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Data from direct numerical simulations (DNS) of disperse bubbly flow in an upward
vertical channel are used to develop a new second-moment closure for bubble-induced
turbulence (BIT) in the Euler–Euler framework. The closure is an extension of a BIT
model originally proposed by Ma et al. (Phys. Rev. Fluids, vol. 2, 2017, 034301) for
two-equation eddy-viscosity models and focuses on the core region of the channel,
where the interfacial term and dissipation term are in balance. Particular attention in
this study is given to the treatment of the pressure–strain term for bubbly flows and
the form of the interfacial term to account for BIT. For the latter, the concept of an
effective BIT source is proposed, which leads to a significant simplification of the
modelling work for both the pressure–strain correlation and the interfacial term itself.
The anisotropy of bubbly flow is analysed with the aid of the anisotropy-invariant map
obtained from the DNS data, and a parameter governing this issue is established. The
complete second-moment closure is tested against reference data for different bubbly
channel flows and a case of a bubble column. The agreement achieved with the DNS
data is very good and the performance of the new model is better than obtained with
the standard procedure. Furthermore, the model is shown to be robust and to fulfil the
requirements of realizability.

Key words: gas/liquid flow, turbulence modelling, turbulence simulation

1. Introduction
Disperse turbulent bubbly flows occur in a very large number of situations

encountered in process engineering, energy technology, environmental flows, etc.
Examples are bubble column reactors, abundantly used in the chemical industry,
pipelines, waste-water treatment, gas release at the bottom of the sea, and many
others. Such flows can be investigated numerically by various approaches at different
levels of detail. For large-scale simulations, the Euler–Euler (EE) approach (Ishii
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& Hibiki 2006) coupled with steady or unsteady Reynolds-averaged Navier–Stokes
(RANS) modelling is the only viable framework. In this case, only continuous
statistical quantities are computed, so that beyond the closures for single-phase
terms all two-phase phenomena related to the phase boundaries need to be modelled.
Extensive reviews of this approach were compiled by Joshi & Nandakumar (2015),
Michaelides, Crowe & Schwarzkopf (2016) and Sundaresan, Ozel & Kolehmainen
(2018). Among the various phenomena, the effect that fluid turbulence is generated by
bubbles moving relative to the fluid is one of the most important and most delicate
to model (Balachandar & Eaton 2010; Elghobashi 2019). Providing an improved
representation of this mechanism, the so-called bubble-induced turbulence (BIT), is
the goal of the present paper.

Over the last two decades, there has been widespread work on supplementing single-
phase two-equation eddy-viscosity models with specific source terms representing BIT
(Lopez de Bertodano, Lahey & Jones 1994; Morel 1997; Troshko & Hassan 2001;
Colombo & Fairweather 2015; Ma et al. 2017). These models take the influence of
bubbles into account by including additional source terms in the balance equations
for both k, the turbulent kinetic energy (TKE), and ε, the turbulent dissipation rate,
or another equivalent parameter. This alters the turbulence quantities and, as a result,
the effective transport coefficients, such as the eddy viscosity. Albeit widely used, the
approach suffers from substantial uncertainties concerning the expression of the eddy
viscosity in bubbly flows (Kataoka & Serizawa 1989; Troshko & Hassan 2001). These
studies, as well as own experience (Ma 2017), show that EE two-equation models
should be applied with care for bubbly flows, as discussed in § 2.2 below.

Good alternatives to eddy-viscosity models are differential second-moment closures
(SMCs). They employ modelled differential transport equations for all Reynolds-stress
components required to close the RANS equations. For single-phase flow, SMCs
incorporate more physics than the traditional two-equation models, resulting in a
larger range of applicability (Hanjalić & Launder 2011), although the debate on when
precisely the additional effort and numerical complexity are justified for single-phase
flow, compared to other approaches, is not ultimately settled in the community.

For bubbly flows the situation is somewhat different since the buoyancy of
the bubbles generally introduces anisotropy on the small scales. Hence, in many
applications, there is considerable interest in accounting for anisotropic velocity
fluctuations, which can be found in both experiment (Riboux, Risso & Legendre
2010; Akbar et al. 2012; Lai & Socolofsky 2019) and direct numerical simulation
(DNS) (Lu & Tryggvason 2008; Bolotnov et al. 2011; Santarelli & Fröhlich 2015), to
name but a few. SMCs employed in the EE approach, however, have been investigated
only by comparatively few groups. Lopez de Bertodano et al. (1990) were the first to
address this issue in bubbly flow. They adopted the SMC of Launder, Reece & Rodi
(1975) – hereafter referred to as LRR – as the carrier model and combined it with
the algebraic BIT expression of Biesheuvel & van Wijngaarden (1984) as a source
tensor to represent the additional energy produced by bubbles. This BIT expression is
based on the assumption of a potential flow in which the influence of the bubbles on
the liquid velocity fluctuations primarily results from the displacement of the liquid
by the moving bubbles. Such an assumption, however, is not valid for real situations
at finite bubble Reynolds number, where the wake contribution is dominant (Risso &
Ellingsen 2002).

Other studies (Masood, Rauh & Delgado 2014; Ullrich et al. 2014) applied different
SMC models conceived for single-phase flow in EE simulations of bubbly flow
without accounting for any BIT effect. The configuration simulated in these references
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Second-moment closure for bubbly flow 883 A9-3

is the bubble plume experimentally investigated by Deen, Solberg & Hjertager
(2001) and good agreement was obtained. The good agreement in this particular
case, however, does not necessarily mean that single-phase SMC models can be
generalized to bubbly flows without any modification. The experimental data of Deen
et al. (2001) have also been reproduced very well using scale-resolving simulations
without accounting for BIT (Deen et al. 2001; Niceno, Dhotre & Deen 2008; Ma
et al. 2015a). The cited papers show that, in this particular flow, the undulatory
modulation of the bubble plume is the dominant feature, generating substantially
more fluctuations than BIT. Hence, accounting for the latter or not affects the result
only to a small extent (Ma et al. 2015a). Further EE second-moment modelling for
bubbly flows was performed by Cokljat et al. (2006) and Colombo & Fairweather
(2015), and recently by Ullrich (2017). While Colombo & Fairweather (2015) used a
larger BIT source term in the streamwise direction, the latter two studies employed
an isotropic source tensor to represent BIT. In all these studies, the extra BIT tensor
in the SMC model was not derived on the basis of data but resulted from various
modelling arguments or ad hoc physical considerations. The resulting expressions
were subjected to indirect testing by calculating various bubbly flows with these
closures.

The starting point of the present work is constituted by the exact Reynolds-stress
equations for two-phase flows rigorously derived by Kataoka, Besnard & Serizawa
(1992). These equations are based on a single-phase representation, including the
influence of the bubbles by additional so-called interfacial terms in the balance
equations for each Reynolds-stress component and the dissipation rate of TKE. When
supplementing the unclosed terms in these equations with adequate models, they
constitute an appropriate framework for second-moment modelling of bubbly flows.

Recently, DNS data of sufficiently large-scale turbulent bubbly flows have become
available (Bolotnov et al. 2011; Roghair et al. 2011; Dabiri, Lu & Tryggvason 2013;
Lu & Tryggvason 2013; Santarelli & Fröhlich 2016; Cifani, Kuerten & Geurts 2018),
which can be used as a basis to test the individual model assumptions of EE RANS
directly. Furthermore, the data can also be used to develop more elaborate closing
approximations for BIT terms than formerly employed. Several works of this type
have been accomplished in the framework of EE two-equation RANS modelling.
Ilić (2006) and Erdogan & Wörner (2014) performed DNS studies with up to eight
monodisperse bubbles rising in initially stagnant liquid within a plane channel and
evaluated each term in the TKE budget. They demonstrated that the gain of TKE
is mainly caused by the interfacial term, while the contribution of the single-phase
production term is negligible. Besides evaluating the relative importance of each term
in the TKE budget under these conditions, the DNS data were also used for a priori
testing of available BIT models to assess the accuracy of them. Employing DNS of
a much larger number of bubbles and more realistic physical parameters, such as
the density ratio and bubble Reynolds number, Santarelli, Roussel & Fröhlich (2016)
computed the budget terms in the TKE equation and proposed a BIT closure based
on a priori evaluations. Ma et al. (2017) extended this work and for the first time
used DNS to develop a complete BIT closure for a two-equation EE RANS approach,
employing the full set of equations and performing a posteriori validations of the
resulting expression.

To the best of the authors’ knowledge, DNS data so far have not been used to
develop a realistic BIT model of bubbly flows in a differential SMC framework. Here,
such an approach is used employing the data of Santarelli & Fröhlich (2015, 2016) to
devise a new SMC for the BIT. This term dominates in many bubbly flows, so that an
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improvement in this respect has considerable impact, as experienced in earlier studies
(Ma et al. 2017). In the work reported here, four main issues are investigated. First,
the limitation of using the standard eddy-viscosity expression in the EE two-equation
models for bubbly flow is discussed in § 2.2. The second issue is the model form of
the EE SMC, particularly the pressure–strain term in the application of bubbly flows,
which is addressed in § 3. Next, the coefficients in the BIT tensor expressions of the
selected SMC are determined via a suitably chosen iterative procedure in § 4. Finally,
based on an analysis of anisotropy invariants, the new SMC BIT model is proposed
in § 5. The resulting SMC BIT model is then validated by computing the same cases
and one case of Lu & Tryggvason (2008) with the EE approach in § 6. Beyond the
new model itself, the paper also furnishes a systematic procedure that is of general
use for this type of modelling.

2. Background
2.1. Direct numerical simulation database

To be used for the development of closures, the DNS data employed have to provide
resolved information about the respective processes. For the present work, this
requires DNS with geometrically resolved bubbles. Extracting statistical information
from such simulations about interfacial terms is by no means trivial (Santarelli et al.
2016). Furthermore, to provide relevant data for modelling, the effect considered
should be of sizeable, if not dominating, impact in the reference case selected. This
second condition is also met with the flows considered here, which are governed by
the balance between production of TKE through BIT and dissipation.

In Santarelli & Fröhlich (2015, 2016) bubble-resolving DNS with many thousands
of bubbles at low Eötvös number were conducted. Bubbles were considered as
spherical objects of fixed shape and a no-slip condition was applied at the phase
boundary, matching with the behaviour of air bubbles rising in contaminated water.
Compared to other simulations of this type (Ilić 2006; Erdogan & Wörner 2014),
these simulations are substantially closer to applications in that they involve turbulent
background flow, contaminated fluid, realistic density ratio, higher bubble Reynolds
number, a much larger domain and a much larger number of bubbles.

The DNS were conducted for upward vertical flow between two flat walls in a
channel, with x the streamwise, y the wall-normal and z the spanwise coordinate. The
size of the computational domain is Lx × Ly × Lz = 4.41H × H × 2.21H, where H
is the distance between the walls. Figure 1 shows the domain and an instantaneous
snapshot of the bubbly flow in one of the DNS cases, labelled SmMany. A no-slip
condition was applied at the walls and periodic conditions in x and z. The gravitational
force acts in the negative x-direction, and the bulk velocity Ub was kept constant
by instantaneously adjusting a volume force, equivalent to a pressure gradient, thus
imposing a desired bulk Reynolds number Reb = UbH/ν, where ν is the kinematic
viscosity of the liquid. The DNS were all conducted with Reb = 5263. The data used
in this work were obtained for three monodisperse cases (SmMany, SmFew, LaMany)
and one bidisperse case labelled BiDisp, of the same void fraction as SmMany and
LaMany with half the void fraction consisting of smaller bubbles and the other
half of larger bubbles. Additionally, a single-phase simulation labelled Unladen was
performed under the same conditions for comparison. Table 1 provides an overview of
all cases with the corresponding labels. The data available cover statistical moments
of first and second order for liquid and bubbles, as well as two-point correlations. The
technically involved numerical procedure to evaluate the TKE budget was presented
in Santarelli et al. (2016).
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FIGURE 1. Instantaneous DNS data for the case SmMany of Santarelli & Fröhlich (2015).
The bubble size is to scale and the vertical plane with the contour plot shows the
instantaneous streamwise liquid velocity. (Main part of the picture reprinted from Santarelli
(2015) with permission from TUDpress.)

Parameter Unladen SmMany SmFew LaMany BiDisp(Sm) BiDisp(La)

Np — 2880 384 913 1440 546
αb (%) — 2.14 0.29 2.14 1.07 1.07
dp/H — 0.052 0.052 0.076 0.052 0.076
Ar — 38 171 38 171 114 528 38 171 114 528

Reτ 167.9 209.5 172.3 174.8 194.1
Rep — 235.5 268.3 475.2 233.6 463.6
CD — 0.89 0.705 0.666 0.93 0.703

TABLE 1. Parameters of the cases used for the present study according to Santarelli
& Fröhlich (2015, 2016). The labels Sm and La used for the case with the bidisperse
bubble swarm, BiDisp, indicate averaging over the small and large bubbles of the case
BiDisp, respectively. Here, Np is the number of bubbles, α the void fraction, dp the particle
diameter and Ar the Archimedes number. The values of Reτ , the friction Reynolds number,
Rep, the particle Reynolds number based on dp and the relative velocity, and CD, the drag
coefficient obtained according to (4.4) below, are results of the simulations.

While the DNS were performed using a non-dimensional set of parameters, the
EE SMC proposed in the present study is related to the size of bubble dp, with the
corresponding simulations performed in dimensional units. For this reason, the above
set-up is converted to a dimensional form using the contaminated air–water system
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FIGURE 2. Distribution of Cµ in a k–ε type model computed using DNS data.

as an example. Based on the discussion in Ern et al. (2012), the pivoting element is
chosen to be the equality of the Archimedes number, Ar, defined as

Ar=
|ρG
− ρL
|gd3

p

ρLν2
, (2.1)

with g the gravity. This leads to an accurate interpretation of the real effect of
buoyancy in the considered DNS. Keeping Ar the same as in the DNS and using
all the other physical dimensional parameters on the right-hand side of (2.1) yields
dp = 1.456 mm for the smaller bubbles and dp = 2.127 mm for the larger bubbles.
The ratio dp/H in table 1 for the different cases then results in the extensions
123.6 mm× 28.0 mm× 61.8 mm of the channel.

2.2. Limitations of eddy-viscosity models for bubbly flow
Figure 2 clarifies a special shortcoming of all EE k–ε type models for bubbly flows
constituting one of several motivations to develop the present EE SMC. Figure 2 was
constructed from the DNS data (table 1) and shows an evaluation of the constant
Cµ, which can be expressed using the definition of the turbulent viscosity (Jones &
Launder 1972)

Cµ =
νtε

k2
(2.2)

in terms of k= 1
2 u′iu′i and ε= (1/ρ)ϕ τ ′ij(∂u′i/∂xj), with τ ′ij the fluctuating viscous stress

tensor (Kataoka & Serizawa 1989; Kataoka et al. 1992). Here, · · · denotes the phase-
weighted averaging, defined by F = Fϕ/ϕ, where · · · represents the Reynolds (or
statistical) averaging with respect to time, space or ensemble of realizations. In these
expressions, ϕ is an indicator function for the liquid phase, defined by ϕ(x, t)= 1 if
(x, t) in the liquid phase and equal to zero otherwise. Fluctuations of liquid quantities
are defined as F′ = F− F.

As shown in Santarelli et al. (2016), the BIT term dominates for y+ & 30, being
equilibrated by the dissipation term only. The mean liquid velocity profile u becomes
flat in the channel centre, so that ∂u/∂y approaches zero and νt cannot be determined
simply using the Boussinesq hypothesis as νt = −u′v′/(∂u/∂y). For this reason, Cµ
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FIGURE 3. Shear stress and shear-stress-induced production of TKE for the DNS.
(a) Distribution of the structure parameter, −u′v′/k. (b) Distribution of the ratio of
production by mean flow deformation to dissipation of TKE, Pk/ε.

in figure 2 is only plotted until y+ = 150 for all the considered cases. Away from
the wall, Cµ should trend to be a constant in single-phase channel flow (Pope 2000).
Indeed, in the region 60 6 y+ 6 150, the result of Cµ for the Unladen case matches
well the result of Rodi & Mansour (1993) for the channel data of Kim, Moin & Moser
(1987) at Reτ = 180, with Cµ ≈ 0.13, thus validating the present procedure. At the
same time, it is noted that this value is higher than the standard value Cµ = 0.09
used for high-Reynolds-number single-phase flows.

For the bubble-laden cases, it could be expected that, with small gas void fraction,
the flow retains most of the features from single-phase flow. This would imply that
Cµ has a similar value as in the unladen flow. Figure 2 shows that this is not the
case. For SmFew with the lowest void fraction, the largest deviation from single-phase
flow is observed. Its corresponding curve in figure 2 shows Cµ to increase towards
the channel centre, with Cµ ≈ 0.3 at y+ = 150. For the other cases with higher gas
void fraction (SmMany, LaMany and BiDisp), the behaviour of Cµ is very different
case by case. In particular, for the case SmMany, the value of Cµ observed in the
channel centre is approximately 0.13–0.2 over more than four-fifths of the channel
width. Surprisingly, Cµ in the most BIT-dominated case LaMany has the lowest value
in all the bubble-laden cases and approaches the Unladen case. As expected, the case
BiDisp produces the result between SmMany and LaMany.

The behaviour of Cµ can be discussed further via the distributions of −u′v′/k,
the structure parameter, and the ratio of the shear-stress-induced production to the
dissipation, Pk/ε, reflecting the local energy balance in single-phase flow. For channel
flow, (2.2) then reads

Cµ =
(u′v′/k)2

Pk/ε
. (2.3)

In single-phase flow, Cµ = 0.09 corresponds to −u′v′/k = 0.3 and Pk/ε = 1 (local
equilibrium). Figures 3(a) and 3(b) show these two parameters. For the Unladen
case, the terms are identical to the results reported by Rodi & Mansour (1993)
for the low-Re single-phase channel flow, with Pk/ε ≈ 0.81 in the region where
−u′v′/k = 0.3. In all the bubble-laden cases, the maxima of −u′v′/k are shifted
towards the walls and exhibit much lower values compared to the Unladen case. The
curve of Pk/ε shows that local equilibrium between Pk and ε is not achieved for any
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of the bubble-laden cases. Furthermore, in the bubble-laden cases, (u′v′/k)2 drops
slower than Pk/ε towards the channel centre, so that Cµ = (u′v′/k)2/(Pk/ε) (equation
(2.3)) increases towards the channel centre (figure 2). Attention needs to be directed
to the case SmFew, which, compared to the other bubble-laden cases, exhibits a shape
similar to the Unladen case in both parameters −u′v′/k and Pk/ε (figure 3a,b). This
is due to its low gas void fraction (0.29 %), so that the influence of BIT is smaller.
However, it does not necessarily mean that the value of Cµ should be closer to the
Unladen case than the other cases, since Cµ is proportional to the ratio of (u′v′/k)2
to Pk/ε according to (2.3). Indeed, for y+ > 45, a value of Cµ higher than in any
other case is obtained in the SmFew case.

The above analysis illustrates that an EE k–ε type model for bubbly flows with a
constant value of Cµ lacks realism and that, furthermore, employing the single-phase
value Cµ= 0.09 can be off by a considerable factor – up to them in the present cases.
As a result, the level of the eddy viscosity can be inappropriate and lead to deficient
predictions. At a basic level, the problem is that the physical representation (2.3) for
Cµ only includes a purely single-phase parameter, Pk/ε, to present the state of energy
equilibrium, which is not suitable for BIT-dominated flows. As a result, it might be
advantageous to optimize the determination of Cµ when employing an eddy-viscosity
model.

Apart from the issue of choosing an expression for νt and a model constant, eddy-
viscosity models cannot account for the anisotropic velocity fluctuations due to the
buoyancy-generated rise of bubbles through the liquid. Incorporating this feature in an
EE model should improve the results. These observations motivate the development of
an EE SMC in the present paper.

3. Form of second-moment closure for bubbly flows
3.1. Basic equations

For incompressible gas–liquid two-phase flow without phase transition, the governing
equations of the EE approach (Ishii & Hibiki 2006) are

∂(αKρK)

∂t
+∇ · (αKρKuK

)= 0, (3.1)

D(αKρKuK
)

Dt
=∇ · (2αKµKS

K
)− αK

∇p+ αKρKg+MK
−∇ · (αKτ

K
t ), (3.2)

with all quantities being mean values. Here, the superscript K can be L to designate
liquid or G to designate gas. Furthermore, u, S, ρ, µ and p represent the mean
velocity, the mean strain-rate tensor, the density, the molecular dynamic viscosity and
the pressure of the respective phase. The term τ t results from the unresolved stress
tensor. The sum of all interfacial forces acting on phase K is termed MK and needs
to be modelled. Established models for the different non-drag interfacial forces are
employed here, based on an extensive literature study. The model of Antal, Lahey
& Flaherty (1991) is used for the wall force, the model of Burns et al. (2004) for
turbulent dispersion, and the model of Auton (1987) for the lift force. Details on the
model form and how the various coefficients of the models were selected are given
in appendix A and § 4 below, respectively.

Kataoka et al. (1992) proposed exact balance equations for the Reynolds stresses of
the liquid phase, including the terms resulting from the interaction with a transported
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disperse phase,
D
Dt
(ϕu′iu′j)= P ij + Dij + φij + εij + SR,ij, (3.3)

where the terms on the right-hand side of (3.3) read

production P ij =−ϕu′iu′k
∂uj

∂xk
− ϕu′ju′k

∂ui

∂xk
, (3.4)

diffusion Dij =−
∂

∂xk

(
1
ρ
ϕp′(δjku′i + δiku′j)+ ϕu′iu′ju′k −

1
ρ
ϕ(u′jτ ′ik + u′iτ ′jk)

)
, (3.5)

pressure–strain φij =
1
ρ
ϕp′
(
∂u′i
∂xj
+
∂u′j
∂xi

)
, (3.6)

dissipation εij =−
1
ρ
ϕτ ′ik

(
∂u′j
∂xk

)
−

1
ρ
ϕτ ′jk

(
∂u′i
∂xk

)
. (3.7)

These four terms are analogous to the single-phase terms, just with the average void
fraction ϕ as a prefactor. The additional term

SR,ij =−
1
ρ
(p′Lu′L,jniI + p′Lu′L,injI)+

1
ρ
(τ ′L,iku

′
L,jnkI + τ ′L,jku

′
L,inkI) (3.8)

represents the interfacial energy transfer, where the index L indicates that the
respective quantity is evaluated at the liquid side of the phase boundary. Finally,
ni is the normal vector at the phase boundary directed towards the gas phase and I
is the interfacial area concentration, with

∂ϕ/∂xi =−Ini. (3.9)

3.2. Basic approach for closure
To close the single-phase terms in (3.3), the generalized SMC formulation of Hanjalić
& Launder (2011) is employed for the liquid phase, supplemented with a source tensor
SSMC

R,ij accounting for production of BIT,

D(αLu′iu′j)
Dt

= PSMC
ij + DSMC

ij + φ
SMC
ij + εSMC

ij + SSMC
R,ij , (3.10)

where αL
= ϕ denotes the mean liquid void fraction. Here and in the following all

average quantities refer to the liquid, so that the upper index L is dropped from now
on for clarity. The shear-induced production of TKE, PSMC

ij , only comprises Reynolds
stresses and mean flow gradients, so that in this framework no closure is required.

The diffusion term DSMC
ij is approximated by the gradient diffusion hypothesis of

Shir (1973), reading

DSMC
ij =

∂

∂xk

(
αL(νL

+ csνt)
∂u′iu′j
∂xk

)
, (3.11)

with cs = 0.22 and νL the liquid molecular kinematic viscosity. For the dissipation
term, local isotropy of εij is assumed, which is widely used in SMCs for single-phase
flow (Pope 2000; Hanjalić & Jakirlić 2002; Hanjalić & Launder 2011). It yields

εSMC
ij =−α

L 2
3δijε. (3.12)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

85
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.851


883 A9-10 T. Ma and others

The modelling strategy, here, is to absorb any departure from isotropy of the
dissipation processes in the model for φij, as in single-phase flow. To some extent,
this is of no consequence, since the anisotropic part εij − αL 2

3δijε has the same
mathematical properties as φij and SR,ij, so that it can be absorbed in the models
established for them (Pope 2000).

The turbulent energy dissipation rate ε is obtained from its own transport equation,

D(αLε)

Dt
= αLCε1Pk

ε

k︸ ︷︷ ︸
PSMC
ε

+
∂

∂xk

(
αL

(
νL
+
νt

σε

)
∂ε

∂xk

)
︸ ︷︷ ︸

DSMC
ε

−αLCε2
ε2

k︸ ︷︷ ︸
εSMC
ε

+ 0.3CD
SSMC

k

τ︸ ︷︷ ︸
SSMC
ε

, (3.13)

where all single-phase terms are modelled by the standard form and all constants are
given in appendix B. The BIT source term in the ε equation, SSMC

ε , was modelled in
Ma et al. (2017) and is employed here without modification. In this expression, SSMC

k ,
the interfacial term for the k equation (i.e. SSMC

k = Sk−ε
k ) proposed by Ma et al. (2017),

is
SSMC

k =min(0.18Re0.23
p , 1)FD(uG

− uL), (3.14)

with FD the drag and

τ =
dp

ur
(3.15)

the time scale characterizing BIT. This time scale is based on the energy spectra
analysis and yields more convincing evidence (Ma et al. 2017).

The goal of the following is to model the pressure–strain term φij and the interfacial
term SR,ij using the DNS data. For the development of the BIT models, it is
appropriate to focus on the channel centre, since the interfacial term is balanced by
the pressure–strain and dissipation term there, so these three terms can be considered
in isolation from other effects, while the shear-production and diffusion terms are
negligible.

3.3. Treatment of the pressure–strain correlations
Apart from the interfacial term, the pressure–strain term φij is the only correlation
that contains directional information, so that it plays a pivotal role in capturing
the Reynolds-stress anisotropy in bubbly flow. In the present work, only turbulence
in the liquid phase is considered, with disperse bubbles considered as momentum
sources of finite size distributed in the continuous phase. Hence, the closure for
the pressure–strain term φij can broadly be taken over from the existing ones for
turbulence affected by external force fields, such as buoyancy (Launder 1975),
rotation (Launder, Tselepidakis & Younis 1987) and electromagnetic forces (Kenjereš,
Hanjalić & Bal 2004) in single-phase flow. The term is made up of contributions
related to manipulation of the exact Poisson equation for the pressure fluctuations in
the short-hand form

φij = φij,1 + φij,2 + φij,3 + φij,w, (3.16)

with each term on the right-hand side related to a different physical process of
isotropization: turbulence self-interactions φij,1 (the slow term), strain production
φij,2 (the rapid term), bubble-induced force production φij,3 and wall blocking φij,w
(Hanjalić & Launder 2011).
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Further analysis focuses on the two dominant contributors φij,1 and φij,3 remote from
the wall in the present BIT-dominated cases. Evidently, the related physical character
of the slow term φij,1 in bubbly flow should not differ from that in single-phase
flow. It redistributes energy among the components and diminishes any shear stress,
thus causing turbulence ‘slowly’ to approach its isotropic state (Hanjalić & Launder
2011). Hence, modelling this term can safely start from the most general formulation
in single-phase flow according to the Cayley–Hamilton theorem (Lumley 1978; Fu,
Launder & Tselepidakis 1987; Speziale, Sarkar & Gatski 1991)

φSMC
ij,1 =−c1α

Lεaij︸ ︷︷ ︸
linear term

+ c′1α
Lε(aikakj −

1
3δijA2)︸ ︷︷ ︸

nonlinear term

, (3.17)

where aij is the Reynolds-stress anisotropy tensor

aij =
u′iu′j
k
−

2
3
δij (3.18)

and A2 = ajiaij is the second invariant of aij. The factors c1 and c′1 are two model
coefficients, being either constants or functions of the turbulence Reynolds number
and stress anisotropy invariants. Most model proposals for the slow term in the
literature have the structure of (3.17), differing in the model coefficients c1 and
c′1 (see e.g. Launder et al. 1975; Gibson & Launder 1978; Speziale et al. 1991;
Ristorcelli, Lumley & Abid 1995). More related models and the corresponding
detailed forms of the model coefficients can be found in the summary of Jakirlić
& Hanjalić (2013). Among these, most models for the slow term consider only the
linear part, i.e. c′1 = 0 in (3.17), which was first proposed by Rotta (1951) and later
adopted in the popular LRR model. However, the importance of the nonlinear part of
the slow term has been mentioned by many studies (e.g. by Lumley 1978; Fu et al.
1987; Speziale et al. 1991; Hanjalić & Jakirlić 2002). Jakirlić & Hanjalić (2013)
scrutinized the model coefficients comprehensively using single-phase DNS channel
data and found that the standard coefficients c1 = 1.7 and c′1 = 1.05 proposed by
Sarkar & Speziale (1990) and Speziale et al. (1991) – hereafter referred to as SSG –
are in very good agreement with the DNS, so that these are used here.

To assess the relative importance of the nonlinear part in the slow term for
modelling bubbly flow, both the nonlinear term φij,1,nonlinear and the linear term
φij,1,linear were evaluated from (3.17) in an a priori manner using the DNS data of
the case SmMany to compute αL, ε, aij and A2. The results are shown in figure 4.

The rapid term φij,2 is modelled here with the general isotropization-of-production
(IP) model of Naot, Shavit & Wolfshtein (1970),

φSMC
ij,2 =−c2(P ij −

1
3δijPkk), (3.19)

with c2 = 0.6. This expression can be evaluated as well using P ij from the DNS
data, and the result of this expression for SmMany is reported in figure 4 to give
an impression of the corresponding magnitude in the present bubbly flow. A perfect
reference to assess the relative contribution of the particular terms φij,1,nonlinear, the
linear term φij,1,linear and φij,2 requires DNS data for φij. However, as mentioned in § 2,
no Reynolds-stress budget is available from the DNS, but a TKE budget is available.
For this reason, the interfacial term of the TKE equation, Sk ≡

1
2 SR,ii, is used here as

a reference to decide about the relevance of these terms in the Reynolds-stress budget
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FIGURE 4. Comparison between the interfacial term Sk=
1
2 SR,ii according to (3.8) and the

a priori evaluation of the pressure–strain terms split into a linear slow term φij,1,linear, a
nonlinear slow term φij,1,nonlinear and a rapid term φij,2 for SmMany, all normalized with
U3

b/H: (a) φ11 component, (b) φ22 component, (c) φ33 component and (d) φ12 component.

(3.3). The term Sk is the main energy input in the present flow, so that its value is of
the same order as φij and εij.

For the channel centre in all normal components (figure 4a–c), the nonlinear part of
the slow term φij,1,nonlinear is smaller but of the same order as the linear part φij,1,linear
and has overall the opposite sign to the latter. The influence of the rapid term φij,2
appears to be negligible for this BIT-dominated flow in the channel centre for all
components. This is expected, as it is related to the production term P ij, which is
small in the centre due to the vanishing mean flow gradients. All contributions to
the pressure–strain term have a much smaller magnitude in the Reynolds shear stress
component. Among these, the linear part of the slow term is dominant in the channel
centre (see figure 4d). The behaviour of the total term φij will be discussed in a later
section.

The analysis of the pressure–strain terms for the other three cases (SmFew, LaMany
and BiDisp) reveals the same trends as in figure 4, so that they are not reproduced
here. The observations based on the DNS data hence support two guidelines for
modelling the pressure–strain term in bubbly flow. First, due to the importance of the
nonlinear part φij,1,nonlinear, the slow term φij,1 requires a nonlinear model. Second, it
indicates that the rapid term is very small, so that the specific form of the model is
uncritical and the simple model (3.19) sufficient. Furthermore, more elaborate models
extending (3.19) are heavily based on the mean flow gradient (Johansson & Hallbäck
1994), which is of less interest here.

Finally, the idea underlying the IP model can also be applied to φij,3 to consider
the influence of the bubble-induced force field on the pressure–strain correlation,

φSMC
ij,3 =−c3(S

SMC
R,ij −

1
3δijS

SMC
R,kk ), (3.20)
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with c3 a model coefficient and SSMC
R,ij the BIT source term in the Reynolds-stress

equation (3.10). This term tends to redistribute the action of the interfacial term,
reducing the net BIT production in the rich component.

3.4. Closure of the interfacial term
Closure of (3.10) as well as (3.20) requires a model for SR,ij. The first step is to
express the model of the interfacial term, SSMC

R,ij , in terms of the algebraic expression
bij and half the trace SSMC

k ≡
1
2 SSMC

R,ii given by (3.14), i.e.

SSMC
R,ij =

b11 b12 b13
b21 b22 b23
b31 b32 b33


︸ ︷︷ ︸

bij

SSMC
k , (3.21)

with bij to be determined to consider the Reynolds-stress anisotropy in bubbly flow.
The second modelling step is to assume that the diagonal BIT terms SR,ij, i = j,
dominate over the off-diagonal terms, SR,ij, i 6= j, so that the latter can be set to zero.
This is based on the fact that accurate reproduction of Reynolds normal stress u′iu′j,
i = j, is the main prerequisite to capture the Reynolds-stress anisotropy. Reynolds
shear stresses, on the other hand, while themselves being a measure of turbulence
anisotropy, only reflect the effect of shear straining, which is of lower importance
(Jakirlić & Hanjalić 2013). The third step is to observe that the source term SR,ij

differs substantially between the vertical direction, here i = 1, i.e. the direction
of bubble rise, and the other two directions. This is backed by experiments and
simulations (Akbar et al. 2012; Santarelli & Fröhlich 2015). Furthermore, in the
channel far from the walls, it is reasonable to assume isotropy in both cross-stream
directions for geometrical reasons. This justifies setting b22 = b33, which also is in
line with the cited reference data.

Finally, having the same attribute as the slow term and the rapid term, φSMC
ij,3

employed with IP model (3.20) is also traceless, i.e. φSMC
ii,3 = 0. When considering

SSMC
R,ij based on the second modelling step being only with the diagonal terms, it is

possible to assign φSMC
ij,3 to SSMC

R,ij and, considered as a whole, defined as ‘effective BIT
source’, i.e.

SSMC-eff
R,ij = φSMC

ij,3 + SSMC
R,ij =

b∗11 0 0
0 b∗22 0
0 0 b∗33


︸ ︷︷ ︸

b∗ij

SSMC
k . (3.22)

The models for φij,1 and φij,2 remain untouched. Again, b∗22 = b∗33. Introducing the
information about the trace, here the facts that bii ≡ 2 and φSMC

ii,3 = 0 result in b∗ii = 2.
This yields

b∗22 = b∗33 =
1
2(2− b∗11). (3.23)

All the assumptions made above and the concept to import the ‘effective BIT source’
SSMC-eff

R,ij succeeds in substantially reducing the complexity of the resulting formulations.
In fact, providing a BIT closure now amounts to providing an expression for b∗11.
Determining c3 in (3.20) is no longer needed.
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3.5. Proposal for multi-disperse bubble swarms
One of the applications below features a bidisperse bubble swarm, so that the
extension of the proposed approach to this situation and to multi-disperse bubbles in
general is briefly discussed.

For BIT modelling of bidisperse bubble swarms in the framework of the
two-equation RANS model, linear superposition of the source term for each gas
group is used in the traditional way, in both the TKE equation and the dissipation
equation (e.g. by Politano, Carrica & Converti 2003; Ziegenhein et al. 2017; Liao
et al. 2018, 2019). The current SMC for the multi-disperse case extends this concept
with the assumption that the contributions from the two bubble sizes sum up to the
total contribution. In the present BiDisp case (table 1), this reads

SSMC-eff
R,ij = SSMC-eff (Sm)

R,ij + SSMC-eff (La)
R,ij (3.24)

for the effective BIT source terms in the Reynolds-stress equations and

SSMC
ε = SSMC(Sm)

ε + SSMC(La)
ε (3.25)

for the source term in the dissipation equation, respectively.

4. Determination of model parameters for the different cases
4.1. Procedure for determination of model coefficients

Based on the analysis of figure 4, EE SMC simulations with φSMC
ij from the SSG

model (appendix B) were run in the same domain as the DNS and discretized with
56 × 60 × 51 grid points in the x-, y- and z-directions, respectively, according to
the mesh studies to supply the best prediction. A uniform grid is selected here,
considering the different gas distributions in the present DNS cases. At the walls,
a no-slip boundary condition was applied for the continuous phase and a free-slip
condition for the disperse phase. The other boundary conditions were identical to
those of the DNS. The liquid and gas are defined as homogeneously distributed at
the beginning in the entire computed domain, representing the DNS set-up, e.g. with
αL
= 0.9786 and αG

= 0.0214 for the case SmMany. Then a constant mass flow
rate for SmMany, 0.283 kg s−1, is calculated from ṁ = Ub(ρ

LαL
+ ρGαG)Ayz, with

Ayz= Ly× Lz being the cross-section of the channel. The same procedure is performed
for the other cases as well. To perform the simulations, the commercial code ANSYS
CFX v17.2 was used. For the spatial discretization, a high-resolution scheme (Barth
& Jesperson 1989) is employed, and a second-order backward Euler scheme is used
in time. The new model was implemented by means of a set of user-defined functions
(UDFs). (These UDFs are available from the authors upon request.)

The task now is to determine the coefficient b∗11 in (3.22) for each DNS dataset,
which later on should reveal the general trend. To accomplish this, one prerequisite is
to determine the effective BIT source Seff

R,ij from the DNS data constituting the target

for the corresponding modelling term SSMC-eff
R,ij . The data of Santarelli et al. (2016)

comprise mean flow, Reynolds stresses and budget terms of k, but no budget of u′iu′j.
Hence, Seff

R,ij is evaluated indirectly from these data focusing in the core region of the
channel where BIT effects dominate. In this region, (3.3) reduces to

0≈ εij + φmod
ij︸︷︷︸

φij−φij,3

+ Seff
R,ij︸︷︷︸

SR,ij+φij,3

. (4.1)
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(1) Begin EE SMC simulations with, for example, b∗11 = 1, CL = 0.5 as initial guess
(2) Improve CL to approach αG of the DNS
(3) Improve b∗11 to approach the estimated Seff

R,11 of the DNS
(4) Repeat Steps 2 and 3, until the calculated profiles of αG and Seff

R,11 are acceptable
compared to the DNS data

TABLE 2. Optimization procedure for the evaluation of b∗11.

The modified pressure–strain term φmod
ij =φij−φij,3=φij,1+φij,2 is represented here by

the sum of φSMC
ij,1 (3.17) and φSMC

ij,2 (3.19), where αL, ε, aij, A2 and P ij are determined
from the DNS data,

φmod
ij = −c1α

L,DNSεDNSaDNS
ij + c′1α

L,DNSεDNS(aDNS
ik aDNS

kj −
1
3δijADNS

2 )

− c2(P
DNS
ij −

1
3δijP

DNS
kk ), (4.2)

using the standard coefficients c1 = 1.7, c′1 = 1.05 and c2 = 0.6. In an analogous
manner, the dissipation term is evaluated as

εij =−α
L,DNS 2

3δijε
DNS. (4.3)

Equation (4.1) then provides the effective BIT source Seff
R,ij =−(εij + φ

mod
ij ).

The present approach strives to develop the BIT model not as a stand-alone
procedure by means of a priori tests, as done by (Santarelli et al. 2016), but in the
framework of the complete EE SMC model. This procedure is now described. The
entire EE model is complex, with different submodels influencing the result. When
working on one of these submodels, the uncertainty generated by the other terms has
to be minimized. For this reason, it is mandatory that the bubble distribution over
the domain corresponds to the reference, for example, since otherwise the BIT model
cannot be assessed. This is achieved by optimizing CL and CD in the EE SMC model.
For this purpose, the drag coefficient CD (table 1) is determined for each simulation
from the balance between drag force and buoyancy force, according to

CDNS
D =

(
4
3
αL dp(ρ

L
− ρG)g
ρLu2

r

)DNS

. (4.4)

The relative velocity ur is obtained from the difference of the mean gas velocity and
the mean liquid velocity as justified at length by Santarelli & Fröhlich (2015). The
same is not possible for the lift coefficient CL. Instead, this coefficient is optimized
such that the resulting void fraction distribution matches the DNS target, while the
other interfacial force models are employed as they are (appendix A). Since these
computations are fast, this is done manually using a bisection procedure. Once
the correct void distribution is achieved, the model coefficient of the SMC, b∗11, is
determined. Changing the BIT model, however, generally results in a modified void
distribution, so that the previous steps are repeated until convergence, as summarized
in table 2. The originality here is that the targets of the optimization procedure are
not statistics of the Reynolds stresses but rather the DNS values of the particular
terms to be closed, like Seff

R,11 and Sε.
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FIGURE 5. Mean flow statistics from the present EE SMC and DNS data for the case
SmMany: (a) gas void fraction; (b) liquid streamwise velocity and gas streamwise velocity.

4.2. Closure for the case SmMany
For the case SmMany, the procedure of table 2 yields CL = 0.06 and b∗11 = 1.8. The
results obtained with these values match the DNS data very well. The void fraction
in figure 5(a) is identical in the centre and only the near-wall peaks are somewhat
more rounded. The mean velocities of gas and liquid also agree very well. Very close
to the wall the DNS data exhibit a discretization phenomenon as the gas velocity was
determined for the centre of the bubbles, which is at least the bubble radius off the
wall. Figure 6 shows that also the Reynolds stresses from the EE SMC agree very
well with the reference data in the channel centre. It is important to note that there
is a factor of approximately eight between the magnitude of the streamwise and the
wall-normal fluctuations and another factor of approximately eight to the turbulent
shear stress. This very satisfactory agreement validates not only the choice of the
iteratively determined model constants but also the functional form (3.22) and all the
other ingredients in the model equations (3.10) and (3.13). Indeed, the achievement
can be highlighted by comparison with the results obtained using other standard
models from the literature under exactly the same conditions. Cokljat et al. (2006)
proposed an isotropic BIT source term, i.e.

bC
11 = bC

22 = bC
33 = 2/3. (4.5)

Colombo & Fairweather (2015) suggested

bCF
11 = 1, bCF

22 = bCF
33 = 0.5. (4.6a,b)

However, these relations do not account for the influence of the bubble-induced
force field on the pressure–strain correlation (3.20). Their expressions are used here
employing the same overall procedure of table 2 for the optimal comparison. It is
obvious that, although the shapes of the profiles are similar, the level of the normal
stresses is substantially different and bubble-induced anisotropy is not correctly
captured.

The reasons for the different behaviour of the BIT models can be seen in the
following figures. Using the DNS data, figure 7 shows the essential contributions to
the budgets of the Reynolds normal stress u′u′ with its estimated dissipation term
(4.3), modified pressure–strain term (4.2) and effective interfacial term (4.1). Here,
the modified pressure–strain term and the dissipation rate constitute the two main
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FIGURE 6. Reynolds-stress components from the present EE SMC and DNS data for
the case SmMany: (a) streamwise Reynolds normal stress u′u′; (b) wall-normal Reynolds
normal stress v′v′; (c) Reynolds shear stress u′v′. All components are normalized by U2

b .
The label Cokljat refers to EE SMC with bC

ij from (4.5), while the label Colombo refers
to EE SMC with bCF

ij from (4.6) as detailed in the text.

sinks for the u′u′ component. In the channel centre, the budget of u′u′ reduces to
0≈ ε11+ φ

mod
11 +Seff

R,11, equation (4.1). This is backed up by figure 7(a), with Seff
R,11 the

dominant source to compensate nearly the sum of the dissipation and the modified
pressure–strain. For modelling Seff

R,11, the target is defined in the core region of the
channel as remarked before, since capturing this correctly is a prerequisite for all
models. With the present value of b∗11, SSMC-eff

R,11 matches the value of the effective
interfacial term in the DNS extremely well. The BIT models of Cokljat et al. (2006)
and Colombo & Fairweather (2015) obviously predict significantly lower levels of
Seff

R,11, which in turn leads to the underprediction of u′u′ and overprediction of v′v′
observed in figure 6.

Validating individual terms of the ε equation (3.13) is not possible since these are
not available from the DNS data. Still, some validation can be performed by observing
that

0≈ εε + Sε (4.7)

in the channel centre for the same reasons as with the budget of u′u′. Hence, εε can
be determined indirectly from the DNS data. For this purpose, it is represented here
by the expression

εε =−α
L,DNSCε2

(εDNS)2

kDNS
, (4.8)
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for the case SmMany as described in the text. (a) Selected terms in the budget of u′u′

with all terms normalized by U3
b/H. (b) Selected terms in the budget of v′v′ with all terms

normalized by U3
b/H. (c) Selected terms in the budget of ε with all terms normalized by

U4
b/H

2.

using the standard coefficient Cε2 = 1.83 (Hanjalić & Launder 2011). Equation (4.7)
then results in an expression for Sε, with Sε = −εε. Figure 7(c) shows that the
modelled BIT source of the ε equation, SSMC

ε , indeed, provides a very accurate result.
Note, as an aside, that figure 7(b), depicting the dominant components of the budget

of the Reynolds normal stress v′v′, confirms the discussion on the determination of b∗ij,
i= j, above. Here, the value b∗22= 0.1 is obtained not from matching Seff

R,22, but rather
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FIGURE 8. Gas void fraction and Reynolds-stress components from the present EE SMC
and DNS data for the other two monodisperse cases: (a,b) SmFew; and (c,d) LaMany.

by imposing b∗ii= 2 and b∗22= b∗33, resulting in b∗22=
1
2(2− b∗11). It is worth underlining

that the increase in v′v′ is due to energy being extracted from the u′u′ component
and fed to the v′v′ component by pressure–strain interaction. Here, in contrast to the
u′u′ component, the modified pressure–strain term, φmod

22 , appears as a source in the
budget for v′v′, and the corresponding effective interfacial term Seff

R,22 exhibits very
small influence in the centre.

4.3. Closure for the other monodisperse channel flow cases
The procedure of table 2 is now employed for the other two monodisperse
bubble-laden channel flows of table 1, namely the cases SmFew and LaMany. Overall,
this procedure achieves good agreement for the gas void fraction (figure 8a,c), the
Reynolds stresses away from the wall (figure 8b,d) and the other parameters (not
shown here to avoid redundancy), yielding the corresponding values of b∗11 and
CL reported in table 3. Close to the walls, the Reynolds normal stress profiles
are underpredicted by the present SMC computations. This deficiency remains for
description of channel flows that are intrinsic to high-Re RANS models for both
single-phase (Hanjalić & Launder 1976; Wilcox 1998) and multiphase flows (Ma
2017), and, hence, cannot be overcome by the mere introduction of a more complex
BIT model.

4.4. Closure for bidisperse case
In particular for the case BiDisp, it is important to reproduce the profiles of the gas
void fraction for smaller bubbles and larger bubbles, individually, not only the profile
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FIGURE 9. (a) Gas void fraction and (b) Reynolds-stress components from the present
EE SMC and DNS data for the case BiDisp.

Parameter SmMany SmFew LaMany BiDisp(Sm) BiDisp(La) Akbar

b∗11 1.8 1.75 1.5 1.8 1.5 1.4
CL 0.06 0.0055 −0.07 0.08 −0.07 0.29

TABLE 3. Values of b∗11 and CL obtained by the iterative process for all cases.

of the total gas void fraction. This requires that the simulation should be run with
different momentum equations describing the predefined gas groups, one group for
the smaller bubbles and the other for the larger bubbles. The EE BIT modelling for
BiDisp is performed as described in § 3.5 with linear superposition of the BIT source
term for each gas group, in both SSMC-eff

R,ij (3.24) and SSMC
ε (3.25).

The interfacial force setting follows § 4.1 and the optimization procedure (table 2)
is carried out separately for each phase. In particular, the drag coefficients for small
and large bubbles are calculated separately using (4.4) based on DNS data for each
bubble size and the lift coefficients CL are adjusted to fit the void fraction profiles
for smaller and larger bubbles, individually (figure 9a). The agreement achieved in
the two void fractions is very good (figure 9a), so that also the total void fraction is
well matched (not shown here). The good results for the Reynolds stresses (figure 9b)
confirm that the BIT modelling according to § 3.5 is valid also for this bidisperse case.
The corresponding values of b∗11 and CL are listed in table 3 as well, together with
those of the other three monodisperse cases.

4.5. A case without bulk velocity
To enhance the dataset over a wider range of bubble Reynolds numbers, further
experimental data are used for a case that is characterized by the dominance of BIT
as well, here the case reported by Akbar et al. (2012). The Akbar case features a
rectangular water–air bubble column, with a gas superficial velocity of 3 mm s−1. Its
height (x), width (y) and depth (z) are 800 mm, 240 mm and 72 mm, respectively.
Here, the coordinate system of the previous cases is used for improved readability,
which is different from the one employed in the original paper. The global gas
void fraction is 1.285 %, which is around half of the value in the case SmMany.
However, the bubble diameter is much larger. Furthermore, this case is very close to
monodisperse with dp = 4.37 mm (Akbar et al. 2012). More details are provided in
the cited reference.
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FIGURE 10. Comparison of the present SMC with experimental data of Akbar et al.
(2012): (a) gas void fraction, (b) liquid streamwise velocity and gas streamwise velocity,
(c) liquid Reynolds normal stresses and (d) liquid Reynolds shear stress.

The present EE SMC simulation was performed on a 175 × 240 × 36 grid in the
x-, y- and z-directions, respectively. Based on our own previous work, the same set of
interfacial force models as detailed by Liao et al. (2019) were employed to achieve
good agreement of gas void fraction and relative velocity. However, the experimental
database does not provide any information about budgets of turbulence parameter, so
that the procedure of table 2 cannot be applied directly here to yield b∗11. Instead, this
is achieved by adjustments of b∗11 in the source term to match the Reynolds stresses
measured in the experiment. Such a procedure is allowed for the present BIT closure
at second-moment level for the following reason. If the complete set of the SMCs
(six Reynolds-stress equations and one dissipation equation) for a BIT-dominated flow
are fixed, with b∗11 the only unknown, since b∗22 = b∗33 =

1
2(1− b∗11) is imposed, there

appears to be only one value of b∗11. For the Akbar case this procedure yields the
value b∗11= 1.4 suitable to fit the resulting Reynolds stress u′u′. Since the form of the
BIT source in the ε equation is fixed, this results in corresponding fixed εij in the
Reynolds-stress equations.

Note that the present approach is exempt from the pitfalls identified by the two-
equation RANS model using ad hoc models targeting TKE only. The key difference is
that there the BIT source of the ε equation is not fixed as detailed in Ma et al. (2017).
Figure 10(a,b) shows a comparison of the simulated and experimental gas distribution,
vertical liquid velocity and vertical gas velocity. All profiles were taken along the
measurement line from the wall to the centre (half the column width) at a height
of 500 mm in the midplane (z = 36 mm). The agreement of the mean flow profiles
obtained with the present SMC closure is very satisfactory and improves substantially
upon other models, such as our own previous work (Ma et al. 2015b). The flatter
profile for the liquid velocity in figure 10(b) may be due to the slight inaccuracy in the
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FIGURE 11. Anisotropy invariants: (a) the single-phase case Unladen; and (b) the case
SmMany.

gas void fraction close to the wall and using the high-Re SMC version. Concerning the
liquid Reynolds stresses, the present BIT model provides accurate results, reproducing
the ratio of the Reynolds normal stresses u′u′ : v′v′∼ 2.5 : 1 observed in the experiment
for the centre region of the measurement line, as shown in figure 10(c,d).

5. Proposed second-moment closure for bubble-induced turbulence
5.1. Anisotropy invariants

It is common practice when developing SMC models to analyse the anisotropy of the
flows. As argued by Lumley & Newman (1977), the local state of the Reynolds-stress
anisotropy tensor aij can be usefully characterized by its second (A2= ajiaij) and third
(A3= aijajkaki) invariants. These two anisotropy invariants can certainly be combined in
various ways to generate further invariants, for example, a useful third norm, known
as Lumley’s flatness parameter (Lumley 1978),

A= 1− 9(A2 − A3)/8. (5.1)

In isotropic turbulence, both A2 and A3 vanish, and A=1. The other extreme condition
corresponds to the two-component limit, where A2 = A3 + 8/9, so that A= 0.

To give some impression of how the above invariants may be distributed in a
bubbly flow, figure 11 shows a comparison between the case SmMany and the case
Unladen, both obtained from the DNS data. The flatness parameter A vanishes at
the wall in both cases as turbulence is in the two-component limit for geometrical
reasons. In contrast to the single-phase situation, when A increases towards the centre
and approaches unity, the value of A is around 0.25 almost over the entire channel
in the case SmMany, indicating a very anisotropic turbulence state that is generated
by the bubbles. This state can also be identified by a much larger second invariant
A2 observed in this case, which gives a direct measure of the magnitude of the stress
anisotropy. The third invariant A3 has a similar behaviour as the corresponding value
of A2 in both cases and broader flatter profiles are observed in the SmMany case.
Similar trends as for SmMany are identified in the other bubble-laden cases as well
(not shown here), implying a very different nature of stress anisotropy compared to
the corresponding single-phase flow.

For a more detailed analysis, it was shown by Lumley & Newman (1977) that the
realizable states for the stress anisotropy aij should satisfy the following inequalities:

61/3
|A3|

2/3 6 A2 6
8
9 + A3. (5.2)
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FIGURE 12. Anisotropy-invariant map of the DNS data for all cases considered. (a) The
cases SmMany, LaMany, BiDisp and Akbar; Rep of the case BiDisp is calculated from
the averaged ur and the averaged dp from the DNS of BiDisp. (b) The case SmFew and
(c) the single-phase case Unladen.

These inequalities give rise to the anisotropy-invariant map shown in figure 12. The
upper line corresponds to the two-component limit (the last equality in (5.2)), the left-
hand line to the axisymmetric contraction limit (the first equality in (5.2), with A3<0),
and the right-hand line to the axisymmetric expansion limit (the first equality in (5.2),
with A3 > 0).

Figure 12 shows the points for aij derived from DNS and experiment on the
anisotropy-invariant map for different y+ positions over all the cases considered (the
centre point of the measurement line is plotted for the Akbar case). Profiles for
the bubble-laden cases and the single-phase case are plotted separately for better
comparison. Additionally, the points obtained from the case SmFew would overlap
the points from SmMany, so that it is plotted in figure 12(b) separately, as well. A
first observation is that all states from both single-phase and bubbly flows, indeed,
stay within the Lumley triangle, as is required by realizability constraints. The main
difference between the two is that the path crosses the channel in the wall-normal
direction. Among them, the Unladen case (figure 12c) shows a traverse from the
wall towards the channel centre – starting in the two-component limit, progressing
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FIGURE 13. Values of b∗11 as a function of Rep for all cases considered. The dashed line
shows the fit.

along the axisymmetric expansion line, and ending in the vicinity of the point
A2 = A3 = 0, which corresponds to isotropic turbulence. In contrast, the present
bubbly flows achieve a general trend that they begin from the two-component limit
at the wall, traverse with a relatively short path, and then directly end very close
to the axisymmetric expansion limit. Moreover, most points aggregate close to this
right-hand line to axisymmetric limit for the bubble-laden DNSs, quite the opposite of
what is found in the single-phase channel. The origin of this difference is due to the
dominant streamwise velocity fluctuations (see figures 6, 8b, 8d and 9b) compared to
the other two directions over a large range of the channel centre for the bubble-laden
cases. Such a major contribution of normal stress in the streamwise direction was
also found by a recent DNS study by du Cluzeau, Bois & Toutant (2019), who
considered this feature later in an algebraic expression for BIT.

Another important observation can be made about the locations of the points
aggregated close to the line corresponding to the axisymmetric expansion limit for
each particular bubble-laden case. These points are from the centre region of the
channel as remarked before; the points distribution on this right-hand limit line
towards the isotropic point – direction decreasing with A2 – is in the sequence
SmMany (SmFew), BiDisp, LaMany to Akbar, which corresponds to increasing
bubble Reynolds number, Rep, as illustrated in figure 12(a,b). This interesting finding
can also be identified by figures 6, 8(b), 8(d), 9(b) and 10, with a gradually less
dominant streamwise Reynolds normal stress for theses cases in the order mentioned
above. The trend reflects that Rep appears to have a decisive effect on the anisotropy
state of the BIT-dominated flows. Such an effect may originate from two parts: the
Rep-dependent wake structure (see the supplementary material to Santarelli & Fröhlich
(2016)) and the path of the rising bubbles (Horowitz & Williamson 2010; Ern et al.
2012).

5.2. The model and its realizability
The final step is to propose a general model for the BIT terms. Based on previous
experience, this is done by providing a functional relation for the coefficient b∗11.
The important observation in § 5.1 that the magnitude of anisotropy decreases with
the bubble Reynolds number suggests modelling b∗11 as a function of Rep. Pairs of
discrete values of b∗11 and Rep are displayed in figure 13. For the case BiDisp, two

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

85
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.851


Second-moment closure for bubbly flow 883 A9-25

data points are plotted, one for the smaller bubbles and one for the larger bubbles,
with the assumption that the contributions from the two bubble sizes sum up to the
total contribution as discussed in § 4.4. Obviously, b∗11 decreases with Rep – implying
a trend towards more isotropy, which supports the observations made before. Hence,
an expression for b∗11 as a function of Rep seems suitable to generate a model for
Seff

R,ij. By curve fitting (figure 13), the following effective BIT source was determined:

SSMC-eff
R,ij =


min(0.67+ 0.67 exp(370Re−1.2

p ), 2)︸ ︷︷ ︸
b∗11

0 0

0 1
2(2− b∗11)︸ ︷︷ ︸

b∗22

0

0 0 b∗33 = b∗22

 SSMC
k . (5.3)

Here b∗11 6 2 is imposed to fulfill b∗ii = 2 and b∗22 = b∗33 > 0. The above expression
for b∗11 included in figure 13 provides an excellent approximation for the results
over the range considered in the available data with a maximum deviation of 1.6 %
at the data points. In the limit of high particle Reynolds number, the expression
for b∗11 in (5.3) approaches the value 1.34, which implies that the Reynolds-stress
anisotropy does not change much when reaching a certain Rep (recall that for
Rep = 1080 in the case Akbar b∗11 = 1.4). This is reasonable on the background of an
axisymmetric wake embedded in turbulence at high enough particle Reynolds number
(Bagchi & Balachandar 2004; Rind & Castro 2012). The former observed a ratio
of the streamwise velocity fluctuation to the cross-streamwise velocity fluctuation
of approximately 1.4 for Rep = 610. That is similar to the ratio of approximately
1.3 obtained by the latter (Rind & Castro 2012) for an axisymmetric wake with
an equivalent Rep (based on the wake half-width and the centreline deficit velocity)
in excess of 10 000. Here, the relatively small change of this ratio over a large
range of Rep supports an almost constant value for b∗11 appearing in the source for
the Reynolds-stress anisotropy at relatively large Rep. However, the absolute values
obtained by Bagchi & Balachandar (2004) and Rind & Castro (2012) cannot be
directly used for correlation, since in the present study bubble swarms are considered.
It might appear more direct to construct an expression for b∗11 as a function of A2
and A3. Such stress invariants find many uses in SMC for single-phase flows (e.g. by
Launder & Li 1994; Ristorcelli et al. 1995; Jakirlić & Hanjalić 2002). However, this
provides pitfalls for modelling SSMC-eff

R,ij in bubbly flows, e.g. in cases when bubbles
rise in a highly turbulent background flow. In this situation, A2 represents both the
property of the background flow as well as the property of the BIT. In contrast, the
present Rep-dependent expression for b∗11 avoids such a pitfall.

Figure 14 shows the anisotropy-invariant map with the points derived from the
EE SMC simulations. All points lie within the triangular domain, indicating that
the present EE SMC employed with (5.3) provides realizable results for all the
cases. Moreover, it is interesting to compare the results of the SMC with the DNS
in figure 12. The assumption b22 = b33, which results in b∗22 = b∗33 as described in
§ 3.4, imposes that the results of the EE SMC yield axisymmetric turbulence in
BIT-dominated cases. The DNS show that in all cases there are several points very
close to the two-component limit. These points correspond to the viscous sublayer that
is closest to the wall. As mentioned before, the present EE SMC in a high-Re version
is not intended to capture this near-wall region, hence, the two-component limit is
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FIGURE 14. Anisotropy-invariant map of the present SMC for all bubble-laden cases
considered.

Case ρL/ρG Np α dp/2h Ar Reb Reτ Rep CD

LT 2008 1/0.1 21 3 % 0.3 21 874 3635 127.2 144 1.4

TABLE 4. DNS parameters of the deformable bubble case in Lu & Tryggvason (2008).

not approached. Going further away from the wall, the model results follow the same
Rep-dependent trend as observed by DNS along the axisymmetric expansion line very
well, within reasonable tolerance in the absolute values of the stress invariants.

6. Performance in the case in Lu & Tryggvason (2008)

In this section, the results of the EE SMC using (5.3) are compared to the
DNS bubbly channel data of Lu & Tryggvason (2008). The configuration is an
upward-directed channel similar to SmMany, with a smaller domain πh× 2h× (π/2)h
in streamwise (x), wall-normal (y) and spanwise (z) directions, where h is the
channel half-width. Of interest in examining the proposed BIT expression (5.3), only
the deformable bubble case in their study is considered, since there the Reynolds
stresses are considerably larger than that in the single-phase simulation with a similar
flow rate (see Lu & Tryggvason 2008). Table 4 summarizes the non-dimensional
parameters used for the considered DNS case.

The number of grid points used was 56 × 60 × 51 in the x-, y- and z-directions,
respectively. The drag coefficient CD ≈ 1.4 was determined from the relative velocity
in DNS and an optimized lift coefficient was chosen to reproduce the void fraction
in DNS as well as possible, while keeping the other interfacial force modelling the
same as for SmMany. This allows one to investigate how the present SMC employed
with the BIT model performs in the considered case, without including compounding
errors that originate from other submodels.
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FIGURE 15. Comparison of the present SMC with DNS data for the deformable bubble
case in Lu & Tryggvason (2008): (a) gas void fraction; (b) liquid streamwise velocity
and gas streamwise velocity; (c) liquid streamwise and wall-normal velocity fluctuations
normalized by uτ ; and (d) liquid Reynolds shear stress normalized by u2

τ .

0 0.5 1.0 1.5 2.0
y/h

0 0.5 1.0 1.5 2.0
y/h

4

3

2

1

1.0

0.5

0

-0.5

-1.0

Ve
lo

ci
ty

 fl
uc

tu
at

io
ns

u� √� /u
2 †

Single phase SSG
Single phase DNS

(a) (b)

u�+

√�+

FIGURE 16. Comparison of the SSG with DNS data for the single-phase case in Lu &
Tryggvason (2008): (a) streamwise and wall-normal velocity fluctuations normalized by uτ ;
and (b) Reynolds shear stress normalized by u2

τ .

The results of the EE SMC are presented in figure 15 and compared with the
DNS data. Indeed, it shows that the resulting CL = −0.005 and CD based on the
DNS data yield the correct void fraction profile (figure 15a) and both liquid and gas
velocities (figure 15b). Note that complete vanishing of the gas phase close to the
walls as in the DNS (see figure 15a) cannot be achieved generally using the EE
approach. In figure 15(c), the streamwise and wall-normal velocity fluctuations are
shown. The quantitative accuracy of the model in the channel centre is encouraging;
however, it is not extremely good as in the other cases shown in § 4. To analyse
the origin of this difference, attention needs to be directed to the performance of the
original SSG model in the single-phase flow with a similar flow rate in figure 16
(Reb ≈ 4000, DNS from Lu & Tryggvason (2008)). The corresponding Reτ = 127 is
the same as in the deformable bubble case, indicating a very low turbulence level
for the single-phase flow. It is clear from figure 16(a) that the high-Re version of
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SSG fails to reproduce the sharp peak of u′+ near the walls and the level of u′+ is
overpredicted in the channel centre. As mentioned before, this is a feature of high-Re
SMCs (Wilcox 1998; Hanjalić & Launder 2011). This point is amplified by calculation
of the present flow, with such an extremely small Reτ . Checking now more closely,
the slight overprediction of u′+ in the channel centre for the bubble-laden case in
figure 15(c) results rather from the inaccuracy of the high-Re SMC performance in
the corresponding single-phase flow but is not due to the BIT model. Indeed, the BIT
model works very well, considering the relative attenuation for u′+ in the bubble-laden
case compared to that in the single-phase flow by comparing the results from the DNS
and SMC, respectively.

7. Conclusions
In the present paper, a full second-moment closure (SMC) for bubble-laden flows in

the framework of the Euler–Euler (EE) approach was proposed for the channel centre.
Several important conclusions based on DNS data for bubbly flow were obtained that
led to the development of a new bubble-induced turbulence (BIT) model at the second-
moment level (5.3). The important findings are as follows.

(i) From the evaluation of the DNS data for bubbly channel flow, it was found
that there are departures from the general formulation for the slow part of
the pressure–strain correlation (3.17): its nonlinear term plays an important
role, which requires the SSG model rather than Rotta’s linear model. Further,
it confirms that the rapid part caused by mean strain in the pressure–strain
correlation is negligible in the BIT-dominated region, so it does not matter what
form is taken for this part.

(ii) The concept to import the definition of the effective BIT source (3.22) greatly
simplifies the modelling work, so that the term φij,3 does not need to be modelled
explicitly. Moreover, in the framework of this concept, the Reynolds-stress
budgets have been estimated from the one-point statistics and TKE budgets
using the DNS bubbly channel data.

(iii) A suitably chosen iterative procedure employing the full EE SMC provides
suitable model coefficients for the closure of the terms resulting from BIT
while largely removing the influence of other submodels. At the same time
these results validate the closure, exhibiting very good agreement with the DNS
data and better performance than the standard closures. The obtained model
coefficients indicate that the isotropic assumption for the interfacial term turned
out to be too simplistic and a value for b∗11 independent of Rep is not general.

(iv) For the first time, an anisotropy-invariant map of bubbly flows was shown based
on the available DNS data. The map identifies that Rep emerges as the key
parameter for the anisotropy of this type flow and this is confirmed by the
resulting b∗11. A new BIT formulation for EE SMC has been developed based
on this anisotropy-invariant analysis. It is worth noting that the proposal is
derived from a small number of cases, but the information in each case is very
sound and covers a range of Rep from 233 to 1080, which is highly relevant for
practical applications.

(v) Besides the BIT-dominated flows, the present EE SMC employed with the
proposed BIT model has been tested against the DNS bubbly channel data of
Lu & Tryggvason (2008). Admittedly, though the overall agreement with DNS
data is encouraging, the case may not represent an optimal validation case for
BIT model assessment. It has been shown that u′+ in the channel centre for
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the bubble-laden case is only approximately twice that for the single-phase flow
with a similar mass flow rate. Hence, by calculating such bubbly flows, the
performance of the BIT model is contaminated by the intrinsic problem of the
high-Re RANS version for simulating single-phase flow. Caution should be taken
when interpreting the results achieved by testing the BIT models in this type
of flow. For example, in the considered bubble-laden case, using b∗11 = 1 as
proposed by Colombo & Fairweather (2015) instead of the present model (5.3),
a better fit of u′+ profile in the channel centre can be achieved than figure 15(c).
Checking closely, however, this results from underpredicting the interfacial term
in the streamwise component, along with the inherent overprediction problem of
the high-Re RANS closure in the channel centre.

The BIT model can now be applied in EE simulations. This closure employs Rep,
which is available in any EE SMC simulation. The proposed expression can as well
be combined with any SSMC

k and used for any similar Reynolds-stress model. Further
tests should focus on the performance of the model over a wider range of bubble
Reynolds numbers and on more complex flow fields, such as flows in impeller rotation.
For the latter purpose, in appendix C we have extended the BIT term for the use
in multi-dimensional flows so that it is independent of the choice of the coordinate
direction.
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Appendix A. Modelling interfacial forces MK

In the EE model (3.2), different interfacial forces MK are considered, namely drag
force FD, lift force FL, wall force FW and turbulent dispersion FTD, and given by

MG
=−ML

=FD +FL +FW +FTD. (A 1)

A.1. Drag force
The drag force results from the viscous force acting on the bubble surface and the
pressure differences caused by the bubble shape. It acts as the resistance between the
gas phase and the liquid phase and generates a momentum exchange due to the slip
velocity between phases. The corresponding gas-phase momentum is defined as

FD =
3

4dp
CDρ

LαG
|uG
− uL
|(uG
− uL). (A 2)

The validity of most of the correlations for the drag coefficient CD is limited to
restricted bubble shape regimes, e.g. Schiller & Naumann (1933) for the present
bubble Reynolds number regime (Rep < 800) in contaminated air–water systems:

CD =
24
Rep

(1+ 0.15Re0.678
p ). (A 3)
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This model would work well in the SmFew case, where the swarm effect is negligible
due to the low void fraction. However, for the denser bubble-laden cases, SmMany,
LaMany and BiDisp, having more intense swarm effect, (A 3) fails to reproduce the
relative velocity from DNS. To minimize the influence of the drag modelling, we use
CD defined by (4.4) in the present study based on the relative velocity as justified by
Santarelli & Fröhlich (2015).

A.2. Lift force
In shear flows, bubbles experience a force perpendicular to the direction of the
relative velocity. This effect generally is referred to as lift force and described by the
expression (Auton 1987)

FL =−CLρ
LαG(uG

− uL)× rot(uL). (A 4)

In EE simulations, the empirical correlation of Tomiyama et al. (2002) is frequently
used. In the present study, this coefficient is optimized such that the resulting void
fraction distribution matches the DNS target, while the other non-drag force models
are employed as they are (see the procedure in table 2).

A.3. Wall force
The wall force behaves analogously to a lubrication force and acts on a bubble near
walls to prevent bubbles from touching the wall (Antal et al. 1991). The wall force
has the general form

FW =
2
dp

CWρ
LαG
|uG
− uL
|
2ŷ, (A 5)

where CW =max(0,CW1/dp+CW2/y), with CW1=−0.01 and CW2= 0.03 in the present
study; and ŷ is the unit normal vector perpendicular to the wall directed towards the
fluid. The wall force coefficient CW depends on the distance y to the wall and is
expected to be positive, hence, the bubble is driven away from the wall.

A.4. Turbulent dispersion force
The turbulent dispersion force is the result of the turbulent fluctuations of the liquid
phase. In dispersed bubbly flows, turbulence in the continuous liquid phase causes
bubbles to be transferred from regions of high concentration to regions of low
concentration. In the present study, the model of Burns et al. (2004) derived by
Favre averaging of the drag force is used,

FD =−
3

4dp
CDρ

LαG
|uG
− uL
|
νt

σTD

(
1
αL
+

1
αG

)
∇αG, (A 6)

with σTD the turbulent Schmidt number, typically taken to be 0.9.

Appendix B. The present Reynolds-stress model

The transport equations for the Reynolds stresses read
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D(αLu′iu′j)
Dt

= −αL

(
u′iu′k

∂uj

∂xk
+ u′ju′k

∂ui

∂xk

)
︸ ︷︷ ︸

PSMC
ij

+
∂

∂xk

(
αL(νL

+ csνt)
∂u′iu′j
∂xk

)
︸ ︷︷ ︸

DSMC
ij

−αL 2
3
δijε︸ ︷︷ ︸

εSMC
ij

+ φSMC-mod
ij︸ ︷︷ ︸

φSMC
ij −φSMC

ij,3

+ SSMC-eff
R,ij︸ ︷︷ ︸

SSMC
R,ij +φ

SMC
ij,3

, (B 1)

with cs= 1.63. The modelled modified pressure–strain term φSMC-mod
ij is identical to the

SSG model (two-phase version) and can be expressed in terms of the stress production
tensor P ij, its complement E ij and the mean rate of strain F ij:

φSMC-mod
ij = −c1α

Lεaij + c′1α
Lε(aikakj −

1
3δijA2)

− c∗2(P ij −
1
3δijPkk)− c∗3(E ij −

1
3δijEkk)− c∗4α

LkF ij − c∗5aijPkk, (B 2)

where

E ij =−α
L

(
u′iu′k

∂uk

∂xj
+ u′ju′k

∂uk

∂xi

)
, F ij =

1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
. (B 3a,b)

The constants in (B 2) are (Hanjalić & Launder 2011):

c1 = 1.7, c′1 = 1.05, c∗2 = 0.4125, c∗3 = 0.2125,
c∗4 = 0.033+ 0.65A1/2

2 , c∗5 = 0.45.

}
(B 4)

The effective BIT source term SSMC-eff
R,ij is

SSMC-eff
R,ij =


min(0.67+ 0.67 exp(370Re−1.2

p ), 2)︸ ︷︷ ︸
b∗11

0 0

0 1
2(2− b∗11)︸ ︷︷ ︸

b∗22

0

0 0 b∗33 = b∗22

 SSMC
k , (B 5)

while SSMC
k , the interfacial term for the k equation, is adopted from Ma et al. (2017)

as
SSMC

k =min(0.18Re0.23
p , 1)FD(uG

− uL). (B 6)

The turbulent dissipation rate, ε, in (B 1) is obtained from its own transport equation:

D(αLε)

Dt
= αLCε1Pk

ε

k︸ ︷︷ ︸
PSMC
ε

+
∂

∂xk

(
αL

(
νL
+
νt

σε

)
∂ε

∂xk

)
︸ ︷︷ ︸

DSMC
ε

−αLCε2
ε2

k︸ ︷︷ ︸
εSMC
ε

+ 0.3CD
SSMC

k

τ︸ ︷︷ ︸
SSMC
ε

, (B 7)

where Cε1= 1.45, σε = 1.36 and Cε2= 1.83. Here τ is a time scale, reading τ = dp/ur.
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FIGURE 17. Geometrical definition of proper Euler angles (standard y-convention). The
xyz (fixed) system is shown in blue; the XYZ (rotated) system aligned with the local
relative velocity in X-axis is shown in red. The line of nodes (N) as the intersection of
the planes yz and YZ is shown in green.

Appendix C. Extending the BIT source for multi-dimensional flows

The present effective BIT source term (B 5) is applicable for the case where the
relative velocity is aligned with the vertical direction, such as the present DNS
channel, vertical bubble columns as well simple pipe flows. In multi-dimensional
flows, e.g. flows in stirred tanks (Shi & Rzehak 2018), however, no such simple
correspondence is valid. Here, we use the idea based on proper Euler angles
(figure 17) to cast the BIT term so that it is independent of the choice of coordinate
directions. We define a fixed coordinate system xyz and a rotating (body-fixed)
coordinate system XYZ, in which X is aligned with the local relative velocity between
two phases. Any body-fixed coordinate system XYZ can be achieved by composing
three elemental rotations, starting from an original fixed coordinate system xyz. Here,
we use a common sequence of rotations – the so-called x–y′–x′′ rotation, based on
the orientations denoted as follows:

(i) x–y–z (initial);
(ii) x′–y′–z′ (after first rotation around the x-axis with the angle α);

(iii) x′′–y′′–z′′ (after second rotation around the y′-axis with the angle β);
(iv) X–Y–Z (after third rotation around the x′′-axis with the angle γ ).

Since the third rotation occurs about X, it does not change the orientation of X. Hence
X coincides with x′′.

The present BIT term takes into account that the source in parallel with and
perpendicular to the direction of the relative velocity is different. We write it in the
currently defined XYZ-frame as a tensor:

(SSMC-eff
R )XYZ =

SSMC-eff
‖ 0 0

0 SSMC-eff
⊥ 0

0 0 SSMC-eff
⊥


XYZ

. (C 1)
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The term is aligned with the values in its parallel direction,

SSMC-eff
‖ = b∗11SSMC

k , (C 2)

and in its perpendicular direction,

SSMC-eff
⊥ =

1
2(2− b∗11)S

SMC
k , (C 3)

where b∗11 is from (B 5).
The task now is to transform (SSMC-eff

R )XYZ in the fixed xyz-frame using the x′′–y′–x
rotation (the reverse one compared to the x–y′–x′′ rotation mentioned before). This can
be achieved by

(SSMC-eff
R )xyz =Q · (SSMC-eff

R )XYZ ·Q
T, (C 4)

where Q is a rotation matrix and can be decomposed as the product of the latter two
elemental rotation matrices (y′–x rotations):

Q =

1 0 0
0 cos α −sin α
0 sin α cos α

 cos β 0 sin β
0 1 0

−sin β 0 cos β


=

 cos β 0 sin β
sin α sin β cos α −sin α cos β
−cos α sin β sin α cos α cos β

 . (C 5)

The first rotation x′′ with the related Euler angle γ indeed is not needed in the present
study, since we are only interested in the orientation of X (the direction of the local
relative velocity).

The final step is to find the Euler angles α and β. This can be achieved based on
the known unit relative velocity vectors (1, 0, 0) in the XYZ-frame and (û1, û2, û3) in
the xyz-frame (ûr = ur/|ur|). After some projections (shown in figure 17) and linear
algebra, the results are

α = arccos
(
−û3/

√
1− û2

1

)
, β = arccos(û1). (C 6a,b)
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JAKIRLIĆ, S. & HANJALIĆ, K. 2013 A direct numerical simulation-based re-examination of coefficients

in the pressure strain models in second-moment closures. Fluid Dyn. Res. 45, 055509.
JOHANSSON, A. V. & HALLBÄCK, M. 1994 Modelling of rapid pressure strain in Reynolds-stress

closures. J. Fluid Mech. 269, 143–168.
JONES, W. P. & LAUNDER, B. E. 1972 The prediction of laminarization with a two-equation model

of turbulence. Intl J. Heat Mass Transfer 15, 301–314.
JOSHI, J. B. & NANDAKUMAR, K. 2015 Computational modeling of multiphase reactors. Annu. Rev.

Chem. Biomol. 6 (1), 347–378.
KATAOKA, I., BESNARD, D. C. & SERIZAWA, A. 1992 Basic equation of turbulence and modeling of

interfacial transfer terms in gas–liquid two-phase flow. Chem. Engng Commun. 118, 221–236.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

85
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.851


Second-moment closure for bubbly flow 883 A9-35

KATAOKA, I. & SERIZAWA, A. 1989 Basic equations of turbulence in gas–liquid two-phase flow.
Intl J. Multiphase Flow 15, 843–855.
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