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ASYMPTOTIC TRANSFORMATIONS OF q-SERIES

RICHARD J. MCINTOSH

ABSTRACT. For the q-series
P
1

n≥0 anqbn2+cnÛ(q)n we construct a companion q-
series such that the asymptotic expansions of their logarithms as q ! 1� differ only in
the dominant few terms. The asymptotic expansion of their quotient then has a simple
closed form; this gives rise to a new q-hypergeometric identity. We give an asymptotic
expansion of a general class of q-series containing some of Ramanujan’s mock theta
functions and Selberg’s identities.

In Ramanujan’s last letter to Hardy dated January 1920 (see [13, pp. 127–131],
[12, pp. 354–355] and [15, pp. 56–61]), he observes that the asymptotic expansions of
certain q-series “close” in a striking manner. For instance, when q ≥ e�t and t ! 0+,

1X
n≥0

qn2

(1 � q)(1 � q2) Ð Ð Ð (1 � qn)
≥
vuut 2

5 �p
5

exp

8<
: ô2

15t
� t

60

9=
; + o(1).

In the same letter Ramanujan notes that it is only in a limited number of cases that the
terms in the exponent close as above. He then goes on to explain his discovery of the
mock theta functions.

To facilitate printing we employ the notation

(a ; qk)0 ≥ 1,

(a ; qk)n ≥ (1 � a)(1 � aqk)(1 � aq2k) Ð Ð Ð (1 � aqk(n�1))

and

(a ; qk)1 ≥
1Y

m≥0
(1 � aqmk),

where ;qk is usually omitted on the left when k ≥ 1. Thus

(a ; qk)n ≥ (a ; qk)1
(aqkn ; qk)1

for positive integers n. If n is not a positive integer, we take this as the definition of
(a ; qk)n. We also need the dilogarithm function Li2(x) defined for x � 1 by

Li2(x) ≥ � Z x

0

log(1 � u)
u

du.

Received by the editors October 7, 1996.
AMS subject classification: 11B65, 33D10, 34E05, 41A60.
c
 Canadian Mathematical Society 1998.

412

https://doi.org/10.4153/CJM-1998-022-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-022-x


ASYMPTOTIC TRANSFORMATIONS OF q-SERIES 413

Thus

Li2(x) ≥
1X

n≥1

xn

n2

for jxj � 1. This function satisfies the following identities found in [9]:

Li2(x) + Li2(�x) ≥ 1
2

Li2(x2),

Li2(x) + Li2(1 � x) + log(x) log(1 � x) ≥ Li2(1) ≥ ô2Û6

and

Li2
� x

x + 1

�
+

1
2

log2(x + 1) ≥ �Li2(�x),

where log2 z means (loge z)2. Moreover,

Li2

0
@
p

5 � 1
2

1
A + log2

0
@
p

5 � 1
2

1
A ≥ ô2

10

and

Li2

0
B@
0
@
p

5 � 1
2

1
A2
1
CA + log2

0
@
p

5 � 1
2

1
A ≥ ô2

15
.

In all of our asymptotic expansions q ≥ e�t and t ! 0+. We say that the asymptotic
expansion of a q-series is closed when the number of terms in the exponent is finite. For
example, the asymptotic expansion (with first few terms)

1X
n≥0

qn(n+c)

(q)n
≥
vuut 2

5 �p
5

0
@
p

5 � 1
2

1
Ac

exp

8><
>:
ô2

15t
+

0
@15c2 � 3c � 1

60
� c(c � 1)

20

p
5

1
A t

� c(c � 1)
 

1
50

+
2c� 1

300

p
5
!

t2

� c(c � 1)

0
@2c� 1

500
+

c2 � c + 6
3000

p
5

1
A t3

� c(c � 1)

0
@c2 � c + 26

15000
� (2c � 1)(3c2 � 3c� 31)

90000

p
5

1
A t4 + O(t5)

9>=
>;,(1)

proved in [11], closes when c ≥ 0 or c ≥ 1. To prove these closures we first use the
Rogers-Ramanujan identities (see [2, p. 50] or [8, p. 290]) and the Jacobi triple product
identity (see for example [2, p. 21]) to obtain

1X
n≥0

qn2

(q)n
≥ (q2 ; q5)1(q3 ; q5)1(q5 ; q5)1

(q)1
≥ 1

(q)1

1X
n≥�1

(�1)nqn(5n+1)Û2

and

1X
n≥0

qn(n+1)

(q)n
≥ (q ; q5)1(q4 ; q5)1(q5 ; q5)1

(q)1
≥ 1

(q)1

1X
n≥�1

(�1)nqn(5n+3)Û2 .
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Then we use the identities

(2) (q)1 ≥
vut2ô

t
exp

8<
:�ô

2

6t
+

t
24

9=
;

1Y
m≥1

0
@1 � exp

8<
:�4mô2

t

9=
;
1
A ,

obtained from the transformation formula for the Dedekind ë-function (see for example
[6, pp. 47–48]), and

1X
n≥�1

(�1)nqãn2+ån ≥
vut4ô
ãt

exp

8<
:å

2t
4ã

9=
;

1X
n≥1

cos
(

(2n � 1)åô
2ã

)
exp

8<
:� (2n � 1)2ô2

4ãt

9=
; ,

obtained from the transformation formula for í3 (see for example [7, p. 4]).
The q-series

1X
n≥0

anqbn2+cn

(q)n

in general does not have a closed asymptotic expansion. We conjecture that it has a com-
panion series

1X
n≥0

ãnqb̃n2+c̃n

(q)n

such that the quotient
0
@ 1X

n≥0

anqbn2+cn

(q)n

1
A,

0
@ 1X

n≥0

ãnqb̃n2+c̃n

(q)n

1
A

has a closed asymptotic expansion.
We begin with the main theorem proved in [11].

THEOREM 1. Let a, b, c, and q be real numbers with a Ù 0, b Ù 0 and jqj Ú 1. Let
z denote the positive root of az2b + z � 1 ≥ 0. When q ≥ e�t and t ! 0+ we obtain for
each nonnegative integer p,

log
1X

n≥0

anqbn2+cn

(q)n
≥ n

Li2(1 � z) + b log2 z
o
t�1 + c log z� 1

2
log

n
z + 2b(1� z)

o

+
pX

k≥1
Rk(b, c, z)tk + O(tp+1),(3)

where R1, R2, . . . , Rp are rational functions of b, c and z.

Equation (3) often holds for negative values of a. When b ≥ 0 and jaj Ú 1 we use
Euler’s first identity (see for example [2, p. 19])

(4)
1X

n≥0

un

(q)n
≥

1Y
m≥0

1
1 � uqm

with u ≥ aqc to express the sum on the left side of (3) as an infinite product. Its asymptotic
expansion is then obtained by the Euler-Maclaurin sum formula. When b ≥ 1Û2 and
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a Ù �1 the left side of (3) can also be expressed as an infinite product, this time using
Euler’s second identity

(5)
1X

n≥0

unqn(n�1)Û2

(q)n
≥

1Y
m≥0

(1 + uqm)

with u ≥ aqc+1Û2. When 0 Ú b Ú 1Û2, numerical computations suggest that (3) holds
for all a, and when b Ù 1Û2 numerical computations suggest that (3) holds for a Ù
�(2b � 1)2b�1Û(2b)2b. In the last case the equation az2b + z � 1 ≥ 0 has two positive
solutions. We must take the smaller one to insure that z + 2b(1� z) Ù 0. Throughout this
paper we assume that (3) holds in these cases.

Let z be the smallest positive solution of az2b + z � 1 ≥ 0. For a, b Ù 0 define

a0 ≥ a�1Û(2b), b0 ≥ 1Û(4b), c0 ≥ cÛ(2b), z0 ≥ 1 � z,

and observe that
a0(z0)2b0

+ z0 � 1 ≥ 0.

This transformation is an involution (that is, has order 2). We ask how the asymptotic
series for

log
1X

n≥0

anqbn2+cn

(q)n
and log

1X
n≥0

(a0)nqb0n2+c0n

(q)n

are related.
Using the symbolic algebra program MAPLE [10] together with [11], we obtain

log
1X

n≥0

anqbn2+cn

(q)n
≥ n

Li2(1 � z) + b log2 z
o
t�1 + c log z� 1

2
log

n
z + 2b(1� z)

o

+
(1 � z)P1(b, c, z)
fz + 2b(1� z)g3

t +
7X

k≥2

z(1 � z)Pk(b, c, z)
fz + 2b(1� z)g3k

tk + O(t8),

where P1, P2, . . . , P7 are polynomials in b, c and z. Surprisingly, it turns out that

log
1X

n≥0

(a0)nqb0n2+c0n

(q)n
≥
8<
:Li2(z) +

log2(1 � z)
4b

9=
; t�1 +

c
2b

log a +
1
2

log(2b) + c log z

� 1
2

log
n
z + 2b(1� z)

o
+

8<
: c2

4b
� 1

24
� (1 � z)P1(b, c, z)
fz + 2b(1� z)g3

9=
; t

+
7X

k≥2
(�1)k z(1 � z)Pk(b, c, z)

fz + 2b(1 � z)g3k
tk + O(t8).

Thus if we replace t by �t and hence q by 1Ûq in the above equation, then our two
asymptotic series appear to agree from the t2 term onward. With this in mind we define

ã ≥ �a�1Û(2b), b̃ ≥ 1Û2 � 1Û(4b), c̃ ≥ 1Û2� cÛ(2b), z̃ ≥ 1Û(1 � z).

Again we see that
ãz̃2b̃ + z̃ � 1 ≥ 0.
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This transformation is a trinvolution (that is, has order 3). For a Ù 0 and b Ù 1Û2 we
obtain

log
1X

n≥0

ãnqb̃n2+c̃n

(q)n
≥
8<
:�Li2(z) � log2(1 � z)

4b

9=
; t�1 +

c
2b

log a +
1
2

log(2b) + c log z

� 1
2

log
n

z + 2b(1 � z)
o

+

8<
: 1

24
� c2

4b
+

(1 � z)P1(b, c, z)
fz + 2b(1� z)g3

9=
; t

+
7X

k≥2

z(1 � z)Pk(b, c, z)
fz + 2b(1 � z)g3k

tk + O(t8).

Hence 0
@ 1X

n≥0

anqbn2+cn

(q)n

1
A,

0
@ 1X

n≥0

ãnqb̃n2+c̃n

(q)n

1
A

≥ 1p
2bacÛb

exp

8<
:
0
@ô2

6
+

log2 a
4b

1
A t�1 +

0
@ c2

4b
� 1

24

1
A t + O(t8)

9=
; .

Note the absence of the variable z in the above formula. Numerical computations support
the conjecture that0
@ 1X

n≥0

anqbn2+cn

(q)n

1
A,

0
@ 1X

n≥0

ãnqb̃n2+c̃n

(q)n

1
A

≥ 1p
2bacÛb

exp

8<
:
0
@ô2

6
+

log2 a
4b

1
A t�1 +

0
@ c2

4b
� 1

24

1
A t

9=
;
"
1 + O

 
exp

 
�K

t

!!#
,(6)

where K is a positive constant which in general depends on a and b but not on c.
The cases b ≥ 1Û2 and b ≥ 1 warrant further analysis. When b ≥ 1Û2, a Ù 0, jqj Ú 1

and ja�1q�c+1Û2j Ú 1 we have ã ≥ �a�1, b̃ ≥ 0, c̃ ≥ �c + 1Û2 and0
@ 1X

n≥0

anqn2Û2+cn

(q)n

1
A,

0
@ 1X

n≥0

(�a�1)nq(�c+1Û2)n

(q)n

1
A

≥ a�c exp

8<
:
0
@ô2

6
+

log2 a
2

1
A t�1 +

0
@c2

2
� 1

24

1
A t

9=
;
2
64 1Y

m≥1

0
@1 � exp

0
@�4mô2

t

1
A
1
A�1

3
75

ð
2
41 + 2

1X
n≥1

exp

0
@�2n2ô2

t

1
A cos

 
2ncô� 2nô log a

t

!35 .(7)

PROOF OF (7). By Euler’s second identity (5) with u ≥ aqc+1Û2 we obtain

1X
n≥0

anqn2Û2+cn

(q)n
≥

1Y
m≥0

(1 + aqm+c+1Û2),

and from Euler’s first identity (4) with u ≥ �a�1q�c+1Û2 we obtain

1X
n≥0

(�a�1)nq(�c+1Û2)n

(q)n
≥

1Y
m≥0

1

1 + a�1qm�c�1Û2
.
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Therefore
0
@ 1X

n≥0

anqn2Û2+cn

(q)n

1
A,

0
@ 1X

n≥0

(�a�1)nq(�c+1Û2)n

(q)n

1
A ≥ 1Y

m≥1
(1 + aqm+c�1Û2)(1 + a�1qm�c�1Û2).

By Jacobi’s triple product identity we have

1Y
m≥1

(1 + aqm+c�1Û2)(1 + a�1qm�c�1Û2) ≥ 1
(q)1

1X
n≥�1

anqn2Û2+cn.

The asymptotic expansion of (q)1 is given in (2) and the asymptotic expansion of the
sum is obtained from the transformation formula for í3. Forming their product completes
the proof of (7).

By Euler’s identities (4) and (5),

0
@ 1X

n≥0

(�a�1)nq(�c+1Û2)n

(q)n

1
A�1

≥
1Y

m≥1
(1 + a�1qm�c�1Û2) ≥

1X
n≥0

a�nqn2Û2�cn

(q)n
,

so (7) can be stated as
0
@ 1X

n≥0

anqn2Û2+cn

(q)n

1
A
0
@ 1X

n≥0

a�nqn2Û2�cn

(q)n

1
A

≥ a�c exp

8<
:
0
@ô2

6
+

log2 a
2

1
A t�1 +

0
@c2

2
� 1

24

1
A t

9=
;
2
64 1Y

m≥1

0
@1 � exp

0
@�4mô2

t

1
A
1
A�1

3
75

ð
2
41 + 2

1X
n≥1

exp

0
@�2n2ô2

t

1
A cos

 
2ncô� 2nô log a

t

!35(8)

for a Ù 0 and jqj Ú 1.
Equation (6) takes on an interesting form when a ≥ b ≥ 1. Numerical computations

suggest the following refinement:

0
@ 1X

n≥0

qn2+cn

(q)n

1
A,

0
@ 1X

n≥0

(�1)nqn2Û4+(1�c)nÛ2

(q)n

1
A

≥ 1p
2

exp

8<
:ô

2

6t
+

0
@c2

4
� 1

24

1
A t

9=
;
2
641 + 2 cos(cô)

0
@1 +

p
5

2

1
A2c�1

ð exp
(
�4ô2

5t
+

c (c � 1)
p

5
10

t +
c (c � 1)(2c � 1)

p
5

150
t2

+
c (c � 1)(c2 � c + 6)

p
5

1500
t3

� c (c � 1)(2c � 1)(3c2 � 3c � 31)
p

5
45000

t4 + O(t5)
)375.(9)
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One should compare the tails of the asymptotic expansions (1) and (9). In (9) we imme-
diately see that the cosine term vanishes whenever c � 1Û2(mod 1). For these values of
c numerical computations suggest the further refinement:

0
@ 1X

n≥0

qn2+cn

(q)n

1
A,

0
@ 1X

n≥0

(�1)nqn2Û4+(1�c)nÛ2

(q)n

1
A

≥ 1p
2

exp

8<
:ô

2

6t
+

0
@c2

4
� 1

24

1
A t

9=
;

1Y
m≥1

0
@1 � exp

0
@�4(2m� 1)ô2

t

1
A
1
A

for jqj Ú 1. We recognize the product on the right as that associated with the identity

(�q1Û2 ; q1Û2)1 ≥ (q)1
(q1Û2 ; q1Û2)1

≥ 1p
2

exp

8<
:ô

2

6t
+

t
48

9=
;

1Y
m≥1

0
@1 � exp

0
@�4(2m� 1)ô2

t

1
A
1
A ,

obtained from (2). This leads us to conjecture that

(10)
1X

n≥0

q(2n+ñ)(2n+ñ+1)Û2

(q2 ; q2)n
≥ (�q)1

1X
n≥0

(�1)nqn(n+1)Û2�ñn

(q2 ; q2)n

for all integers ñ. In support of the above conjectures, we now show that (10) is indeed
true.

PROOF OF (10). Let F(ñ) be the sum on the left of (10) and G(ñ) the sum on the
right of (10). Then

F(ñ � 1) � q�ñF(ñ) ≥
1X

n≥1

q2n2+(2ñ�1)n+(ñ�1)ñÛ2(1 � q2n)
(q2 ; q2)n

≥
1X

n≥1

q2n2+(2ñ�1)n+(ñ�1)ñÛ2

(q2 ; q2)n�1

≥
1X

n≥0

q2n2+(2ñ�3)n+(ñ+1)(ñ+2)Û2

(q2 ; q2)n

≥ F(ñ + 1)

and

G(ñ + 1)� G(ñ � 1) ≥
1X

n≥1

(�1)nqn2Û2�(ñ+1Û2)n(1 � q2n)
(q2 ; q2)n

≥
1X

n≥1

(�1)nqn2Û2�(ñ+1Û2)n

(q2 ; q2)n�1

≥
1X

n≥0

(�1)n+1qn2Û2�(ñ�1Û2)n�ñ

(q2 ; q2)n

≥ �q�ñG(ñ).
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Since F and G satisfy the same recurrence, it suffices to prove that F(ñ) ≥ (�q)1G(ñ)
for two consecutive values of ñ. We will prove it for ñ ≥ 0 and ñ ≥ �1.

The case ñ ≥ 0 follows from the identity [1, p. 575, eq. (R1) with q replaced by q1Û2

and z replaced by zq1Û2]:

(11)
1X

n≥0

q2n2+nz2n

(q2 ; q2)n
≥ (zq ; q)1

1X
n≥0

qn(n+1)Û2zn

(q ; q)n(zq ; q)n

with z ≥ �1. Putting z ≥ �q�1 in (11) we get

F(�1) ≥
1X

n≥0

q2n2�n

(q2 ; q2)n

≥ (�1)1
1X

n≥0

(�1)nqn(n�1)Û2

(q)n(�1)n

≥ (�q)1
1X

n≥0

(�1)nqn(n�1)Û2

(q)n(�q)n�1

≥ (�q)1
1X

n≥0

(�1)nqn(n�1)Û2(1 + qn)
(q2 ; q2)n

≥ (�q)1
h
G(1) + G(0)

i
≥ (�q)1G(�1)

by the recurrence for G. This completes the proof of (10).

Other proofs of (10) were supplied by George Andrews, Basil Gordon, Mike Hirsch-
horn and Tom Koornwinder. The above proof was based on the ideas of George Andrews
and Basil Gordon.

The method used in the proof of Theorem 1, in particular, equation (2.11) in [11] can
be suitably modified to yield the complete asymptotic expansion of q-series of the type

f (a, b, c ; q) :≥
1X

n≥0
anqbn2+cn

mY
i≥1

(qki ; qki )ri
sin ,

where ki, si Ù 0. We assume that a, b, c and q are real numbers such that a Ù 0, b ½ 0
and jqj Ú 1.

THEOREM 2. Suppose that the terms in the above sum are positive and unimodal,
i.e., they increase until n ≥ N(q) and then decrease to 0. Suppose that the z-equation

az2b
mY

i≥1
(1 � zkisi )siri ≥ 1

has a unique root z with 0 Ú z Ú 1. Let q ≥ e�t and t ! 0+. Then qN(q) ! z and for
each nonnegative integer p,
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log f (a, b, c ; q) ≥
²

b log2 z �
mX

i≥1

ri

ki
Li2(1 � zkisi )

¦
t�1 � r + 1

2
log t +

r + 1
2

log 2ô

+ c log z +
mX

i≥1

ri

2
log

1 � zkisi

ki
� 1

2
log

0
@2b �

mX
i≥1

kis2
i rizkisi

1 � zkisi

1
A

+
pX

j≥1
Rj(b, c, z)tj + O(tp+1),

where r ≥ r1 + r2 + Ð Ð Ð + rm and R1, R2, . . . , Rp are rational functions of b, c and z.

This theorem can be extended to accommodate additional factors in the terms of
f (a, b, c ; q). For example, if

g(a, b, c ; q) :≥
1X

n≥0
anqbn2+cn(1 � q2n+1)

mY
i≥1

(qki ; qki )ri
sin,

then we just add the asymptotic expansion

log(1� q2n+1) ≥ log(1 � z2t+1ÛN)

≥ log(1 � z2t) � z2t log z
1 � z2t

N�1 � z2t log2 z
2(1 � z2t)2

N�2 � Ð Ð Ð
to the modified form of equation (2.11) in [11].

Before defining another transformation, we give an asymptotic formula for a product
similar to (8), but with odd powers of q in the denominators:0

@ 1X
n≥1

anqn2+(2c�1)n

(q ; q2)n

1
A
0
@ 1X

n≥1

a�nqn2�(2c+1)n

(q ; q2)n

1
A ≥ ô

2act
exp

(0@ô2

12
+

log2 a
4

1
A t�1

+
 

c2 +
2
3

!
t + O(t8)

)
.

The sum
1X

n≥0
anqbn2+cn(�q)n

satisfies the conditions in Theorem 2 if we take a Ù 1Û2 and b ½ 0 (in the case b ≥ 0 we
must take 1Û2 Ú a Ú 1). Note that when jaj Ú 1Û2 this sum tends to 1Û(1�2a) and when
a ≥ 1Û2 it is asymptotic to

qôÛ(4b + 1)t. The z-equation for the sum is az2b(1 + z) ≥ 1.
Consider the transformation

ã ≥ a1Û(2b+1), b̃ ≥ bÛ(2b + 1), c̃ ≥ (c � b)Û(2b + 1), z̃ ≥ zÛ(z + 1),

and observe that
ãz̃2b̃ + z̃ ≥ 1,

which is the z̃-equation for the sum

1X
n≥0

ãnqb̃n2+c̃n

(q)n
.
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It turns out that0
@ 1X

n≥0
anqbn2+cn(�q)n

1
A,

0
@ 1X

n≥0

ãnqb̃n2+c̃n

(q)n

1
A

≥
s ô

(2b + 1)t
exp

(0@ log2 a
4b + 2

� ô2

12

1
A t�1 � 2c + 1

4b + 2
log a

+

0
@6c2 + 6c � b + 1

24b + 12

1
A t + O(t6)

)
.

Numerical computations suggest that the error term is in fact O(e�KÛt) for some positive
number K which in general depends on a and b but not on c. A consequence of this is
the known fact that Ramanujan’s fifth order mock theta functions

†0(q) ≥
1X

n≥0
q(n+1)(n+2)Û2(�q)n and †1(q) ≥

1X
n≥0

qn(n+1)Û2(�q)n

are closed. For a list of Ramanujan’s fifth order mock theta functions see [16, pp. 277–
278].

The Transformation n ! n � 1Û2. Let

F(r) ≥
1X

n≥0

an+r�1qb(n+r�1)2+c(n+r�1)

(qr)n

for real r Â≥ 0,�1,�2, . . .. We will prove that F(1Û2) and F(1) are asymptotic associates,
that is, their asymptotic expansions agree from the t2 term onward. The method used in
the proof of Theorem 1, in particular, equation (2.11) in [11] can be suitably modified to
show that

F(r) ≥ Γ(r)zctr�1

p
z + 2b(1 � z)

exp

8<
:
�
b log2 z + Li2(1 � z)

�
t�1 +

pX
k≥1

Rk(b, c, z, r)tk + O(tp+1)

9=
; ,

where az2b + z� 1 ≥ 0 and R1, R2, . . . , Rp are rational functions of b, c, z and r. Since

(qr)n ≥ (qr)1
(qn+r)1

≥ (qr)1
(q)1

(q)n+r�1,

we have

F(r) ≥ 1
(qr)1

1X
n≥0

an+r�1qb(n+r�1)2+c(n+r�1)(qn+r)1

≥ (q)1
(qr)1

1X
n≥0

an+r�1qb(n+r�1)2+c(n+r�1)

(q)n+r�1
.

The asymptotic expansion of the last sum is, up to a quantity exponentially small in com-
parison to the dominant term, independent of r. This is because the primary contribution
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to the sum arises from those n which are close to the index of the largest term in the sum.
More precisely, we have for all è Ù 0,

1X
n≥0

an+r�1qb(n+r�1)2+c(n+r�1)

(q)n+r�1
≥ X

n2S

an+r�1qb(n+r�1)2+c(n+r�1)

(q)n+r�1

n
1 + o(e�éÛt)

o
,

where S ≥ fn : 1 � è � ntÛ(� log z) � 1 + èg and é is a positive number depending
upon è (for a proof see [11, pp. 126–127]). Thus

F(s)
F(r)

≥ (qr)1
(qs)1

n
1 + o(e�éÛt)

o

≥ Γ(s)
Γ(r)

ts�r exp

8<
:

pX
k≥1

Bk Ð fBk+1(s) � Bk+1(r)g
k(k + 1)!

tk + O(tp+1)

9=
; ,

since

log(qr)1 ≥ �ô
2

6
t�1 +

 
1
2
� r

!
log t +

1
2

log(2ô) � log Γ(r) �
pX

k≥1

BkBk+1(r)
k(k + 1)!

tk + O(tp+1)

by the Euler-Maclaurin sum formula. In particular,

F(1Û2)
F(1)

≥
sô

t
etÛ16+o(tp )

for all positive integers p, which implies that F(1Û2) and F(1) are asymptotic associates.
We say that F(1Û2) is obtained from F(1) by the transformation n ! n � 1Û2 of the
q-series

1X
n≥0

anqbn2+cn

(q)n
.

(This is tantamount to summing anqbn2+cnÛ(q)n over the positive half-integers 1Û2, 3Û2,
5Û2, . . . instead of the nonnegative integers.)

By Euler’s second identity and equation (2) we find that

1X
n≥0

qn(n�1)Û2

(q)n
≥ 2(�q)1 ≥ p

2 exp

8<
: ô2

12t
+

t
24

9=
;

1Y
m≥1

0
@1 � exp

8<
:�2(2m� 1)ô2

t

9=
;
1
A ,

1X
n≥0

qn2Û2

(q)n
≥ (�q1Û2)1 ≥ exp

8<
: ô2

12t
� t

48

9=
;

1Y
m≥1

0
@1 + exp

8<
:�2(2m� 1)ô2

t

9=
;
1
A ,

1X
n≥0

qn(n+1)Û2

(q)n
≥ (�q)1 ≥ 1p

2
exp

8<
: ô2

12t
+

t
24

9=
;

1Y
m≥1

0
@1 � exp

8<
:�2(2m� 1)ô2

t

9=
;
1
A

are closed. Applying the transformations n ! n� 1Û2 and q ! q2 to the above sums it
follows that

1X
n≥1

qn(n�2)

(q ; q2)n
≥ 1 + 2†(q)

q
,

1X
n≥1

qn(n�1)

(q ; q2)n
≥ ù(�q),

1X
n≥1

qn2

(q ; q2)n
≥ †(q)
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are also closed. (Here †(q) and ù(q) are two of Ramanujan’s third order mock theta
functions. For a list of these see [15, p. 62].)

The closures of Ramanujan’s fifth order mock theta functions

F1(q) :≥
1X

n≥1

q2n(n�1)

(q ; q2)n
and F0(q) :≥

1X
n≥0

q2n2

(q ; q2)n

can be established by applying the transformations n ! n�1Û2 and q ! q2 to the sums

1X
n≥0

qn2

(q)n
and

1X
n≥0

qn(n+1)

(q)n
,

whose closures we proved in the argument following equation (1). Rogers [3, pp. 36, 58]
proved that

1X
n≥0

qn2

(q4 ; q4)n
≥ 1

(�q2 ; q2)1

1X
n≥0

qn2

(q)n
and

1X
n≥0

qn(n+2)

(q4 ; q4)n
≥ 1

(�q2 ; q2)1

1X
n≥0

qn(n+1)

(q)n
,

which implies that the sums on the left are closed. Applying the transformations q !
q1Û4, n ! n � 1Û2 and q ! q2 to these sums it follows that the q-series

1X
n≥1

qn(n�1)Û2

(q ; q2)n
and

1X
n≥1

qn(n+1)Û2

(q ; q2)n
,

appearing in the Lost Notebook [13, p. 9], are also closed.
The closures of many q-series can be established by applying the transformation

n ! n�1Û2 to other closed q-series. For example, this method can be used to show that
Ramanujan’s seventh order mock theta functions [12, p. 355] (also see [4, pp. 132–133]
and [5, p. 286])

F0(q) :≥
1X

n≥0

qn2

(qn+1)n
, F1(q) :≥

1X
n≥0

q(n+1)2

(qn+1)n+1
, F2(q) :≥

1X
n≥0

qn(n+1)

(qn+1)n+1

are closed. For this we need the Selberg identities [14, p. 5] (where the right sides of the
last two identities are incorrectly interchanged in [14]):

A(q) :≥
1X

n≥0

q2n2

(q2 ; q2)n(�q)2n
≥ (q3 ; q7)1(q4 ; q7)1(q7 ; q7)1

(q2 ; q2)1

≥ 1
(q2 ; q2)1

1X
n≥�1

(�1)nqn(7n+1)Û2,

B(q) :≥
1X

n≥0

q2n(n+1)

(q2 ; q2)n(�q)2n
≥ (q2 ; q7)1(q5 ; q7)1(q7 ; q7)1

(q2 ; q2)1

≥ 1
(q2 ; q2)1

1X
n≥�1

(�1)nqn(7n+3)Û2,

C(q) :≥
1X

n≥0

q2n(n+1)

(q2 ; q2)n(�q)2n+1
≥ (q ; q7)1(q6 ; q7)1(q7 ; q7)1

(q2 ; q2)1

≥ 1
(q2 ; q2)1

1X
n≥�1

(�1)nqn(7n+5)Û2
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and the related functions

Ar(q) :≥
1X

n≥0

q2(n+r�1)2

(q2r ; q2)n(�q2r�1)2n
,

Br(q) :≥
1X

n≥0

q2(n+r�1)(n+r)

(q2r ; q2)n(�q2r�1)2n
,

Cr(q) :≥
1X

n≥0

q2(n+r�1)(n+r)

(q2r ; q2)n(�q2r�1)2n+1
.

Since these functions are closed when r ≥ 1 it is not difficult to show that they are also
closed when r ≥ 1Û2. The closures of F0(q), F1(q) and F2(q) are proved by manipulating
the series C1Û2(q), B1Û2(q) and A1Û2(q) respectively, and then replacing q by q1Û2. Note
that

1
(q ; q2)n(�1)2n

≥ 1
(q ; q2)n(�q ; q2)n(�1 ; q2)n

≥ 1
(q2 ; q4)n(�1 ; q2)n

≥ 1
2(q2 ; q4)n(�q2 ; q2)n�1

≥ (q2 ; q2)n�1

2(q2 ; q4)n(q4 ; q4)n�1

≥ (q2 ; q2)n�1

2(q2 ; q2)2n�1

≥ 1
2(q2n ; q2)n

.

ACKNOWLEDGEMENTS. The author is grateful to Basil Gordon for several helpful
suggestions made during the preparation of this paper. Support by the Natural Sciences
and Engineering Research Council of Canada is gratefully acknowledged.

REFERENCES

1. G. E. Andrews, q-identities of Auluck, Carlitz, and Rogers. Duke Math. J. 33(1966), 575–581.
2. , The Theory of Partitions. Addison-Wesley, Reading, 1976.
3. , q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics,

Physics, and Computer Algebra. CBMS conference series 66, Amer. Math. Soc., Providence, Rhode Is-
land, 1986.

4. , The fifth and seventh order mock theta functions. Trans. Amer. Math. Soc. 293(1986), 113–134.
5. , Mock theta functions. Proc. Sympos. Pure Math. 49(1989), 283–298.
6. T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory. Second edition, Springer-Verlag,

New York, 1990.
7. R. Bellman, A Brief Introduction to Theta Functions. Holt, Rinehart and Winston, New York, 1961.
8. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Fourth edition, Oxford University

Press, London, 1960.
9. L. Lewin, Polylogarithms and Associated Functions. North-Holland, New York, 1981.

10. MAPLE, A large symbolic manipulation program developed at the University of Waterloo. MAPLE is a
registered trademark of Waterloo Maple Soltware.

https://doi.org/10.4153/CJM-1998-022-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-022-x


ASYMPTOTIC TRANSFORMATIONS OF q-SERIES 425

11. R. J. McIntosh, Some asymptotic formulae for q-hypergeometric series. J. London Math. Soc. (2) 51(1995),
120–136.

12. S. Ramanujan, Collected Papers. Cambridge University Press, 1927; reprinted by Chelsea, New York,
1962.

13. , The Lost Notebook and Other Unpublished Papers. Narosa, New Delhi, 1988.
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