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STABILITY OF CONTACT METRIC MANIFOLDS AND
U N I T VECTOR FIELDS OF MINIMUM ENERGY

D. PBRRONE AND L. VERGORI

In this paper we obtain criteria of stability for T -̂Einstein If-contact manifolds, for
Sasakian manifolds of constant (^-sectional curvature and for 3-dimensional Sasakian
manifolds. Moreover, we show that a stable compact Einstein contact metric manifold
M is Sasakian if and only if the Reeb vector field £ minimises the energy functional. In
particular, the Reeb vector field of a Sasakian manifold M of constant yj-holomorphic
sectional curvature +1 minimises the energy functional if and only if M is not simply
connected.

1. INTRODUCTION

Let (M,g) be a compact Riemannian manifold. The identity map I<LM : (M,g)
-»• (M, g) is a harmonic map; that is, a critical point of the energy functional. Following
Nagano [15], the Riemannian manifold M is said to be stable if the identity map is stable,
that is, the second variation of the energy functional at ICLM is non-negative, otherwise M
is said to be unstable. Smith [20] proved that: if(M,g) is a compact Einstein manifold of
dimension n, then M is stable if and only if Xi > (2r/n), where Ai is the first eigenvalue
of the Laplace-Beltrami operator acting on functions and r is the scalar curvature. Others
results on the stability of M in terms of Xx can be found, for example, in [10, 21 , 23, 24].
Moreover, in [20], it was proved that every holomorphic map between Kaehler manifolds
is stable, in particular a compact Kaehler manifold is stable (see also [15]). Even if many
concepts of Kaehlerian geometry have their correspondences in Sasakian geometry, in the
theory of the harmonic maps in Sasakian geometry, and more in general in contact metric
geometry, we still have few results ([4, 10, 14]). From the instability theorem of Xin
(see, for example, [25, p.162]) follows that the unit sphere 5 n , n = 2 m + l ^ 3, which is a
classical example of Sasakian manifold, is unstable. Concerning the study of the stability
of a contact metric manifold, we know only the following result ([10, Theorem 3.1]): if
M is a compact Sasakian (2m + \)-manifold of constant ip-sectional curvature c ^ 1 and
Xi satisfies X\ < c(m + 1) + 3m — 1, then M is unstable. In [4] the authors found that:
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270 D. Perrone and L. Vergori [2]

a compact cosymplectic manifold (which is a particular almost contact metric manifold)
is stable.

On the other hand, in the last ten years, the theory of the harmonic unit vector fields,
namely the unit vector fields U : (M,g) -> (T1Af,5,), g, being the Sasaki metric, which
are critical points of the energy functional E defined on the set X1(M) of all unit vector
fields, has been largely developed by many authors (see, for example, [26, 29, 11, 16,17]
and the references in [12]). Brito [8] proved that the Hopf vector fields on the unit sphere
S3 are the unique absolute minimisers of the energy functional E : Xl(S3) -> R. Wood
[29] (see also [11]) proved that, for the unit sphere S2™*1 with m > 1, the Hopf vector
fields are unstable. We note that a Hopf vector field on ,52m+1 is precisely the Reeb
vector field f of a natural Sasakian structure on S2"1"1'1. In general, in dimension greater
than three, to our knowledge, there are no examples of unit vector fields which realise
an absolute minimum for the energy and neither criteria of existence of minima for the
energy (see [12, 18]).

In this paper we investigate the stability of a compact contact metric manifold
(M, g, T), £) in terms of the first eigenvalue /ii of the Laplacian acting on 1-forms and
in terms of stability of the Reeb vector field f. As a consequence of more general re-
sults, we obtain criteria of stability for r^Einstein /f-contact manifolds (Theorem 3.1),
for Sasakian manifolds of constant ^sectional curvature c (Theorem 3.2) and for 3-
dimensional Sasakian manifolds (Theorem 3.3). Finally, in Section 4 we show that a
stable compact Einstein contact metric manifold M is a Sasakian manifold if and only
if the Reeb vector field f minimises the energy functional E : X1 (M) —• R. In partic-
ular, we get that the Reeb vector field of a compact Sasakian manifold M of constant
V?-holomorphic sectional curvature +1 minimises the energy functional if and only if M
is not simply connected (Theorem 4.2).

2. THE SECOND VARIATION FORMULA

Let (M, g) and (N, h) be two Riemannian manifolds with M compact and n-
dimensional. A smooth map / : (M, g) -¥ (N, h) is said to be harmonic if it is a critical
point of the energy functional

E :C°°(M,N) ->R,/*E(f) = f e(f)dv,
JM

where e(f) = | |d/| |2/2 is the energy density and ||d/|| is the norm of the differential
of / with respect to the metrics g and h. More precisely, / is a harmonic map if
(d£'(/t)/d)t=o = 0 f°r every smooth variation ft of / . If / is a harmonic map, the
Hessian form of the energy E at / is denned by the second variation formula [20]:

(2.1) (HessSMK, V) = I ^ / O U = j h(V, JfV)vg,
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where V is a vector field along / . The operator Jf, called the Jacobi operator of / , is
a second order selfadjoint elliptic differential operator acting on the space V(f~1TN) of
the vector fields along / , and is defined by

(2.2) JfV = AfV - Ric, V.

The operator Ay, called the rough Laplacian along / , is defined by

e jVe iV - Vv . j e j V), V e
t = l

where V is the connection (on the vector bundle / lTN) induced by the Levi-Civita
connection of (N,h), and {e^}j=i,...,n is a local orthonormal frame on M. Moreover,
denoting by R^ the curvature tensor of (N, h),

n

(2.3)

A harmonic map / is said to be stable if (RessE)f is positive semi-definite, and unstable
if there exists a vector field V along / such that (Hessi?)/(V, V) < 0. The identity map
idiu '• {M, g) -¥ (M, g) is a trivial example of a harmonic map, but the theory of the
second variation is much more complicated. From (2.1)—(2.3) we readily deduce that
the second variation formula of the energy for id^ is given by

(2.4) (EessE)id(X, X) = f g^X, X)vg = f g(AX - QX, X)vg V* € X(M),
JM JM

where
n

AX = A^X = - £(VeiVeiX - VVeitiX,
t=i

Q is the Ricci operator and Ja = A — Q is the Jacobi operator of the identity map. The
graph of the identity map is the diagonal of M x M, which is a minimal submanifold.
Then, Nagano [15] proved that M is stable, (that is, the identity map idM is stable),
if and only if the diagonal in M x M is stable as minimal submanifold. In particular a
compact Kaehler manifold is stable (see also [20]).

3. STABILITY OF T;-EINSTEIN CONTACT MANIFOLDS

A (2m + l)-dimensional manifold M, m ^ 1, is said to be a contact manifold if it
admits a global 1-fonn r\ such that 77 A (dr?)m ^ 0. Given 77, there exists a unique vector
field f, called the Reeb vector field (or the characteristic vector field) such that TJ(() = 1
and d?7(f, •) = 0. Furthermore, a Riemannian metric g is said to be an associated metric

if there exists a tensor tp of type (1,1) such that

(3.1) n = 9(
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(77, g, f, <p), or (77, g), is called a contact metric structure, or contact Riemannian structure
and (M,n,g) a contact metric (or Riemannian) manifold. Let (M, 77,5) be a contact
metric manifold of dimension 2m+l, m ^ 1. We denote by V the Levi-Civita connection,
by p the Ricci tensor, by Q the corresponding Ricci operator and by r the scalar curvature.
The tensor h = C^pfi, where C denotes the Lie derivative, is symmetric and plays a
fundamental role in contact metric geometry [2]. It satisfies the equation ([2, p.67])

(3.2) V£ = -<p- iph.

The scalar torsion ||r||, r = C^g, introduced in [9], and the tensor h are related by
r = 2g(h<p-, •). M is said to be K-contact if f is a Killing vector field, that is, r = 0, or
equivalently h = 0. Moreover M is said to be a Sasakian manifold if

(Vx<p)Y = g(X, Y)£ - r,(Y)X VX, Y G X(M).

Any Sasakian manifold is K-contact and the converse also holds when the manifold is of
dimension three. For further information about contact metric geometry we refer to [2].

From now on we denote by ^i the first eigenvalue of the Laplacian Ai acting on
1-forms. We recall that Ai also acts on vector fields via duality and it is related to the
rough Laplacian A and the Ricci operator Q by the well-known Wietzenbock's formula
(see, for example, [1, p. 57])

(3.3) A i = A + Q.

The 1-form 77 is an eigenform of the Laplacian Ai corresponding to the eigenvalue Am.
In fact, in [17] the first author proved that

(3.4) A£ = Ami ~ QZ,

hence, by (3.3),

(3.5) Aif = 4m£

and so
Air; = Ajsfo •) = g{Atf, •) = 4mg(£, •) = 4mr;,

by which we deduce that

(3.6) /ii < 4m.

Now, we suppose that M is a rj-Einstein manifold, that is, the Ricci tensor is of the form

(3.7) p = ag + bq ® t] (or equivalently Q = al + br] ® f)

where a, b € C°°(M, R). It is known that for m ^ 2, on any r;-Einstein K-contact manifold
the functions a and b are constant ([2, p. 105]). (K, /i)-spaces of dimension 2m + 1, with
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/i = 2(1 — m), are examples of non Sasakian tj-Einstein manifolds ([3, p.206]). On a
general contact metric manifold the Ricci curvature in the direction of f is given by ([2,
p. 92])

T! 12
(3.8) p(£, 0 = 1m - tr/i2, tr/i2 =

From (3.7) we have p{£,£) = a + b and hence

(3.9) a + b = 1m —.

Moreover, from (3.7), we have

Consequently, we get

(311) a = 2 ^ " 1 + S ^ 6=-2m" + (2m-
Assuming M compact, by (2.4) and (3.3), we get

(3.12) (KBBaE)id{X,X) = f fl(AiX,X)v9 - 2 f p(X,X)vg
JM JM

Now, let ui be an eigenform of Ai corresponding to the eigenvalue /*i: Aiw = n\w. Denote
by Xo the vector field dual of w. If the scalar curvature r satisfies the inequality

8m

from (3.12) we have

that is

(3.13) (Hes8J50«(*o,*o) ^ fj^x - ( £ - 2 + K ) J \\XQ\\\.

Further, using (3.1), (3.7) and (3.11), we can write

(3.14) QX0 = (2m - l^f)x0 + [ - ^ + (2m +

Since
g(<p2X0,X0) = -g(<p2Xo,lp

2Xo)+g(<p2XoMXo)S) = -\\<fX0\\
2,
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if the scalar curvature satisfies the inequality
It Il2

r ^ 2m(2m + 1)(1 - —-), that is b^O,
\ 8m /

by (3.14), (3.12) becomes

(3.15) (RessEUiXo, Xo) = f L - (4m - tt) 1 ||X0||
2v9

Therefore, by (3.6), (3.13) and (3.15), we obtain at once the following

PROPOSITION 3 . 1 . Let (M, rj,g) be a compact contact metric manifold of di-
mension 2m +1. Then, the first eigenvalue n\ of the Laplacian acting on l-forms satisfies
the inequality MI < 4m. If, in addition, M is T}-Einstein and Mi satisfies one of the
following conditions:

(i) MI < (r/m) - 2 + (||r||2/4m) < 4m - (||r||2/2),

(ii) MI < 4m - (||r||2/2) < (r/m) - 2 + (||T||2/4m),

then M is unstable.

In [20] Smith proved that if (M, 5) is a compact Einstein manifold of dimension n,
p = (r/n)g, then M is stable if and only if Ai > (2r/n), where Ai is the first eigenvalue
of the Laplace-Beltrami operator A acting on functions. The following Proposition gives
a version of Smith's result in contact metric geometry.

PROPOSITION 3 . 2 . Let (M,g) be a compact Einstein manifold of dimen-

sion (2m + 1), homothetic to a contact metric manifold (M,rj,g~), that is, g = ag,

a = const > 0. Then, the first eigenvalue /*i of the Laplacian acting on l-forms sat-

isfies:

(i) /zi < 4ma;

(ii) M is stable <* /xi € 4ma(l - (||T||2/8m)V4ma , where ||r|| = \\C(g\\ is

constant, £ = a£;

(iii) if£ is Kilting, M is stable •<=> Mi = 4ma;

(iv) if r > 0, MI < 4ma(l - (||T||2/8m)) « A, e [(2m + l ) a ( l

- ( | |r | |2/8m)),4ma(l - (| |r| |2/8m))].

PROOF: (i) We have already observed in (3.5) that the Reeb vector field £ is an

eigenvector of the Laplacian Ai corresponding to the eigenvalue 4m: Aif = 4mf. Setting

£ = a£ we get
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and hence HI ̂  4ma.

(ii) We first suppose that M is stable. Then, by (2.4) and (3.3) we have

(3.16) 0 ̂  {HeaE)Uu{X,X) = f g^X - 2QX,X)vg
JM

for any X € X(M). Since g and g are homothetic, we have:

* (2m+l)a

that is, {M,rj,g~) is an Einstein contact metric manifold. Thus, by (3.11), (M,~g) has
constant scalar curvature

where r = C^g = Cp, f = a£. Consequently

||r|| is constant, r = 2m(2m + l )af l - ^ - ) and p= 2ma(l - ^ -
V 8m / V 8m

Let Xo be a vector field eigenvector of the Laplacian A! corresponding to the eigenvalue
Hi: AiX0 = y.\X0. From (3.16), we obtain

- 4ma(l - tt) j J^ ||Xo||2^ > 0, that is, P l > 4mo(l - J

and so, by (i),

Vice versa, we assume

/ii € Umafl- !P - ) ,
[ V 8m /

Let / e C°°(M, R), d/ ^ 0, be an eigenfunction of the Laplace-Beltrami operator A
corresponding to the eigenvalue A^ A/ = Xif. Then

A,(df) = dAf = Atd/

and thus

where 2maf 1 - (||T||2/8m)J is
mentioned Smith's result, M is stable.

the Einstein constant of (M,g) and so, by the above

(iii) If £ is a Killing vector field, then r = 0 and so, by means of (ii), we get that
M is stable if and only if pi = 4ma.
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(iv) If {M,g) has positive scalar curvature, since (M,g) is Einstein with
p = 2ma(l - (||T||2/8m))ff, by Lichnerowicz-Obata Theorem ([25, p. 182]) Ai satis-
fies the inequality

(3.17) Ax£(2m + l)

If fii < 4ma( l — ( | | r | | 2 /8m)j, by the result of (ii), we get that M is unstable and so
(3.17) and Smith's result gives

Of course, Ax < 4ma(l - (| |r| |2/8m)) implies Mi < 4ma(l - (| |r | |2/8m)). D

Next, we consider a compact ^dimensional Riemannian manifold (M, g) and its unit
tangent sphere bundle (T^M, g,) equipped with the Sasaki metric gs. Every unit vector
field U 6 3LX(M) defines a map U : (M, g) —> ^TXM, g,) and the energy of U is the energy
of the corresponding map ([26, 29]):

(3.18) E(U) = \ f \\dU\\\ = |vol(M)fl) + \ [ \\VU\\\.

U is called a harmonic vector field if it is critical for the energy functional E : X1(M) -» R.
The corresponding critical point condition has been determined in [26, 29] and is given
by:

AU is collinear to U.

When U is a harmonic vector field, the Hessian form at U (of the second variation
formula) takes the form [26, 11]

= f (\\VW\\2 ~ \\W\\2\)VU\\2)vg
J M

where W G UL. U is called stable if (Hess£)y(W, W) ^ 0 for any W € Ux, otherwise it
is said to be unstable.

If (M, T), g) is a contact metric manifold, in [17] was proved that £ is a harmonic
vector field if and only if it is an eigenvector of the Ricci operator. In such case M is
called an H-contact manifold. We now suppose that (M, TJ, g) is a compact 77-Einstein
contact manifold. Prom (3.7) it follows that M is if-contact. If f is unstable, then there
exists a vector field W € Ken; = £x such that

(3.19) (Hessi?)f(W, W) = f (||VVT||2 - ||W\\2\\V£||>9 < 0.
JM

Since ||f || = 1, we obtain g(A£,0 = ||V£||2. Therefore, by (3.4) and (3.8), we have
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and (3.19) gives

(3.20) J^ [\\VW\\2 - (2m + K ) \\W\\*] vg < 0.

Then, by (2.4) and (3.20), we obtain

(3.21) (Hess£)id(W, W) = [ [\\VW\\2 - p(W, W)]vg

JM

Using (3.7), since W G Ker7j, we have p(W, W) = a||W||2. Consequently, (3.21) becomes

(3.22) (HessSMW,W) < J^m + l - ^ +(2m- 1)^]\\W\\\.

From (3.22), we get the following

PROPOSITION 3 . 3 . Let M be a compact ri-Einstein contact manifold of
dimension (2m + 1), with scalar curvature

112
T > 2m(2m + 1) + (2m - 1)"

4

If £ is unstable, then M is unstable.

Boyer, Galicki and Matzeu [6] study rj-Einstein geometry as a class of distinguished
Riemannian metrics on contact metric manifolds. In particular they show that there
are many compact 7^Einstein Sasakian manifolds. We recall that a compact 7^Einstein
K-contact manifold with scalar curvature r > —2m is Sasakian (see Boyer and Galicki
[5], or [2, p. 106]). Moreover, on any jj-Einstein K-contact manifold the functions o and
b and the scalar curvature r are constant. Then, Propositions 3.1, 3.2 and 3.3 imply the
following

THEOREM 3 . 1 . Let (M, TJ, g) be a compact rj-Einstein K-contact manifold of

dimension 2m + 1, m > 1.

(1) If Hi < min{(r/m) — 2,4m}, then M is an unstable •q-Einstein Sasakian

manifold.

(2) If r ^ 2m(2m + 1) and f is unstable, then M is an unstable 77-Einstein
Sasakian manifold.

(3) Ifr = 2m(2m + 1), then M is Sasaki-Einstein and

(i) Hi = 4m *» M is stable,

(ii) HI < 4 m ** ( 2 m + 1) ^ Ax < 4m.
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The unit sphere 52 m + 1 is an example of Sasakian space of constant sectional curva-
ture +1. We denote by (770,00) the standard Sasakian structure on S2m+1. Let (M, g)
be an odd dimensional compact Riemannian manifold of constant sectional curvature
+1. Then, {M,g) is a spherical space form (S2m+1/r,$), where T is a finite subgroup
of O(2m + 2) in which only the identity element has +1 as an eigenvalue, and g is the
Riemannian metric on the quotient space 52m+1/r induced by gQ. The unitary group
U(m + 1) can be considered as the subgroup of all elements of O(2m + 2) which pre-
serve 770, and F is conjugate in O(2m + 2) to a subgroup of U(m + 1), then M inherits
a contact 1-form 77 from TJ0 (Wolf [28]). Since the metric g is induced from g§, then
(77, g) is a Sasakian structure on the spherical space form M (Tanno [22, p. 505]). So,
we have that: every odd-dimensional compact Riemannian manifold of constant sectional
curvature +1 is a Sasakian manifold. This fact corrects a remark of Gherghe, Ianus
and Pastore ([10, p. 51]). Now, we consider a Sasakian space form M2m+1(c), that is, a
(2m + l)-dimensional Sasakian manifold of constant (^-sectional curvature c. Such spaces
have constant scalar curvature r = (m/2)[(2m + l)(c + 3) + c — l], and are 77-Einstein
([2, p. 113]) with

(m + l)c + 3 m - l , ,
a - _ and 6 =and 6 = .

Moreover, c = +1 if and only if M2m+1 has constant sectional curvature +1. On the other
hand, Urakawa ([24, p. 572]) proved that the first eigenvalue Ax of the Laplace-Beltrami
operator on (52m+1/r, g), T # {idM}, is bigger than or equal to 4m, that is, (S2m+1/r, g),
F ^ {id/a}, is stable. Therefore, these results and Theorem 3.1 yield

THEOREM 3 . 2 . Let (M, 77, g) be a compact Sasakian space form of constant

ip-sectional curvature c, d imM = 2m + 1 ^ 3 .

(i) If Hi < min{(m + l)c + 3m - 1,4m}, then M is unstable.
(ii) Ifc^l and £ is unstable, then M is unstable.

(iii) If c = 1, then: fii = 4m <& M is stable «=> tie fundamental group
fl-i(Af) * {0}.

In Theorem 3.2 we can also consider the case m = 1 because in such case M is
77-Einstein and the functions o = (c + 1) and b = (1 — c) are constant.

REMARK 3.1.

(a) In [10, Theorem 3.1], the authors considered a Sasakian space form
M2m+1(c) with c < 1 and proved that Ai < (m + l)c + 3m - 1 implies
that M is unstable. Of course, our Theorem 3.2(i) extends and improves
such result.

(b) We recall that niiS2™*1) = 1m + 1 and /i2(S
r2m+1) = 4m. Then, if M is a

compact Sasakian manifold of constant curvature +1, with n\(M) ^ {0},
from Theorem 3.2 we deduce that fii(M) =
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(c) By (3.21) we easily deduce that, if (M, 77, g) is a compact K-contact (2m
+ l)-manifold with Ricci tensor p > 2mg, then the instability of the Reeb
vector field implies the instability of M.

The results given in Theorems 3.1 and 3.2 can be sharpened in dimension three. In
fact, any /iT-contact three-manifold is Sasakian and ^-Einstein. More precisely the Ricci
tensor is given by

P= ( § -
Then, by the same arguments used in the proofs of Theorems 3.1 and 3.2, we deduce the
following

THEOREM 3 . 3 . Let (M, TJ, g) be a compact Sasakian manifold of dimension three.

If holds one of the following conditions

(i) MI < r - 2 < 4,

(ii) MI < 4 ^ r - 2,

(iii) r ^ 6 and £ is unstable,

then M is a unstable. Moreover, ifr = 6, then: fii = 4 & M is stable & TTI(M) ^ {0}.

4. EXISTENCE OF MINIMA FOR THE ENERGY E\xi(M)

Brito [8] proved that the Hopf vector fields on the unit sphere S3, that is, the unit
vector fields tangent to the fiber of any Hopf fibration, are the unique minimisers of
the energy functional E : Xl(S3) -> R. In particular they are stable. On the other
hand, S3 is unstable, so the converse of Theorem 3.3 (iii) is not true. However, the Hopf
vector fields on the unit sphere 52 m + 1, m > 1, are unstable ([29, 11]). Besides, to our
knowledge, in dimension > 3, there are no examples of unit vector fields which realise
an absolute minimum for the energy and neither criteria of existence of minima for the
energy (see [12, 18]). Theorems of Section 3 give results for which the instability of the
Reeb vector field implies the instability of the contact metric manifold, or, equivalently,
the stability of the contact metric manifold gives the stability of the Reeb vector field.
So, it is natural to study the existence of minima for the energy E\x*(M) when M is a
stable compact Riemannian manifold. Urakawa [23] classified all the compact simply
connected irreducible Riemannian symmetric spaces which are stable (such spaces are in
particular Einstein).

In this section we discuss the existence of minima for the energy E : X1 (M) -* R,
where (M, g) is supposed to be a stable compact Einstein manifold of dimension n, p = Kg.
Since M is stable, by (2.4), we have

(4.1) (HessJS)«(X, X) = f g(KX - QX, X)vg
JM

- p{X, X))v9 >0 VX6 Z(M).= f
JM
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Then the energy E : Xl(M) -»• R, given by (3.18), satisfies

(4.2) E(U) = \f \\VU\\2va + $vol(M,g) > ^vo\(M,g) VU € X\M).

Now, we recall that a vector field X is called to be a Jacobi vector field if it is a solution
of the equation Ji&X = 0. Jacobi vector fields are studied in [30] and there labelled
"geodesic vector fields". Then, if Uo is a unit Jacobi vector field, we have

f | |Vtfo | |S= / g(AUoMo)vg= f
JM JM JM
f / f
M JM JM

Hence,

E(U0) = ^y^vol(M, g) < E(U) VU € X\M),

that is, Uo minimises the energy. Vice versa, let U be a unit vector field such that

Then, by (4.2), / | |W| |2u9 = Kvol(M,p), and thus, by (4.1), we get
JM

(Hess£)id(E/, U) = 0.

Since M is stable, we can expand U into the infinite sum:

U^Y^Ei, with JidEi = OiEi and / g{E{, Ej)vg = 0 Vi ^ j , where Oj > 0.

Then, we have
oo

^^ i> where p = dim KerJ^ and Oj > 0 Vi ^ p + 1,
<=p+l

and thus

O = (UessE)id(U,U)= / g(JidU,U)vg= £ UiJUg

M

implies that Ei = 0 for any i ^ p + 1. So, J^f/ = 0, that is, {/ is a Jacobi vector field.
If U € XX{M) is a unit vector field whose flow is volume-preserving, that is, divU = 0,
then it is easy to get that U is a Killing vector field if and only if U is a Jacobi vector
field (see, for example, [19, p. 171]). Hence we have

PROPOSITION 4 . 1 . Let (M,g) be a stable compact Einstein manifold. Then,

the unit Jacobi vector Gelds are the unique unit vector Gelds which minimise the energy.

In particular, ifU € X1(M) is volume-preserving, then U minimises the energy if and

only if U is a Killing vector Geld.
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Moreover, we obtain

THEOREM 4 . 1 . Let (M, 77, g) be a stabie compact Einstein contact metric man-

ifold. Tien, t i e Reeb vector Geld £ minimises the energy if and only if M is a SasaJrian
manifold.

P R O O F : First, we note that the flow of the Reeb vector field £ of a contact metric
manifold is volume-preserving. In fact, by (3.2), choosing a (local) orthonormal basis Ei
of eigenvectors of the tensor h, we have

Ei) = 0.

Besides, by a result of Boyer-Galicki [5], a compact Einstein if-contact manifold is
Sasaki-Einstein. Then, the result follows from Proposition 4.1. D

Finally, we obtain the following result.

THEOREM 4 . 2 . Let (M, 77, g) be a compact Sasakian manifold of constant sec-
tional curvature +1, dimM = 2m + l,m > 1. Tien, tie Reeb vector fieid £ minimises
the energy if and only if M is not simply connected.

PROOF: We first show that if £ minimises the energy, then necessarily M is not
simply connected. In fact, if M were simply connected, then M would be the unit sphere
S2m+1. On the other hand, on the sphere S2"1*1 the Hopf vector fields are exactly the
unit Killing vector fields [27]. So, £ would be a Hopf vector field and we know that Hopf
vector fields on 52m+1, m > 1, are unstable. This would imply that f does not minimise
the energy, that is, a contradiction. The converse follows from Theorems 3.2 and 4.1. D

REMARK 4.1. (On the volume functional) Let (M, g) be a compact Riemannian man-
ifold and U e Xl(M). Then, U determines a map between (M,g) and {TlM,g,) and
vol([7) is the volume of the corresponding submanifold U(M) of (T1M, g,). U is said
to be minimal if it is a critical point of the functional vol: X1 (M) -¥ R. The study
of the volume of unit vector fields begins with the pioneering work of Gluck-Ziller [13],
where the motivation was to find the optimal unit vector fields on the unit sphere S3.
They proved that unit vector fields of minimum volume on S3 are precisely the Hopf
vector fields, equivalently the unit Killing vector fields, and no others. For more details
and the state of the art for the minimality of unit vector fields, we can refer to the
survey [12]. The Reeb vector field £ of a compact Sasakian manifold is minimal, con-
cerning its stability Borrelli [7] proved that if £ is E-stable, that is, stable with respect
to the energy, then there exists a number k3 €]0,00], called stability number, such that
the vector field £ = y/k£ 6 X1(M,'g = (l/k)g) is stable with respect to the volume
if and only if 0 < k < ka. However, his paper does not contain examples of Sasakian
manifolds with £ E-stable. Applying Theorem 4.2 and the result of Borrelli, we obtain
that: if (M, n, g) is 0 compact Sasakian manifold of constant sectional curvature +1,
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dimM = 2m + l , m > 1 and iti{M) ^ {0}, then there exists k, e]0,oo], such that the

vector field £ = \/fc£ € X1 (M, ~g = (l/k)g) is stable with respect to the volume if and only

J / 0 < k < k,.
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