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Recently A, MalcevJ) has shown that the homogeneous space of a con-

nected nilpotent Lie group G is the direct product of a compact space and art

Euclidean-space and that the compact space of this direct decomposition is also

a homogeneous space of a connected subgroup of Gβ Any compact homo-

geneous space Άί of a connected nilpotent Lie group is of the form M = G/D,

where G is a connected simply connected nilpotent group whose structure con-

stants are rational numbers In a suitable coordinate system and D is a discrete

subgroup of Go

In this paper we first determine the "situations"9 of discrete subgroups of a

connected simply connected nilpotent group. In making use of this result we

may prove the results of Malcev in a different method. Then we make some

considerations on the homological properties of a compact homogeneous space

and show that the eohomolo'gy groups of dimensions 1 and 2 of a nilpotent Lie

algebra @M over the field R of rational numbers are isomorphic to the corre-

sponding rational cohomology groups of a compact homogeneous space of the

connected simply connected nilpotent group corresponding to the Lie algebra ©

obtained from (fe by extending the ground field R to the field of real numbers.

In the above discussions Hopf-Eilenberg-MacLane's theory25 on the relations

between horaolυgy and homotopy of a space will play an important role,

I, Let C be a Lie group. To every element L of its Lie algebra (S there

corresponds a one-paramenter subgroup g(t) such that L is the tangent vector

at the unit element to the curve g(l). We shall denote this one-parameter

subgroup giί) by exp tL and expZ, is the point of parameter 1 on this curve,

if G is a connected simply connected solvable group, then G is homeomorphic

to an Euclidean space and each Lie subgroup H of G corresponding to a sub-

algebra S) of © is closed and simply connected,-3*

THEOREM 1. Lee G be a connected simply connected nilpoίent group with

Received Oct. 26, 1950.
]) See Maloev [8],
=) See Hopf [5], [6], Eilenberg and MacLane [3], [4],
3> See Chevalley [1],
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the Lie algebra © and D a discrete subgroup of G. Then we may choose a

basis Li9 L2,. . . , Ln of (& which has the following properties:

1) {£ί+j, . . . , Ln) is an ideal of {Li, Li+ί,. . . , Ln) for i = 1,. . . , n - 1

and hence every element in G may be written uniquely in the form (exp t\Lι)

(exp t2L2). . . (exp tnLn).

2) There exists an integer m, 1^-m^n, such that {Lm, Lm+U . . . , Ln) is

a subalgebra of ® and that, if [Lj9 Lkl = Σ ^ * Li for mi=k j, k^n, then cι

jΊt

are rational numbers.

3) The elements gk = expLk (k = m, tn + 1,. . . , n) constitute a system of

generators of D and every element in D may be written uniquely in the form

gmSm . . . gnSn, where s/ are integers.

For the proof of Theorem 1 several lemmas are necessary.

LEMMA 1. Let G be a connected nilpotent group with the Lie algebra (S.

Then to every element g in G there exists an i G δ such that # = e x p £ .

Moreover, if G is simply connected, L is determined uniquely by g.

Proof Since the center of G is not discrete, the existence of such an L

may be proved easily by induction on the dimension of G. Now let G be simply

connected and let g -* expL = exp/Λ We denote by Ag, AL and AL> the ma-

trices corresponding to g9 L, and L respectively in the adjoint representations of

G and ®>4) Then Ag = exp AL = exp AL>* Since ® is nilpotent, AL and Av are

nilpotent and hence logexp^4/v = AL and log exp AL> = AL « Thus AL = -AL-.

Therefore L - ΊJ + M, where M is in the center of © and exp L = exp Z/ exp Λf.

Hence exρifcf=£, the unit element of G. This shows that the one-parameter

subgroup exp ίM is compact. But G can not contain any compact subgroup

different from e and hence exptM = E. Thus M = 0 and L = L\

LEMMA 2. Let G be a connected nilpotent Lie group and // a connected

Lie subgroup of G. Then the normaϋzer N(H) of i/ is connected.

Proof. Let § be the subalgebra of the Lie algebra © of G corresponding to

H and 5R(£>) the normalizer of © in ®. Let £ e iV(jff). Then by Lemma 1 there

exists an L G ® such that ^ = e x p Z . It is sufficient to show that Z,e9ΐ(€>).

As £ G ΛΓί-ff), Agξ> s § and hence log A^ξ) s § . Since log Ag = AL, AZ,€> = [£„

By the similar argument we may prove the following

LEMMA 3. The center of a connected nilpotent Lie group is connected.

LEMMA 4. Let H be a subgroup of a connected nilpotent Lie group G and

N(H) the normalizer of H. Then N(H) g # .

4) We use these notations throughout this paper.
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Proof, By induction on the dimension of G. Let Z be the center of G.

If HφZ, then clearly N(H)*H. If HZ>Z9 we may use the assumption of

the induction on G/Z and HjZ and we obtain N(H) =*? H.

Proof of Theorem L We shall prove our theorem by induction on the di-

mension n of G. Lei us assume that it has been proved already for all di-

mensions < n. Let N(D) be the normaϊizer of D and A the connected com-

ponent containing the unit element of N(D). Since A contains the center of

G, dim A=^l. If A = G, then Z) is normal and hence contained* in the center

of G. Since the center of G is connected by Lemma 3, every thing is clear in

this case. Hence we may assume A # G. Now let K be the normalizer of A.

Then K is connected by Lemma 2 and N(D) C -K* and hence D<ZK. If A' # G,

then by our assumption of induction we may choose a basis Lk,Lk+i, . . 9Ln

of the Lie algebra $ of K satisfying the conditions of our theorem. Then by

Lemmas 4 and 2 we may add L\9 . . . , Lk~\ to Lk> Lk+i9 . . . , Ln so that Li,

. . . , Ln is a basis of @ satisfying our condition 1). Hence we may assume

i£ = G. Then A is a normal subgroup of G. Now D AC.N(D) and hence

ΊJΆCN(D). Therefore the connected component of the unit element of Ί)Ά

is A and hence the group DAI A is a discrete subgroup of G/A. Let 21 be the

subalgebra of © corresponding to A. It follows that we may apply our theorem

to G/A and DA/A: we obtain a basis {LΛ . . . , L/*> of ®/2ί satisfying the

properties of our theorem. Let {*,£-{-1, . . . , /} be the subset of the set {1,

...,/} satisfying our conditions 2) and 3) and let gk* = exp£j&* (k ~ £, t ~h 1,

. . . , 0. Le^ £fe ̂  £* be the representative of the element gk* e DA/A and gk

= exp £k with Lk e ©. Let £&'* de the class of Z& mod 2ί then 4^^ = exp Lk*

and since G/A is simply connected, Lu* = /^/ϊfί by Lemma 1. Thus Lk is a

representative of Lk*. Further let Lj be a representative of Ly* for j <t.

Since ACA r(/)) ? the group D Π A is a discrete normal subgroup of A. Then

we may choose a basis L/+i, . . . , Ln of 21 such that #& = exp Lk (fe = s , s + l ,

. . . , « ) constitute a system of free generators of the discrete central subgroup

D Π A of A and [Z*, Ly] = 0 for s ^ k, j ^ n. Let d&D. Then d = gt

u* . . .

gιuι (A) and w are unique. Then J = #>"' . . . gtUί a, a& D f| A, and <2 = ^ s"
3

. . . gu

u» and Mi are unique. Hence d = gt

Ut . . . gιUιgs

Us - - #nW|* and this ex-

pression is unique. Now we show that {Li., Lf+j,. . . . Li, Ls, Ls+\, . . . , Ln}

is a subalgebra whose structure constants are rational. We set {Lt, . . . , L/?

LS9 . . . ,Ln} = {Mm, Mm + i, . . . , Mn), i.e. Zί = Mm, Lt + i = Λfwi + i, . . . , L« = Λ ί » .

We shall show that, if £*+, = {Λίi+i, . . , M»> is such a subalgebra, φfe = {Aft,

Mk+i, . . . , M«} is also such a subalgebra (ft ̂  s - 1). Let ( # , . . . , gι, gs,. . . ,
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gn) = (km,. . . ,hn) i.e. gt = hm, gi+i = A m + i , . . . , gn = ft«. Further let ffc+j

and G, be the subgroups of G corresponding to the subalgebras !φk+i and

@, = {£,-,. . . ,Ln} respectively, Then from our construction of the basis {Li9

, . . ,Ln} we see that Gι+j is a normal subgroup of G ί β Now let A = hkhuhk~ι

(u^kΛ-1). Since AA = exp Λ£A and iUfjfe = L/.(s-Λ)+i, A& G= G/-(s_ife)+j and A»

EΞ G/_<S-*>+J. Hence A = AAAMAJΓ1 e G/_(s-*)+2. AS A e JO, A = Am"™ . . . hn"
n

= exp ffmMm . . . exp UnMn and so « M = . . . = « H = 0, i.e. hkhuhk"1 = AJΪ51 . .

hn

Un e -Hi+j. By Lemma 1 there exists huMk+i + . . . 4- ί«Λί» e φyfe+i such that

A = exp (tk+iMk+i + . . . + ^»M?3)β But A = hk exp Af«*A~J = exp (A*kAf»). Hence

we have AAλ Λfw = ^ + J i l^ + i + . . . + tnMn, whence Ahk $k+ι S ©A+I and

€>*!-J Si €>A+j. But log-AAΛ = AMk and therefore [MA, © A + J g ©*+ J. Hence

|)^+s} is a subalgebra of ©. Next we show that? if ZMk, Mul = /A+IWA+I +

-\-TnMti9 fj are rational numbers. Since [ M A , M » ] = (logi4U*)*ilft<, it is sufficient

to show that fA+i,. . . , tn are rational Now A}**1 . . . An** = exp(tt*+]il4ί+i) . . .

exρ(unMn)~ exp(tk+iMk+i + . . . +/nM«). Since the structure constants of {MA+J,

. . . Mn) are assumed to be rational numbers and «A+J, . . . , « » are integers,

we may easily see by the formula of Hausdorff that U are rational. Thus {MA,

* . . , Mn) is a rational subalgebra. Repeating this argument we may see that

3£ = {Mm9. . . , Mn} is a rational subalgebra. Now we may add ikfj,. , . ? M m -i

to M « , . . . . Mn so that {Miy. . . ? Λfn} is a basis of @ satisfying the condition

of Theorem 1? q.e.d.

2. We prove in this axαd next sections the theorems of Malcev in making

use of the results in 1.

THEOREM 2β Let M be a homogeneous space of a connected nilpoteni group

Ga There exists a compact subset C and a subset E, homeomorphic to an

Euclidean space of some dimension, such that M is homeomorphic to the

product space C x E» A certain connected closed subgroup of G acts transitively

on C.

Proof First let G be simply connected and M = G/H9 where H i s a closed

subgroup of G and G/TI is th'e right coset space of G mod H* Let Ho be the

component of the unit element of II and N the normalizer oί HQ» Then N is

connected by Lemma 2 and we may take the one-parameter subgroups VΊ, . . . ,

Vr of G such that G = Vι . . . VrN and Ff +J , , . VrN is a normal subgroup of

Vi . . . VrΛΓ by Lemma 4, Since NDH, G/H^Vi x . . . x Vr x ΛΓ/H, where

Vi x . . , x Vr is an Euclidean space. Further since Ho is a normal subgroup

of N and N/H^' N/HO/H/HQ and JV//fo is simply connected9 we may consider

only the case where // is a discrete subgroup. Hence let H = D be a discrete

subgroup of G. Let {i,,. . . ,Ln) be a basis of the Lie algebra © of G satisfying
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the conditions of Theorem 1 and S? = (Lm, . . . , Ln) and R the subgroup of G

corresponding to S, gn = expLk (k = m + 1 , . . . , n) form a system of gener-

ators of D and D C /?. Hence G / D ^ Fj x . . . x VOT., xi?/J9 where VJ « exp

ίL-i (2 = 1 , . . , , »2 — 1). We show by induction on the dimension of R that

i?/D is compact Let R{ be the normal subgroup of G corresponding to the

ideal 9?j = {Lm±j, . . . , Z«} of 3ϊ and V, = exp tLm and A the normal subgroup of

D generated by gm+ι9. . . 9gn. Clearly DICLRJ* Now we define a continuous

map / of the space V} x Ri/Di onto /?//} by f(a9DJ>) -Dba9 w h e r e ' β ε F, and

$ e R}. This definition is independent of the choice of the representative b of

the coset Dφ, Now we may easily verify that, if f(a9 DJ>) =f(a'9 D\V)9 then

{a\ DJf) - (gm

sa, D^gm'bgm") (s - ± 1, db 2,. . . ).

Let {Dc }̂ be an infinite subset of R/D. We may choose froπi f\Dck) a point

(βfe, Â jfe) such that the absolute value of the coordinate of au is ^ 1, We may

assume that the sequence {ck} converges to a point a of VΊ. Since we have

assumed that ^J/DJ is compact, it is possible to choose a subsequence {DJbki}

of A&fe such that it converges to a point A& of RιlDu Then the sequence

{Dcki} converges to the point Dba. Hence R/D is compact Next let G be an

arbitrary connect nilpotent group and G the universal covering group of G. Let

/ be the projection of G onto G, hi becomes a homogeneous space of Q by the

formula g(nι) =/(£)(*»), where | G β and m&M* Then Λf = C x £ , where

C is a compact subset of Aί and ^ is a subset of M homeomorphic to an

Euclidean space and a certain connected closed subgroup K of G operates

transitively on C, Then f(K) is a connected subgroup of G which operates on

C transitively. Then since C is compact the closed connected subgroup K = f(K)

is also transitive on C5 q.e d.

We see from the above proof the following corollaries.

COROLLARY 1. Lei M be a compact homogeneous space of a connected nil-

potent Lie group, then M = GjD^ where G is a connected simply connected

nilpotent rational Lie groups and D is a discrete subgroup of G«

CCROLLΛRY 2, If a connected simply connected Lie group G acts on a com-

pact space M transitively and almost effectively^ then G is rational and the

isotropy subgroup™ II of G is discrete,

5) A nilpotent group is said fto be rational, iί its structure constants are rational in a
suitable coordinate system,

δ> A Lie group G is said to fce almost effective on a homogeneous space Mt if the closed
normal subgroup of G consisting oί all elements of G which leave fixed every point
of M is discrete. The isotropy subgroup of 6' is the closed subgroup of G consisting
of all elements of G which leave fixed a point of M*
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For then M = G/H and since M is compact the normalizer of the com-

ponent group HQ must be equal to G.

3. Now we consider the structure of the compact homogeneous spaces.7)

Let G be a connected simply connected nilpotent group. A discrete subgroup

D of G is said to be uniform if the space G/D is compact. G contains a

uniform discrete subgroup if and only if it is rational.8)

LEMMA 5. Let H be a connected closed central subgroup of a connected

Lie group G and D B. discrete subgroup of G such that HjD Π H is compact.

Then DH/H is a discrete subgroup of G/H.

Proof. Let D} = D f\H. Then D, is "central. Since B/D1 is compact and

D/Dι is a closed subgroup of G/Di, HDJDi is a closed subgroup of G/Dl9

whence HD is a closed subgroup of G. Then since DHZDH, DH/H is closed

in G/J7. But as DH/H is enumerable, it must be discrete.

Now let G be a connected simply connected group with the Lie algebra

® and 6 D i q S ) D ^ ( ® D . . D &{&) D&/+1(@) = {0} the descending central

series of © i.e. (P(@) = [®, 6f"-J(©)] and let G D Cι(G)D C2(G)D . . . "DC'(G)

DC'+J(G) = {g} be the corresponding series of the subgroups of G. Then

the following theorem holds.

T H E O R E M 3. Le£ G be a connected simply connected nilpotent group tvith

the Lie algebra @ and D a uniform discrete subgroup of G . Then ive may

choose a basis {Ll9 . . . , Ln) of (§ such that {Lik9 Lik+1, . . . . Ln) is a basis of

&A(@) /or & - 1, . . , , / αwc? that gj = expL^ /orm α system of generator of D

and every element of D may be written uniquely in the form gιUl . . . gn

Un Let

A ~ {gi, - . < , gn). Then Di are normal subgroups of Dΰ] and Dik = D Π Ck{G).

Proof. We shall prove this theorem by induction on the length / of the

desecending central series of ©. Let us assume that it has been proved already

for groups whose length of the descending central series are < /. We first

show that Cι(D) ^ {e}. For we may choose a basis {Ml9 . . . , Mn) of @ such

that di - expM/ (i — 1, . . . , n) form a system of generators of D by Theorem 1.

Then by the formula of Hausdorff di ° dj = didjdrιdfι = exp([Mi, My] -f-

7) As we remarked in the proof of Theorem 2, any homogeneous space of a connected
Lie group may be considered as a homogeneous space of its universal covering group.

8> If such a subgroup exists, then G is rational by Theorem 1. The existence of a
uniform discrete subgroup in a rational nilpotent group has been proved independently
by Malcev and Kuranishi. See Malcev [1] and Kuranishi [7].

9 ) A system of generators g\,..., gti of D such that every element of D is written unique-
ly in the form gιuι.. .'#,**» and £"/,...,&» (/= 1 , . . . , n) generate a normal subgroup of
D will be called in the following the canonical basis of D.

https://doi.org/10.1017/S0027763000010096 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000010096


DISCRETE SUBGROUPS AND HOMOGENEOUS SPACES 101

Mj))9 where φ(Mi,Mj) is a commutator polynomial of Mi, Mj such that

Λf/)e @2((S). By the repeated use .of this formula, we have d%λ ° (d, 2 ° (. . .

°(duodiι+1). . .)) = exp([M/J[Mί . [ . . . [Λf/,, Af, ι + J ] . . . D e C ' φ ) . Since fi'(®)

=*F {0}, we may choose Λf, ,,. . . , A//z+J such that [M, ,[M, 2[ . . . [Λf, z, Aί, ϊ+1] . . . ] ]

dp 0. Then rf, , ° (*/,-„ o ( . , . (d{ι o rf( z+1) . . .) ^ e, whence Cz(£>) # {e}. Since

C'(D) CDΓ\Cι (G), A = D Π £'(£) * {e). We show that Λ is a uniform dis-

crete subgroup of C\G). Suppose that A is not uniform in Cι{G). Then

there exists in Cι(G) a closed connected subgroup H such that Dι is uniform

in H by Theorem 1. Since Cι{G) is contained in the center of G, if and A are

also central. Then by Lemma 5 DH/B= U is a discrete subgroup of G/£Γ = G'.

Clearly 27 is uniform in G' and Cι(G)/H ^= Cι(Gf) # e. We see easily that Π

Π Cι(G') = {*?}. But we may prove as above that D' f\ Cι(Gr') ^ {̂ } and this is

a contradiction. Hence D} must be a uniform discrete subgroup of C'(G). Then

DCι{G)/Ci(G) is a discrete subgroup of GjCι(G) by Lemma 5. The length of

the central series of the group G/Cι(G) is / — 1 and we may use the assump-

tion of induction and we may prove our theorem by the same way as in the

proof of Theorem 1. The other part of our theorem is obvious, q.e.d.

Remark. Df\C(G) contains the commutator group C(D) of D. They are

not always equal, as we may show by an example, We shall show in the next

section that DΓ\C(G)/C(D) is a finite group. Since D/DΓ\C(G) is a free

abelian group with r (=dimG — dim C(G)) free generators, D/C(D) is the

direct product of the finite group D Π C(G)/C(D) and the free abelian group

of rank r.

The following theorem is a slight generalization of a theorem in [8] and

will be used later.

THEOREM 4. Let Gj and G2 be the connected simply connected nilpotent

groups and Di and D* the uniform discrete subgroups of Gι and G2 respectively.

Let ψ be a homomorphism of Ό\ onto D2. Then we may extend ψ to a con-

tinuous homomorphism ψ of Gι onto G2.

Proof. Let ©i and ©2 be the Lie algebras of Gj and G2 respectively. Let {El9.

. . ., Ln) be a basis of ®j satisfying the condition of Theorem 1. Let hi = <f(gi)

and hi = expM, . Suppose that 9JϊI+i = {M, +i, . . . , Mn) is a subalgebra of ©2

such that the subalgebra 2, +, = {£, +j, . . . , Ln) is mapped homomorphically onto

SKί+j by the correspondence / : Lj -> Mj (j = i 4 - 1 , . . . , n). We show that Wli

= {Λί ,. . ., Mn} is also a subalgebra of ©2 and Si = {£/, . . . , £ « } is homomorphic

to SK, by the correspondence Lj-*Mj (j = ί, . . . , w) Since g^gigjgΓ1 =8ffΐι

. . . £ M

W " for i > i, we have h = hihjhr1 = A ^ 1 . . . Aw

m«. Hence exp (AgiLj}
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= (exp ?m+1Li+i). . . (expmnLn) and exp(AhtMj) = (exp#i/+iMj+j) . . . (exp

mnMn). Let Gj ι i + 1 ) and Gj ι ί + 1 ) be the subgroups of Gj and G2 corresponding

to 2ί+i and 2Kf-+1 respectively- Then by our assumption there exists a continuous

homomorphism ψ of Gi(l'+I) onto G2

(ί'+J) such that ^(g> ) = Ay for j > i. Now let

(expmi+jZf+j) . . . (expntnLn) = exp {U+iLi+i + . . . + tnLn). ThenP since 0(g)

- φ(g) = h and ψ(expL) = exp/(£), Z e S ί + j , we have (expiWi+jM/+J) . . .

(ejφίwΛ) = exp(ί, +iΛίi+i+ . . . 4- f»Λf»). Hence it follows that Agt Lj = *;+]£,-+!

+ . . . /«Z» and Ahi Mj = fr+jMi+i + . . . + f«ikf». Then since ^ = log-4^ and
7i n

Asr< = log Aht9 it follows that [Z, , Zy] = Σ 5 ^ and [ΛΓf , Afy] - "Σ 5*Λf*.

Thus our assertion is proved. Then repeating this argument we verify that ®s

is mapped homomorphically onto the subaίgebra 3Jίj = {Mι9 . . . , il/ }̂ of ®2.

If ©2 # %Ri, then the subgroup of G2 corresponding Tli contains A and hence

A is not uniform* Therefore @2 = {Mu . . . ? Λf̂ } and our theorem is thus

proved,

Remark. If ψ is an isomorphism, then φ is also an isomorphismβ

The following corollary is contained in [8]β

COROLLARY. If M\ and M% are compact homogeneous spaces with isomor-

phic fundamental groups9 then they are homeomorphic.

Proof As we have already seen, there exist the connected simply con-

nected rational niίpotent groups Gj and G2 such that Mi = Gj/A and M2 = G2/A,

where A and A are the uniform discrete subgroups of Gj and G2 respectively.

Then A and A are the fundamental groups of Mi and M% respectively and

Mi ^ Mi by Theorem 4

4. Let M be a compact homogeneous space and Λί= G/D as above. Since G is

homeomorphic to an Euclidean space, the homotopy groups 7r, (M) (**> 1) of Mvanish.

Hence by Hopf-Eilenberg-MacLanβ's theory the i-th integral cohomology group of

M is isomorphic to the «-th integral cohomology group of D.2) We shall consider

the 1-st and 2-ήd cohomology group of i¥. The 1-st integral cohomology group

Hι(D) of D is the group of all homomorphisms of D into the additive group of

integers /: Hι(D) = Horn (A /)*10) Since / is an abelian group without element

of finite order, Hom(D, /) = Horn(D/A, /) , where A is a normal subgroup

of D containing the commutator group €{D) of D such that Dι/C(D) is the

torsion group (i.e the maximal finite subgroup) of D/C{D). Let fGHom(D,7)

and ^ 0 . Then ψ(D) is a free cyclic subgroup of / and hence a uniform

}Q) See Eilenberg and MacLane [4], The fact that Horn (D,I) is isomorphic to the 1-st
Betti group of M may be seen also from the fact that D/C{D) is isomorphic to the
1-st integral homology group of M*
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di3cretc subgroup of the additive group of real numbers Vu Hence we may

extend ψ to a continuous homomorphism ψ of G onto Vj. *Then f(g) = exρψ(g)

Is an one-dimensional continuous representation of G and/(rf) = expm, where

d&D and m is an integer, Now take a basis {Lu . . . , Z«} of the Lie algebra

(g of G as in Theorem 3, Then /(expZ, ) = e x p ^ , where πn are integers,

Since f{C(G)) = 1, if Z, e £(®), *w, = 0. Let Lu . . ., Lr be the elements of

this basis which is not contained in ®(<g), Then we obtain a representation #

of ©/&(©) such that #(£,) = w (*'= 1, . . . , r) and g{Lj) = 0 0' > r). Coversely

to every one dimensional representation of ®/S((S) such that Z, correspond to

the integers nu, there corresponds an element φ e Hom(D, 7), where f(expZ )

= w, for -/ ̂  r and c?(expZy) = 0 ίorj > r. Hence we see that Hom(A 7) and

the group of the such representations of ©/(£(©) are isomorphic and the sub-

group of D generated by expZ r+i,. . . , expZ;3? i.e. Df)C(G) coincides with

the above mentioned group DJβ Since D/Df\C(G) is a free abelian group

with the free generators expZ J 9 . . . , expLrp Hom(J9?7) = Έlom(D/Df\ C(G),I)

Is a free abelian group of rank r and r = dim® — dimS(®). Thus H\{D) is

a free abelian group of rank r. Since HX(D) is isomorphic to the 1-st integral

cohomology group Hi(M) of M and Hi(M) is isomorphic to the 1-st Betti group

B*{M) of M* On the other hand the 1-st homology group Iίι(M) of M is iso-

morphic to D/C(D)a Hence the 1-st torsion group of M is isomorphic to D

Π C(G)/C{D). Thus we have proved the following,,

THEOREM 5, Let M be α compact homogeneous space and M = G/D, where

G is a connected simply connected rational nilpotent group with the Lie algbera

© and D is a uniform discrete subgroup of G* Further lei C(G)9 C{D) and

<S(®) be the commutator groups and algebra of G, D and ® respectively. Then

the 1st Betli number of M is equal to dim®— dim®(®) and the 1st torsion

group of M is isomorphic to D f\C{G)/C(D)a Therefore the 1st cohomology

group of M with rational coefficients is isomorphic to the 1st cohomology group

of ike rational Lie algebra ® with rational coefficients.™

5, Next we consider the 2-nd cohomology group of Λf. We propose to show

that the 2-nd cohomology group of M is isomorphic to the 2-nd cohomology

group of the rational Lie algebra ® with rational coefficients,, For this purpose

me resume here the connections between the 2-nd cohomology groups of groups

Let I i , . , , , ^ bso a basis of <& such that its structure constants are rational. Then
£ j , , . . , Ln span a Lia algebra ©/? over rational numbers. If Lιf>.*,tLn

f is another
basis oΐ % possessing the above property and if $V is defined analogously then ©#
and @?/ are not always
the proof of Theorem 6,

£ j , , . . , Ln span a Lia algebra ©/? over rational numbers. If Lιf>.*,tLn

f is anot
basis oΐ % possessing the above property and if $V is defined analogously, then
and @?/ are not always isomorphic but have the isomorphic cohomology groups, Cf,
the proof of Theorem 6,
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and Lie algebras and their central extensions.m The group Cq(D) of the q*

dimensional integral cochain of the discrete group D is defined as the group of

all functions / of q variables in D with values in the additive group / of in-

tegers. Addition in Q?{D) is defined by

(/l+/s)(*l, . ,Xq) = /l(#l,. 9Xq) +/ί(#l, • 9 Xq)*

The coboundary operator d: C9(D)-*Cq+1{D) is defined by the formula

(δf){Xl9 . . . Xq + i) = /(*2, . . . , Xq + ι) + S ( - ly/iXlf . ,XiXi+l, '

Cocycles, coboundaries and cohomology groups are defined as usual. Let D*9 D

and E be three groups and φ: D * ^ D a homomorphism of D* onto D such that

E is the kernel of φ. If E is contained in the center of D*9 the pair (D*, 0) is

called a central extension of D* by the kernel E. Two extension (A*, 00 and

(Do*,<ρ2) with the kernel iί are called equivalent if there is an isomorphism τ

of A* onto A* such that 02r = φi and every element of E is fixed under r.

We consider here only the central extensions with infinite cyclic groups as

kernels and hence we call for simplicity such extensions simply the extensions

of D. Now let (D*, φ) be such an extension of D, For each x&D select a

representative u{x) GΞ D* such that φ(u{x)) = AT. Since 0 is a homomorphism,

&(#i)#{#2) and u{XιXo) have the vsame image xtf* in £> under ψ? so

u{Xi)u{Xz) = g{Xu Xz)u(X\X*)9 Xi, x» e A

where g{xi9 Xi)&E, the kernel of the extension. g(Xi,x*) is called the factor

set corresponding to the given set of representatives {u{%)}9 It satisfies the

relation g(xi9 Xz)g{XiXs9 %z) = g(x°, x .0g{Xi, XiX*) for xl9 x29X3&D. Since £ is

infinite cyclic, let g be a fixed free generator of E and g{X\9x*)-=zef(x**x*\

Then f{X\, ,r») is an integral 2-cochain of JD and satisfies the relation

Hence /(AΓJ,^2) is a cocycle. Now let {^(A:)} be another set of representatives

and h{X}9x») the 2-coc5'-cie corresponding to {v(x)} in the above manner. Then

we can show that f(xi9 x->) and h(xj9x*) are cohomologous. We conclude that

each extension (D*9 0) determines uniquely an element of the 2-nd cohomology

group Hi{D) of D. Conversely it can be shown that to each element of Ho{D)

there corresponds an extension (D*,φ) which is unique within an equivalence

class. Thus there is a 1-1 correspondence between the elements of H2(D) and

the equivalence classes of extensions. Now let © be a Lie algebra over a field

K. A ^-linear alternating mapping of © into K will be called a ζf-chain and

J2) For the details see Eilenberg and MacLane [4] and Chevalley and Eilenberg [2],
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they form a linear space CQ(L) over K. The coboundary operator d is a linear
mapping of CQ(L) into CQ+1(L) and is defined by the formula

It holds the relation #£/ = 0 and cocycles, coboundaries and cohomology groups

are defined as usual. Now let ©*? © and 33 be three Lie algebras and 6: ($5*

-* © a homomorphism of ©* onto © and S3 the kernel of θ. If SB is contained

in the center of ©*, the pair (©*, (?) is called a central extension of © by the

kernel 58. The equivalence of two extensions are defined as In the case of the

group extensions. We consider in the following onJy the central extensions

with one-dimensional kernel and so we call such extensions simply the exten-

sions of ©β Given such an extension (©*, θ) of © we select a linear mapping

v: ©-»©* with θv{x) — x. The set {v(x)} is called a system of represen-

tatives of the extension (©*, 0). Since β(Z.v(x)9 υiy)2)-[.x, yl~0v([.x9 y~J)9

there is an element g{x,y) e 58 such that

!>(#), i OOIl = g(x, y) + ^(JX Λ)

Since 58 is one-dimensional, we may consider g(x,y) as an element of C-(L)

and is called the factor set corresponding the representatives {v(x)}. We may

prove that the factor set g{x,y) is a cocycle and if (v{x)} is a different system

of representatives, the factor set g(x9 y) corresponding to {v{x)} is cohomo-

logous to g(x,y). Thus to each extension [@:¥, θ) there corresponds a definite

element υf the 2~nd cohomology group i/2(©) of ©. Coversely it can be shown

that to each element of H<t(@) there corresponds an extension 1̂ 03*, 6) which

is unique up to equivalence. Hence there is a 1 =~ 1 correspondence betvv'een the

elements of #«(©) and the equivalence classes of extensions.

Now let D be a discrete subgroup of a connected simply connected nilpotent

group G. Then, since G is nilpotent and contains no element of finite order,

the same holds for D and by Theorem 1 D has finite generators. Let, con-

versely, D be a (discrete) finitely generated nilpotent group without element

of finite order, ϊt has been proved by MalcevI3> that there exists a connected

simply connected nilpotent group G such that D m a, uniform discrete subgroup

of G. For the sake of convenience and completeness we sketch here a proof

of this theorem of Malcev. Let D be as above. There exists a series of

normal subgroups of D: DZDDiZ) . . ^ Dr D D?,ti --- {e), such that Di/Dui

are infinite cyclic. We call it a normal series of D. The length r of the

normal series is* an invariant of D and is called the length of D. Let us

assume that the theorem has been proved already for all groups whose length

I3> See Malvec [8].
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are < /. Let D be the group of length r* Then D = {d, A}9 where D/Dι is

infinite cyclic and d mod Dι is a generator of ZfyA* Let Gj be a connected

simply connected nilpotent group which contain Dx as a uniform discrete sub-

group. Let ψ(x) = ί/AΓ̂ -J be the automorphism of A . Then we can extend φ to

a continuous automorphism ?̂ of Gj (Theorem 4)β #> induces an automorphism

0 of the Lie algebra (Si of G} and we can show without difficulties that the

eigenvalues of θ are L Then log θ = y is a derivation of ©3 whose eigen values

are all 0 and whence the extesion of ©j by -η is a nilpotent Lie algebra (§ and

the simply connected group G corresponding to (S contains D as a uniform

discrete subgroup,

6, Now we prove the following

THEOREM 6« Z^ί ©* be a nilpotent Lie algebra over the field R of rational

numbers and (g the Lie algebra obtained from &E by extending the ground filed

R to the field P of real numbers. Further let G be the simply connected nilpotent

group corresponding to © and M the compact homogeneous space of GM ) on

which G is almost effectived Then the 2-nd cohomology group Ho{(gB) of (&R

is isomorphic to the 2-nd cohomology group with rational coefficients of M.

Proof. Let M-G/D, where D is a uniform discrete subgroup of Gβ Let

gu. . . ^ « b e a fixed canonical basis9) of D and g% = expZί. Then the set GR'

of all linear combinations of Zj, . . , , Ln with rational coefficients forms a Lie

algebra over Ri5) which is not always isomorphic to ®i?« But î 2(©iθ = ̂ 2(<&«'),

for by extending ground field R to P ®β and ©^ yield the same Lie algebra

@? and ZΓ2(@) regarded as a vector space over P is obtained from H2{Q$R) and

H((&R) respectively by extending R to Po Hence we may assume ©^ = © ^

The 2-nd integral cohomology group Ά(M) of M is isomorphic to the 2-nd

cohomology group H2(D) of D,2) Let us take an element of H»(D) or equiva-

lently an extension (D*, φ) of D. Since D* is a central extension of D with an

infinite cyclic group E as the kernel9 D is also a finitely generated nilpotent

group without element of finite order, Let φ(gi*) = g% for i = 1,. . . , n and

&n+i a fixed generator of E,, Then &•* form a canonical basis of D*β Let now

G* be the simply connected nilpotent group containing D* as a uniform discrete

subgroup and let # * = exp Z/*. Then Zi*,. . . , Z*,., span the Lie algebra ©**

over RJ5) We can extend φ to a continous homomorphism of G* onto G and

we get a homomorphism 6 of ®Λ* onto ®Λ. ^ is defined by θ(Li*) = Z, for

34' There exists always such a homogeneous space, Cf, 8 ) ,
Γ l ) We may show as in the proof of Theorem 1 that the structure constants of L\}.,,, Ln

are r a t i o n a l
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i = 1$ . . . a n and Θ(L*+1) = 0 (cf. the proof of Theorem 4). Since the kernel

of θ is one dimensional and is contained in the center of (§B*, (©**<, θ) is an

extension of ($R and hence determines an element of iί>(®22)a We shall show

that the correspondence (D*, φ)-* (®Λ*, β) is a homomorphism of H2{D) into

H2{GB)» Let, for simplicity, g, * = hi and Z, * = Jkfc a(£is» . . . , ̂ Λ*») = &is*. . . W»
n n

(5i being integers) and # ( Σ *Λ') ~*Σ®iMi (α* being rational numbers) form

a set of representatives of (D*9 φ) and (®ϋ*9#) respectively. Let (ft/i . . .&»*«)

(ft,* . . . fc/») - ft,«ι . . . ft,*- AftV and C Σ αίΛ4i, Σ ftM,] = Σ r *M*. Then «„+,

. . . gns», gitι . . &'») = 0 ( s l 9 . . . , s», ίj, . . . , / » ) and r»+i = ̂ ( Σ « Λ »

= y i ^ifcj ^?ί+1 are the 2-cocycles corresponding to (D*3 φ) and (@ϋ9ff)

respectively, We consider ψ(si9 . , , , s » , ί i , . . . , ίΛ) as a function of si9 . . . 9

Sn9ti$ . . . , ί» and show that it is a polynomial of s and t with rational co-

efficients and that φ is the form

(1) Ψ(su . . . , s Λ , * „ . . . , f,,) = i Σ Sitjcff* + . . . . ,

where . . . denote the terms of degree > 2β

By the formula of Hausdorff (expM) (expiV) = exρ(M + ΛΓ+ -~- [Λf, iV]

4- . . .) we have, Π exp5, ψft = exp ( Σ $iMi+ -K- ( Σ Wy C-M'* Af/3) + . . . ) and

Π expsίibfί Π exp Wkf, - exp ( Σ (^ + //) Afi 4- \ ( Σ («W + Wy +srfy)CA6,
ί = J ί = 3 < = J * i,j

+ . . . ) = expSV*^*)^** where

(2) {

are the polynomials with rational coefficients*, Moreover since {Mi9Mi+i9. . . ,

ϋί»+3} are the ideals of ®* for f = 1,2, . . . , n + 1 the terms of degree ^ 2 of
n+3

^ a r e t h e p o l y n o m i a l s of sί9. . . , S Λ - I a n d ί 3 , . . , ί f t - i . L e t e x Σ

= n Π e x p K f Λ f i . T h e n s i n c e Π e x p ^ ί M s ' = e x p Σ (m + oa{u))Mi9 w e h a v e
< 3 t l i3 3!

where oa(u) = y Σ u%uιc%ι + . . .

are the polynomials of # j , . . . , «ί-i with rational coefficients and . . . denotes

the terms of degree > 2 β

Then we can easily show inductively that

where AWi,. - . 9 ^*-i) = - -yΣJ ί̂̂ ŷ */ +
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are the polynomials of λi9. . . , λk-i with rational coefficients. Then, substituting

ψi in λi, we have

φ{s, t) = ψn+i - -^-Σ Ψiψjcf/1 + . . .

and by a simple calculation we may verify the desired properties oίφ(s,t). Then

we obtain the relation:

(3) £ ( Σ * ί£ό Σ ft£ι) = 2 x (The term of degree 2 of 0(αr, /3)).

Let now (A*, 0i) be another extension of D and let GΛ ®]^, &Λ . . . , k*+i

Nι, . . . , JVrt, iV«+i, ( ® & , 0 J ) be defined as in the case of (D*, 0). Then fe*

- expΛfr, ®|ξ = RNj + . . . + RNn+i and 0j(Λτ;) = £/, * = 1, . . . , « , O^Nn+i) = 0.

We take the representatives of (Dj*,0i) and (®&, (?j) respectively as in the case

of (D*9φ) and (®Λ*, ^) and obtain the cocycίes dι(gts*9 . . . gn

Sn, gΐι . . . ^Wίji)

-ψi(s91) and # j ( Σ α«^'> Σ A'-̂ i) of Z> and ® respectively. Then the relation
i -l ί=l

(3) holds also for gι and ̂ ,. Let d2(giSi . . . #,s», ^ j^ . . . gn

tn) = ̂ 2(5, f) =

= 0(5, ί) + ψι{s, t). Then dι~φ<>(s9f) is a cocycle of 2λ Now we construct

an extension (A*, φ2) of £) as follows: Let A * be the set of symbols hfSi

. . . h*Snh*sϊγι, where s, are integers and we define the product in D2* by the

formula

where wJ? . . . , w« are determined by the relation

( £ J S J . . gn*n)(gιtι . gn'») =giUl . gnUn

We rray easily verify that D2* forms a group and {A*J?+1} is contained in the

center of D2* and φ«{h*si . . . h*Snh%s

+γι) =giSl . . . gn

Sn is a homomorphism of

A * onto D with the kernel £" = {A*^/1} and hence (D^\φ2) is an extension of

D. Clearly Aί* form a canonical basis of A * such that φo(hi*) = ̂  and ̂ 2(s? ί)

is the cocycle of D corresponding to the representatives thigi5* . . . gVO = hfSi

. . . A*SM. Then we can construct an extension (®%,, θ*) of ©^ such that the

cocycle g2 of ®R corresponding to this extension satisfies the relation anologous

to (3). Since ψ2(s, t) - φ (s, t) + ̂ ( s , ί), we get by (3) g2{X, Y) = ̂ (X, F) + Λ

(X Y), where X, 7 E β / . Thus the correspondence (D*9 ψ) -* (®Λ*, <9) de-

fines a homomorphism f of i?2(I>) into HS(®JB). We show that the kernel of

ξ is the group T of all elements of finite order of H2(D). Since H2(®R) con-

tains no element of finite order T is contained in the kernel of ξ. Let con-

versely ξ(φ(s,t)) = g(X, Y) and £—0 in H2{%R). Then there exitss an element

C'lβί) such that g(X, Y) = a/(X, Y)=/(PΓ, Γ ] ) . Then

^ ^ ^ Hence
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Let L{ = Zi* +/(Z, ) i * + I for ι = l , . . . , « and Z; + l = Z* + I .

Then ©' = {Z/, . . . , £„'} is an ideal of ©* isomorphic to © under the corre-

spondence L{ -» Z, and ®* = ®' + {ZJ,+J>. If /(Zj) are all integers, then ψ(s, t)

- 0 . For then g/ = gfgtftf* = exp 1/ (* = 1, . . . , w) and g'n+1 = £*+ J form a

canonical basis of D* and g/,. . . gή generate a subgroup isomorphic to D and

hence .D* splits over E = {^+,}. lί /(Li) are rational, take an integer m such

that m/(Li) are the integers. Then since ξ(mφ(s, t)) = mg((X, Y) = mδf(X,

Y) and mf(Li) are integers, m^(s, ί) —0. Thus the cohomology class containing

ψ(s,t) is of finite order. Hence the kernel of f is equal to T. Now take an

element of ££>(©#) or equivalently an extension (©«*, 0) of ®Λ. Let {ZΛ . .

L*,L*+1) be a basis of ®B* such that ^(Z, *) - Z, (1 ^ f ^ w) and άf(Z*+1) = 0

and ^ ( X Y) = ̂ ( Σ αίZ, , Σ /3,-Zf) = S ccφfff1 be the cocycle (-factor set)

corresponding to the representatives v(^ α, Zί) = 2.] α, Z, *, where cf/1 are the

structure constants of the basis {Li*}. We show that there exist an integer m

and ψ(s, t) such that ξ(ψ{s,t)) = mg(X, Y). Let G* be the simply connected
n M n+J n + 1

group corresponding to ©* and Π exp s, Zί* Π exp 3ftZi* = Π exp «,Z, *. Since

expZj*, . . . ,exρZn* generate a group isomorphic to D mod. exρίZ*+J, if s, , ί7-

are integers, wj,. . . , un are also integers. Now

where ^(s, ί) is, as proved before, a polynomial with rational coefficients of s? ί.

Then there exists an interger m such that the value of mφ(s, t) is an integer for

integers s, /. This shows that expZj*, . . . , expZM*, exp ^ + I generate a uni-

form discrete subgroup D* of G* which is clearly an extension of D and the
n

cocycle ψ\s, t) corresponding to the representatives Π exp s/Zi* = n {gιs* . , . gn

s«)

is mψ{s, t). Then ξ(rnψ(s, t)) = m^(Z, y). Thus for each element 2 e . f t ( & )

there exists an integer m such that mz&.ξ(H«(D))* ξ(H<>(D) is a free abelian

group of rank r and r is equal to the rank of //2(D). We may easily see that

r is equal to the dimension q» of #2(6$/?) over R. On the other hand, since

Ή2{D)^H2{M), r is equal to the 2-nd Betti number p2 of M and hence p« = <?2.

Thus i72(©R) and the 2-nd cohomology group H«(M, R) with rational coef-

ficients are the vector spaces over iv? of the same dimensions and hence they are

isomorphic.

Remark. The 2-nd cohomology group of any Lie algebra © is the dual

space of the full exterior center of-®. It is a theorem of Ado that, if ® is

nilpotent, then Hf{®) % 0. See Chevalley and Eilenberg [2].
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