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THE HAUSDORFF MOMENT PROBLEM 

BY 

D A V I D BORWEIN 

1. Introduction. Suppose throughout that 

0 < À o < - - - < À n , À n -*oo , y —=oo 
^ A ' 

n = l A n 

and that {jLin}(rc> 0) is a sequence of real numbers. The (generalized) Haus-
dorff moment problem is to determine necessary and sufficient conditions for 
there to be a function x in some specified class satisfying 

^=i t^dx(t) for n= 0 ,1 ,2 , . . . . 

Let 

D0=d0=l, D n = d 0 + ^ l + - - - + d n = ( l + ^ - ) - - - ( l + ^ - ) . 

Define the divided difference [/xk,..., jxn] inductively by [^tk] = /xk, 

L^k,.-.,^nJ = : : for 0<fc<n. 
A n A k 

For 0<fc<n, 0 < f < l , let 

Ank(0 = A k + 1 - - - A n [ r \ . . . , ^ ] 

with the convention that products such as Ak+1 • • • An = 1 when k = n. Let 

D \ p - i \ iip 
n \ I • e 

Mm 

if p = oo; m a x |A„fc|—-= 
O ^ k ^ n (2k 

Mp=supMpn. 
n > 0 

Received by the editors March 29, 1978. 
This paper is one of a series of survey papers written at the invitation of the Editors of the 

Canadian Mathematical Bulletin. 
This research was supported in part by the National Research Council of Canada, Grant 

A-2983. 

257 

https://doi.org/10.4153/CMB-1978-046-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1978-046-4


258 D. BORWEIN [September 

H, H 

Let C be the normed linear space of functons x continuous on [0,1] with 
norm ||x||c =sup0=£t<i \x(t)\. Let BV be the space of functions of bounded 
variation on [0,1]. A function xeBV is said to be normalized if x(0) = 0 and 
2x(t) = x(t+) + jc(f-) for 0< t< 1. For p > 1, let Lp be the normed linear space 
of measurable functions x on (0,1) with finite norm ||x||p where 

( \x(t)\pdtj when l<p<oo, 

ess. sup when p = o°. 
0 < t < l 

It is known that M1<oo if and only if there is a functon a eBV satisfying 

(1) tLn = J fA« da(t) for n = 0,1, 2 , . . . . 

The case A0 — 0 of this result was established by Hausdorff [5], [6] and 
Schoenberg [12] subsequently gave a different proof. The case Ao>0 was 
proved by Leviatan [9] (see also Endl [4]). 

It can be deduced from theorems of Leviatan [9, Theorem 2.3; 10, Theorem 
1 and Theorem 2] (see also Berman [3]) and identity (5) (below) that, for 
Kp<oo 5 Mp<°° if and only if there is a function jSeLp satisfying 

(2) ^ = f fA«j3(0 dt for n = 0,1, 2 , . . . . 

The case An = n for n = 0,1, 2 , . . . of this result is due to Hausdorff [7]. In this 
case we have that for 0 < fc < n, 0 < t < 1, 

Ank(0 = ( ^ y (1 " 0 - k , Ank = Q A - V , 

where AVk = /u,k, A> k = An~Vk - An"Vk+i-

In this paper we give new and reasonably self-contained proofs of the above 
results. Our proofs involve functional analysis and differ radically from those of 
the above-mentioned authors. Unlike previous proofs, ours do not treat the 
cases Ao = 0 and Ao>0 separately. 

In addition, we show that if (1) holds with a normalized, then M1 = Jo |da(f)l 
when Ao = 0, and Mx = JJ |da(0|- |a(0+)| when A0>0. We also show that if (2) 
holds for l<p<oo? then Mp =||j3||p. Finally, we show that Mpn increases with n 
and hence that Mp = limn_^oMpn for l<p<oo. The cases An = n for n = 
0,1, 2 , . . . of these results are derived in a book by Shohat and Tamarkin [13, 
pp. 97-101]. This book, incidentally, gives an excellent and extensive review of 
the classical moment problem. Another good reference book on the subject is 
one by Akhiezer [1]. 
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2. Preliminary results. The following simple identities and inequalities are 
known: 

(3) M*= Z A n k ( l - T ^ ) - - ( l - ^ ) for 0 < s < n . [6,(5)] 
fc=0 ^ A k + 1 ' ^ A-n' 

(4) 0<A m (0^ £ Ank(f)^l for 0 < f < l , 0 < s < n . 
k=0 

[10, Lemma 1] 

(5) \\nk(t)dt = £ for 0<fc<n. [6, p. 294] 
0̂ M i 

We require some lemmas. 

LEMMA 1. If M1<oo4) then 

ixs = lim £ Ank(—- ) for s = 0,1, 2 , . . . . 

Proof. Let A > 0, w„ = e~x/S 
n 

<t>nW = L Ank"k+1 ' * * "n> 
k=0 

and let 
n 

«An = X Ank^k + 1 * " ' Vn 
k=0 

where vn = e~y»/Xn for sufficiently large n and Yn—>A as n-»o°. 
Let 0<e<A. Then, for Ô>0, |y-A|< e, we have that 

| e - s x - e - s 1<0 \y-k\ e - ^ - ) - - ^ -
A - e 

Choose a positive integer N so large that |y„-A|<e for n>N. Then, for 
n>N, we have that 

N-l £ n 

k=0 A e k=N 

Since «„—»0 and un—»0 as n-*o°, it follows that 

limsup|</rn-4>n(A)|<——, 

and hence that 

lim(l/rn-</>n(A)) = 0. 
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Note that when vn = 1 -Às/Àn, then, by (3), the corresponding i//n = (xs for n > s. 
Thus 

lim <t>n(\s) = fis. 
n—»oo 

The desired conclusion is now obtained by considering the i/>n corresponding to 

LEMMA 2. 

(i) If (1) is satisfied by a function aeBV, then M ^ f o |da(f)|. 
(ii) If l < p < o o and (2) is satisfied by a function 0 e L p , then Mp<||j8||p. 

Proof. Part (i). We have that 

Kk= \ KMda(t) for 0 < f c < n , 

and thus, by (4), that 

£ |Aj^f|<fa(f)| t KM^l'ldaWl 
k=0 -fe k=0 -b 

Hence 
r1 

M j < [da (01 • 
Jo 

Part (ii). We now have that 

Kk = J Ank(r)|8(0 A for 0 < fc< FI. 

Hence, by (5), 

|Ank |< I Kuc(t)\P(t)\dt^-^ess.sup\p(t)\. 
Jo Dn o<t<i 

Next, if 1 < p < oo, then, by Holder's inequality and (5), 

|Ank|
p^ I KM \P(t)\p * ( £ KM dtj 

= (£)P~1\1
QKk(t)\P(t)\Pdt; 

and so, by (4), 

1 lAn f c |P(^)P ^ f 1 | /3(0l p* I A„fc(f)< f|/3(0|p<fc 
fc=0 ^ " k ' -b fc=0 Jo 

Consequently, if K p < < » , then Mp<||0||p. 
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LEMMA 3. / / a normalized function xeBV is such that 

I t*»dx(t) = 0 for n = 0 , 1 , 2 , . . . . , 
Jo 

then jc(f) = x(0+) for 0 < r < l . If in addition, Ao = 0, then x(0+) = 0. 

Proof. Suppose first that Ao = 0. A known consequence of the hypothesis 
[11, p. 337] is that 

I tndx(t) = 0 
Jo 

for n = 0 ,1 ,2 , 

Hence, by a standard result [14, Theorem 6.1], x(t) = 0 for 0 < f < l . 
Suppose next that A o>0. Then, by hypothesis, 

[ t^-kody(t) = 0 for n = 0 , l , 2 , . . . , 
Jo 

where y(0 = Jo wA° dx(u). Since y is normalized [14, Theorem 8b], we have, by 
the part already proved, that y(0 = 0 for 0 < f < l . Let 0 < e < f < l . Then 

0 = uxodx(u) = tkox(t)-ek°x(e)=\ u^^xiu) du 

and so x is absolutely continuous in [e, 1]. Therefore 0 = fe uK°x'(u)du and 
consequently x'{u) = 0 a.e. in (e, 1). It follows that x(t) = x(e) for 0 < e < t < 1, 
and hence that jc(f) = x(0+) for 0 < r < l . 

This completes the proof of Lemma 3. 

3. The main results. The proofs of both parts of the following theorem are 
based on proofs in Shohat and Tamarkin's book [13, pp. 99-101] of the case 
An = n for n = 0 ,1 ,2 , Hildebrandt [8] originally proved this case of part (i) 
by a similar method. 

THEOREM 1. 

(i) / / M1<°°, then there is a normalized function aeBV such that (1) is 
satisfied and fj |da(r) |^Mx. 

(ii) / / K p < o o and Mp<™, then there is a function |3eLp such that (2) is 
satisfied and ||/3||P<MP. 

Proof. Define A to be the linear space of functions P such that 

m 

(6) P(t)= X Ok**" for 0 < f < l , 

where m is an arbitrary non-negative integer and a0,au... ,am are real 
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constants. Define the moment operator (JL on A by setting 

m 

^ C P ) = X akVk 

when P is given by (6). 
Suppose that Mp < °° where 1 < p < oo. Let P e A and let £ n e A be given by 

Bn(t)= I A n k ( r )p (^) for o < f < l . 

Then 

(7) ft(J3^)= £ A n k p ( ^ ) , 
k = = 0 V i - V i ' 

and hence, by Lemma 1, 

(8) l i m ^ B J ^ P ) , 
n—x» 

since, by Holder's inequality, Mt<Mp. 
Part (i). It follows from (7) that 

\ti(Bn)\^M1\\P\\c 

and hence, by (8), that 

Thus [JL is a bounded linear functional on a linear subspace of C. Hence, by the 
Hahn-Banach theorem [11, Theorem 5.16] and the Riesz representation 
theorem for bounded linear functionals on C [2, p. 61], there is a normalized 
function aeBV such that, for every P e A , 

JLL(P) = [ P(t)da(t) and [{dait^M^ 

In particular, taking P(t) = t \ we get that 

^ n = 
J0 

t^da(t) for n = 0 ,1 ,2 , . 

Part (ii). Let (l/p) + (l/q) = 1 where K p < c o . Applying Holder's inequality to 
(7) we get that 

"«•><«<t£Kg)IT-dk \JDk\\
q\Vq 

\^r>n)\^ivip\ L 
V k = 0 

Since 

dk Dk 1 
max — = max — -—-—>0 as n—»<*>, 

0=sk=£n D O s k s n O 1 + \ k 
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the term multiplying Mp in the inequality tends to JJ(|P(0|q dt)1/q. In view of 
(8), it follows that 

|M(P)|<Mp||lt. 

Thus fx is a bounded linear functional on a linear subspace of Lq. Hence, by the 
Hahn-Banach theorem and the Riesz representation theorem for bounded 
linear functionals on Lq [2, pp. 64, 65], there is a function |3 eLp such that, for 
every PeA, 

ri 

<*(P)= P(t)(i(t)dt and |||8||P<MP. 
•'O 

A. In particular, taking P(t) = f\ we get that 

tK»p(t)dt for n = 0,1,2,. "•-f1 

This completes the proof of Theorem 1. 
Combining Lemma 2 and Theorem 1 we obtain: 

THEOREM 2. 

(i) Mx<oo if and only if (1) is satisfied by a function aeBV. 
(ii) For 1< p < oo? Mp < °° i/ and only if (2) is satisfied by a function (3 eLp. 

The next two theorems give more precise information about Mp. 

THEOREM 3. 

(i) If (1) is satisfied by a normalized function aeBV, then 

(a) Mx= [ |da(r)| when Ao = 0, 

(b) Mi= [ |da(f)Ha(0+)| when A0>0. 

(ii) 1/ K p < o o and (2) is satisfied by a function jSel^, fhen Mp=||/3||p. 

Proof. Part (i). By Lemma 2(i), we have that M ^ J J \da(t)\<°°. Hence by 
Theorem l(i), there is a normalized function à e BV such that ju,n = Jj tK» da(t) 
for n = 0,1, 2 , . . . and Jj \da(t)\ <MX. 

If Ao = 0, then, by Lemma 3, a(r) = «(0 for 0 < f < l , and hence MX = 
JJ|<M0|. 

Suppose that Ao>0, and let y(0) = 0, y(t) = a(t)-a(0+) for 0 < f < l . Then 
V*n =lo tK dy(t) for n = 0,1, 2 , . . . and hence, by Lemma 2(i), M^H \dy{t)\. 
Further, by Lemma 3, y(t) = â(t)-à(0+) for 0 < f < l , and so, since y(0+) = 
7(0) = 0, we have that Mx<Jâ \dy(t)\^Sl\dà(t)\^M1. Hence M ^ ^ l d y ^ 
JJ|<M0H«(0+)|. 
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Part (ii). By Lemma 2(ii), we have that Mp<|||3||p<oo. Hence, by Theorem 
l(ii), there is a function j8 e Lp such that fjun = JJ tK&{t) dt for n = 0 , 1 , 2 , . . . and 
ll̂ llp <M p . By Lemma 3, ft |3(u) du = ft |8(u) dw for 0 < t< 1, and hence /3(f) = 
j8(f) a.e. in (0,1). It follows that Mp<||j3||p = \\(3\\P<MP, so that Mp=|||3||p. 

This completes the proof of Theorem 3. 

THEOREM 4. / / 1 <p<<», thenMpn<Mpn+i forn>0 and limn_^oMpn = MP. 

Proof. Let 0 < k < n. Then 

A„ 

and hence 

(8) 

It follows that 

and hence that 

+i,k : 

A „ k 

4 

_ A k + 1 A n + 1 v v 
A n + 1 A k 

An+i x A k + 1 ^ 

A n + 1 A k A n + 1 A k 

A - [\ *k \ \ 1 Ak + 1 \ Ank~~\L v l A n + l , k ^ . A n + l,k + l-
\ An+1/ An+1 

— [\ Ak \ An + l,k . / I • Ak \ A n + i , k + i 

\ An+1y dk \An+1 An+1/ dk+1 

M0O ,n<MO0fn+1(l+-—)-=r IL- = M00fn+1. 
V A n + 1 ' M T + 1 

Finally, for l < p < o o , application of Holder's inequality to (8) yields that 

^ A n + 1 ' A n + 1 J 

since 
1 Ak Ak+1 ^fc+1 _ 1 _Dn+1 

An+i An+1 dk An+1 Dn 

Summing the above inequality for k = 0 , 1 , . . . , n, we get that 

An+i 

This completes the proof of Theorem 4. 

M ^ A ^ n + l - r ^ |An + l,o|P 4 ~ P £ > ^ M £ n + l . 
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