)

;

moreover,
∞∏
k=1

1

1 + s/k2 = π
√
s

sinh(π
√
s)
.

Note that the random variable W = exp(− ∑∞
k=1 εk/k

2) arising in the limit min{m, n} → ∞
is closely related to distributions considered by Biane et al. [1] in the context of Brownian
excursions and theta functions. For example, we can further show that the random variable W
has support [0, 1], and its distribution function can be expressed in terms of the Jacobi theta
function �(q) = ∑

n∈Z
(−1)nqn

2
,

P{W ≤ q} = 1 −�(q), 0 ≤ q ≤ 1.

We also refer the reader to Crane et al. [3], who studied somewhat related urn models.

7. Conclusion

By applying the method of moments we were able to describe in a quite precise manner the
asymptotic behavior of a class of 2 × 2 urn models with replacement matrix

M =
(−a 0
c −d

)
, a, d, p ∈ N and c = ap.

In Table 1 we give a short summary of our findings, using the asymptotic small-o and equivalence
notation.

It is an interesting question to ask whether the approach used for a study of 2 × 2 urn
models can be generalized to an analysis of certain diminishing urn models with more types of
balls. Moreover, the biased variant of the considered urn models has interesting connections to
distributions considered by Biane et al. [1]. Furthermore, as mentioned in Remark 2, it seems
that alternative approaches, e.g. generating functions and birth and death processes, offer new
perspectives and insights into the problems discussed in this work. The authors are currently
investigating these matters.

Table 1.

n → ∞ m → ∞ m → ∞ m → ∞
Fixed m m = o(na/d) m ∼ ρna/d , ρ ∈ R

+ n = o(ma/d)

a/d ≤ 1, c ∈ N Kuramaswamy Weibull Weibull Weibull
a/d > 1, c ∈ N Kuramaswamy Moment convergence Moment convergence Moment convergence
a, d ∈ N, c = 0 Kuramaswamy Weibull Discrete distribution Degenerate
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