ON THE DISCRETE SUBGROUPE AND HOMOGENEQUS
SPACES OF NILPOTENT LIE GROUPS

v0z0 MATSUSHIMA

Recently A, Malcev? has shown that the homogeneous space of a con-
nected nilpotent Lie group G is the direct product of a compact space and an
Euclidean: space and that the compact space of this direct decomposition is also
a homogeneous space of a connected subgroup of G. Any compact homo-
geneous space M of a connected nilpotent Lie group is of the form M = G/D,
where G is a connected simply connected nilpoteut group whose structure con-
stants are rational numbers in a suitable coordinate system and D is'a discrete
subgroup of G.

In this paper we first determine the “situations” of discrete subgroups of a
connected simaply connected nilpotent group. In making use of this result we
may prove the results of Malcev in a different method. Then we make some
considerations on the homological properties of a compact homogeneous space
and show that the cohomology groups of dimensions 1 and 2 of a nilpotent Lie
algebra (& over the field R of rational numbers are isomorphic to the corre-
sponding rational cochomology groups of a compact homogeneous space of the
connected simply connected nilpotent group corresponding to the Lie algebra G
obtained from &g by extending the ground field R to the field of real numbers.
In the above discussions Hopf-Eilenberg-MacLane’s theory? on the relations
between homology and homotopy of a space will play an imporiant réle.

1. let © be a Lie group. To every element L of its Lie algebra @ there
corresponds a ona-paramenter subgroup g(¢) such that L is the tangent vector
at the unit elemeni to the curve g(f). We shall denote this one-parameter
subgroup g(1) by exp tf, and exp L is the point oi parameter 1 on this curve.
1t & i3 a connerted simply connected solvable group, then G is homeomorphic
to an Euclidean space and each Lie subgroup H of G corresponding to a sub-
algebra $ of § i3 closed and simply connected,”

Tieorem 1. Lei G be a connected simply connected wmilpoient group wilk
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the Lie algebra & and D a discrete subgroup of G. Then we may choose a
basis Ly, Ly, ..., Ly of & which has the following properties:

1) {Liz1,. . .,Ln}is an ideal of {Li,Liss,...,La} for i=1,..., -1
and hence every element in G may be written uniquely in the form (exp L)
(exp t,Ls). . .(exp t,Ln).

2) There exists an integer m, 1 = m = n, such that {Lm, Lms1, . . ., La} is
a subalgebra of & and that, if [L;, Ly} = 20’1-,, L for m<j, k< n, then c%,
ave rational numbers.

3) The elements gr =exply (R=m, m+1,...,n) constitute  system of
generators of D and every element in D may be written uniquely in the form
2’ . . . @5, where s; are integers.

For the proof of Theorem 1 several lemmas are necessary.

Lemma 1. Let G be a connected nilpotent group with the Lie algebra .
Then to every element g in G there exists an L& ® such that g=exp L.
Moreover, if G is simply connected, L is determined uniquely by g&.

Proof. Since the center of G is not discrete, the existence of such am L
may be proved easily by induction on the dimension of G. Now let G be simply
connected and let g=expL =expl/. We denote by A, Ar and A, the ma-
trices corresponding to g L, and L respectively in the adjeint representations of
G and . Then Ay =exp A; = exp Ar. Since ® is nilpotent, A, and A, are
nilpotent and hence logexp A, = A; and logexp Ay = Ar. Thus A; = Ar.
Thevrefore L = L' + M, where M is in the center of © and exp L =exp L'+exp M.
Hence exp M = ¢, the unit element of G. This shows that the one-parameter
subgroup exp{M is compact. But G can not contain any compact subgroup
different from ¢ and hence exptM=E. Thus M=0and L=1L'.

Lemma 2. Let G be a connected nilpotent Lie group and H a connected
Lie subgroup of G. Then the normalizer N(H) of H is connected.

Proof. Let  be the subalgebra of the Lie algebra & of G corresponding to
H and N(9) the normalizer of  in . Let ge= N(H). Then by Lemma 1 there
exists an L & @ such that g=exp L. It is sufficient to show that L& N(D).
As ge N(H), AD £ 9D and hence log A,H S 9. Since log Ay = A, AH =[L,
H1cH. Thus LeEN(H).

By the similar argument we may prove the following

Lemma 3. The center of a connected nilpotent Lie group is connected.

Lemma 4. Let H be a subgroup of a connected nilpotent Lie group G and
N(H) the normalizer of H. Then N(H) R H.

4) We use these notatians throughout this paper.
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Proof. By induction on the dimension of G. Let Z be the center of G.
If Hp Z, then c}early NHYx H. If HD Z, we may use the assumption of
the induction on G/Z and H/Z and we obtain N(H) = H.

Proof of Theorem 1. We shall prove our theorem by induction on the di-
mension # of G. Le¢: us assume that it has been proved already for all di-
mensions < #. Let N(D) be the normalizer of D and A the connected com-
ponent containing the unit element of N{(D). Since A contains the center of
G,dim A=1. If A =G, then D is normal and hence contained,in the center
of G. Since the center of G is connected by Lemma 3, every thing is clear in
this case. Hence we may assume A % G. Now let K be the normalizer of A.
Then K is connected by Lemma 2 and V(D) C K and hence DC K. If K G,
then by our assumption of induction we may choose a basis Lz, L.y, . . ., Ln
of the Lie algebra & of K satisfying the conditions of our theorem. Then by
Lemmas 4 and 2 we may add L;,...,Lsy to L, Lgsy,...,L, so that L,
...,Ly is a basis of @ satisfying cur conditicn 1). Hence we may assume
K =G. Then A is a normal subgroup of G. Now D<A CN(D) and hence
DA C N(D). Therefore the connected component of the unit element of DA
is A and hence the group DA/A is a discrete subgroup of G/A. Let U be the
subalgebra of & corresponding to A. It follows that we may apply our theorem
to G/A and DA/A: we Obtain a basis {L/5 ..., L) of &/U satisfying the
properties of our theorem. Let {f,¢--1,...,7} Dz the subset of the set {1,
..., 1} satisfying our conditions 2) and 3) and let g*=expiy® (k=1 ¢t+1,

., D). Let gee D be the representative of the element gp* e DA/A and g
=exp Ly with Ly @. Let Ly* de the class of L; mod U then gr* = exp Ly
and since G/A is simply connected, Lp* = L* by Lemma 1. Thus Lr is a
representative of Lp*. Further let L; be a representative of L;* for j < t.
Since A C N(D), the group D A is a discrete normal subgroup of 4. Then
we may choose a basis L, ..., Ly of U such that gr =expZly (B=s,5+1,

., n) constitute a system of free generators of the discrete central subgroup
DNAofAand[Ly Lil=0fors<k j=n. LetdeD. Thend=gH...
g (A) and u; are unique. Then d=g/ ... .g"%a,ac DNA, and a = g

. &M and #; are unique. Hence d= g/ ...g/Mg" ... g, and this ex-
pression is unique. Now we show that {L:, Ltss,. . ., L1, Ls, Lssy, .« ., Lu}
is a subalgebra whose structure constants are rational. We set {L;,. .., L,

LS” . 'sLﬂ}=<Mm, Mm+l,- . '9Mﬂ>5 i-e. Lt':]‘Im, Lt+]=Mm+i,. . .,L” :M,.
We shall show that, if Dy = {Mprs1,. .., My} is such a subalgebra, Hr = (M,
My, ..., M,)is also such a subalgebra (k<s~1). Let(g:,...,8,8,...,
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&n)=(hm,. .., 0hn) i.6. Gt = hm, Gts1= Bms1s. .., 8 = hn. Further let Hrys
and G; be the subgroups of G corresponding to the subalgebras 9r.; and
@i ={Li,. .., Ly} respectively. Then from our construction of the basis {L;,
..., L) we see that Gi,; is a normal subgroup of G;. Now let & = hrhyhr™!
(#=k+1). Since hr =exp Mr and Mp = Li_s-ky+1, Bt € Gis_iy+1 and by
€ Gl-(s-ky+2. Hence h = hphuhp € Gi_s-kysz. AS BE D, h = hm*» . . . hs¥n
= eXP WMy . . . expusMy and 80 um = ... =uy =0, ie hphehe™ = hj% . .

hatn € Hpyy. By Lemma 1 there exists tg i Mpyy + . « . + £2My & ey such that
h=exp(tpeMpy+ . .. + xMy). But k= hrexp Muhe~' = exp (AnM,). Hence
we have Ap, My =t Meyi+ . . . + taM,, whence Any*Orss E Drsr and log Apye
D1 € Drys. But log A, = Ax, and therefore [Me, Dri1] E Dria. Hence (M,
Dryy) is a subalgebra of &. Next we show that, if [M:, Myl = 7.1 Mra+ . . .
+72Mn, 7; are rational numbers. Since [Mp, M,] = (log As,) - M,, it is sufficient

to show that g4, . . . , t» are rational. Now AfE+1 . . . hy*s = exp(ues 1 Mess) - - -
exp(unMy) = exp(tes1Miss + . . . + EaMn). Since the structure constants of { Mz,
. .. M,) are assumed to be rational numbers and w4y, . .., %, are integers,

we may easily see by the formula of Hausdorff that #; are rational. Thus { Mk,
..., M} is a rational subalgebra. Repeating this argument we may see that
R ={Mm, ..., M,) is a rational subalgebra. Now we may add Mi,. .., Mn-;
to My, . ...,M, so that {M,,. .., M} is a basis of & satisfying the condition
of Theorem 1, g.e.d.

2. We prove in this and next sections the theorems of Malcev in making
use of the results in 1.

THeOREM 2. Let M be a homogeneous space of a connecied nilpotent group
G, There exists a compaci subset C and @ subset E, homeomorphic to an
Fuclidean space of some dimension, such that M is homeomorphic to the
product space C X E. A certain connected closed subgroup of G acts transitively
on C,

Proof. First let G be simply connected and M = G/H, where H is a closed
subgroup of G and G/H is the right coset space of G maod H. Let H, be the
component of the unit element of # and N the normalizer of Hy,. Then N is
connected by Lemma 2 and we may take the one-parameter subgroups Vi, . . .,
V, of G such that G=V,...V,N and Vi,,... V,N i3 a normal subgroup of
Vi...V,Nby LLemma 4. Since NDH, G/H~V,x ... x V,x N/H, where
ViX ... X V,is an Euclidean space. Further since H, is 2 normal subgroup
of N and V/H =~ N/H,/H/H, and N/H, is simply connected, we may consider
only the case where H is a discrete subgroup. Hence let H = D be a discrete
subgroup of G. Let {L;,...,L,} be a basis of the Lie algebra @ of G satisfying
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the conditions of Theorem 1 and R = {Lm,. .., Ly} and R the subgroup of G
corresponding to . gr=exply (B=m-+1,...,n) form a system of gener-
ators of D and D(C R, Hence G/DxV,; X ... X Vpn.y XR/D where V; = exp
tL; 4=1,...,m-—1). We show by induction on the dimension of R that
R/D is compact. Let R, be the normal subgroup of G corresponding to the
ideal My = {Lmss,. .., Ly of R and V; = exp Ly and D, the normal subgroup of
D generated by gmuser,. . .,8n. Clearly D R,. Now we define a continuous
map f of the space V; x 8,/D, onto R/D by f(a, D\b) =Dba, where a & V, and
bez R,. This definition is independent of the choice of the representative & of
the coset D;6. Now we may easily verify that, if f(a, D\d) = f(a’, D}¥%), then
(@, D) = (gn°G, D\g*bgmn™®) (8= £1, £2,...).
Let {Dcz} be an infinite subset of R/D. We may choose from f~*(Dct) a point
(ar, D:by) such that the absolute value of the coordinate of ar is = 1. We may
assume that the sequence {a;} converges to a point a of V. Since we have
assumed that R,/D, is compact, it is possible to choose a subsequence (Db}
of Dbr such that it converges to a point Db of R,/D,. Then the sequence
{Decr;} converges to the point Dba. Hence R/D is compact. Next let G be an
arbitrary connect nilpotent group and G the universal covering group of G. Let
S be the projection of G onto G. M becomes 2 homogeneous space of G by the
formula Z(m) = f(g)(m), where g€ G- and me M. Then M= C x E, where
C is a compact subset of M and E is a subset of M homeomorphic to an
Euclidean space and a certain connected closed subgroup X of G operates
transitively on ., Then f(X) is a connected subgroup of G which operates on
C transitively. Then since C is compact, the closed connected subgroup K =?(E)
is also transitive on C, g.e.d.
We see from the above proof the following corollaries.

CoronLARY 1. Let M be a compact howmogensous space of a connected nil-
poteni Lie group, then M = G|D, where G is a connecied simply connected
nilpotent vational Lie group® and D is a discrete subgroup of G.

Corottary 2. If « connected simply connected Lie group G acts on a com-
pact space M transitively and almosi effeciively,® then G is rational and the
ssotvopy subgroup® H of G is discrete,

5 A nilpotent group is said to be rational, if iis structure constants are rational in a
suitable coordinate system.

8) A Lie group G is said to be almost effective on a homogeneous space M, if the closed
normal subgroup of G consisting of all elements of G which leave fixed every point
of M is discrete. The isotropy subgroup of G is the closed subgroup of G consisting
of all elements of G which leave fixed a point of M.
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For then M = G/H and since M is compact the normalizer of the com-
ponent group H, must be equal to G.

3. Now we consider the structure of the compact homogeneous spaces.”
Let G be a connected simply connected nilpotent group. A discrete subgroup
D of G is said to be wuniform if the space G/D is compact. G contains a

uniform discrete subgroup if and only if it is rational.®

LEmMA 5. Let H be a connected closed central subgroup of a connected
Lie group G and D a discrete subgroup of G such that H/D [\ H is compact.
Then DH/H is a discrete subgroup of G/H.

Proof. Let Dy=DNH. Then D, is central. Since H/D, is compact and
D/D, is a closed subgroup of G/D,, HD/D, is a closed subgroup of G/D,
whence HD is a closed subgroup of G. Then since DH D H, DH/H is closed
in G/H. But as DH/H ijs enumerable, it must be discrete.

Now let G be a connected simply connected group with the Lie algebra
G and GDEE)DEAB)D ... DEHE)DE*(B) = {0} the descending central
eries of @ i.e. CI(®) =[G, ¢-1(®)] and let GDCG)DCHG)D ... DCHG)
DCH(G) = {e} be the corresponding series of the subgroups of G. Then
the following theorem holds.

TreOrREM 3. Let G be a connected simply connected nilpotent group with
the Liz algebra & and D a uniform discrete subgroup of G. Then we may

chvose a basis {Ly,...,L,} of @ such that {Li,, Li;1+1, . . ..Ln} is a basis of
CA(®) Sor k=1,...,1 and that g; = exp L; form a system of generator of D
and every element of D may be writlean uniquely in the form g% . . . go". Let

D ={g,..., 8. Then Di are normal subgroups of D and D;,= D C*G).

Froof. We shall prove this theorem by induction on the length ! of the
desecending ceutral series of §. Let us assume that it has been proved already
for groups whose length of the descending central series are < /. We first
show that C!(D) = {e}. For we may choose a basis {M,,. .., M.} of & such
that di=expM; (i =1, ..., n) form a system of generators of D by Theorem 1.
Then by the formula of Hausdorff d; o d; = did;jd;™'d;~" = exp([M;, M;]1+ ¢(M;,

7 As we remarked in the proof of Theorem 2, any homogeneous space of a connected
Lie group may be considered as a homogeneous space of its universal covering group.

8 If such a subgroup exists, then G is rational by Theorem 1. The existence of a
uniform discrete subgroup in a rational nilpotent group has been proved independently
by Malcev and Kuranishi. See Malcev [1] and Kuranishi [7].

9 A system of generators gi,...,8&: of D such that every element of D is written unique-
ly in the form gi1... g, and gi,...,8 (i=1,..., n) generate a normal subgroup of
D will be called in the following the canonical basts of D.
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Mj)), where ¢(M;, M;) is a commutator polynomial of M;, M; such that ¢ (M,
M;) € 6*(®). By the repeated use of this formula, we have di,o (di,° (. . .
o(di, odiy,y) . . ) =exp(IMi[Mi.[ ... [ Mi, Mi,,]...]1)eC(D). Since 6/(®)
% {0}, we may choose Mj,, . . ., Mi,, such that [M;[My[ ... [ My, M;,,]...]]
= 0. Then dio(di.o(...(diyody,)...)*xe, whence C'(D) = {e}. Since
CH(D)CDNC(G), Dy= DN CG) =« {¢}. We show that D, is a uniform dis-
crete subgroup of C/(G). Suppose that D, is not uniform in C/(¢). Then
there exists in C/(G) a closed connected subgroup H such that D), is uniform
in H by Theorem 1. Since C!(G) is contained in the center of G, H and D, are
also central. Then by Lemma 5 DH/H = I is a discrete subgroup of G/H=G".
Clearly LY is uniform in G’ and C/(G)/H = C!(G’) ¥ e. We see easily that I/
N C!(G") ={e}. But we may prove as akove that D’ N C'(G’) = {e} and this is
a contradiction. Hence D; must be a uniform discrete subgroup of C/(G). Then
DCY(G)/CHG) is a discrete subgroup of G/C'(G) by Lemma 5. The length of
the central series of the group G/C!(G) is I ~ 1 and we may use the assump-
tion of induction and we may prove our theoiem by the same way as in the
proof of Theorem 1. The other part of cur theorem is obvious, g.e.d.

Remark. D N C(G) contains the commutator group C(D) of D. They are
not always equal, as we may show by an example. We shall show in the next
section that DM C(G)/C(D) is a finite group. Since D/D N C(G) is a free
abelian group with 7 (=dim G — dim C(G)) free generatcrs, D/C(D) is the
direct product of the finite group D N\ C(G)/C(D) and the free abelian group
of rank 7.

The following theorem is a slight generalization of a theorem in [8] and
will be used later.

THEOREM 4. Let G, and G, be the connected simply connected nilpotent
groups and D, and D, the uniform discrete subgroups of G, and G, respectively.
Let ¢ be a homomorphism of D, onto D,. Then we may extend ¢ to a con-
tinuous homomorphism ¢ of G, onto G..

Proof. Let &, and @. be the Lie algebras of G, and G, respectively. Let {L},
..., Ly} be a basis of @, satisfying the condition of Theorem 1. Let ki = ¢(gi)
and % = exp M;. Suppose that Mis; = {Mi.i, ..., Ma} is a subalgebra of &:
such that the subalgebra Qi.; = {Li;s, ..., L} is mapped homomorphically onto
Mi,, by the correspondence f: Lj—>M; (j=1i+1,...,n). We show that M;
={M;,...,M,) is also a subalgebra of &, and & ={Li,. .., L} is homomorphic
to M; by the correspondence L;—>M;(j =14,...,n). Since g=gigi& ' =&}

. g™ for j > i, we have h = hihjhi™' = k™. . . hy». Hence exp (AgLj)
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= (exp MisiLiy1) . . . (expmsLy) and exp (AnMj) = (exp i Miyi) . . . (exp
maMy,). Let GtV and G,+" be the subgroups of G; and G. corresponding
to Q.5 and M;,, respectively. Then by our assumption there exists a continuous
homoemorphism ¢ of G,V onto G,+V such that ¢(gj) = hj for j > i. Now let
(expmiLiyy) . . . (expmaly,) = exp (¢inLisi+ . . . + tsly). Then, since ¢ (g)
=¢(g)=h and ¢(expL)=exp f(L), L& L1, we have (expmiy M) . . .
(expmnaMy) = exp(tiviMiy+ . . . + tnMys). Hence it follows that AgeL; = t;41Li 4,
+ .. taly and Ape M =tiaMis + . . . + taMu. Then since Az, = log Ag,; and
Au, = log A, it follows that [Li, L;] =k§";+l sily and [M;, M;] = gﬂskm.
Thus our assertion is proved. Then repeating this argument we verify that @&,
is mapped homomorphically onto the subalgebra M = {M;,. .., M,} of G..
If &, 9M;, then the subgroup of G, corresponding I, contains D, and hence
D; is not uniform. Therefore &: = {M,. .., M,} and our theorem is thus
proved.

Remark. If ¢ is an isomorphism, then ¢ is also an isomorphism.

The following corollary is contained in [8].

COROLLARY. If M, and M, are compact homogeneous spaces with isomor-
phic fundamental groups, then they are homeomorphic.

Proof. As we have already seen, there exist the connected simply con-
nected rational nilpotent groups G, and G, such that M, = G,/D, and M; = G:/D,,
where D, and D, are the uniform discrete subgroups of G, and G, respectively.
Then D, and D: are the fundamental groups of M, and M, respectively and
M, = M; by Theorem 4.

4, Let M be a compact homogeneous space and M= G/ D as above. Since G is
homeomorphic to an Euclidean space, the homotopy groups 7;(M) (:>1) of M vanish.
IHence by Hopf-Eilenberg-MaclLane’s theory the i-th integral cohomology group of
M is isomorphic to the i-th integral cohomology group of D.? We shall consider
the 1-st and 2-nd cchomology group of M. The 1-st integral cohomology group
Hi(D) of D is the group of all'homomorphisms of D inte the additive group of
integers 7: Hy(D) = Hom(D, 7). Since 7 is an abelian group without element
of finite order, Hom(D, {) = Hom(D/D,, I), where D, is a normal subgroup
of D containing the commutator group C(D) of D such that D,/C(D) is the
torsion group (i.e. the maximal finite subgroup) of D/C(D). Let ¢ & Hom(D,I)
and ¢ % 0. Then ¢(D) is a free cyclic subgroup of [ and hence a uniform

’0 See Eilenberg and MacLane [4], The fact that Hom (D, I) is isomorphic to the 1-st
Betti group of M may be seen also from the fact that D/C(D) is isomorphic to the
1-st integral homology group of M.
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discrete subgroup of the additive group of real numbers Vi. Hence we may
extend ¢ to a continucus homomorphism ¢ of G onto V;. "Then f(g) = exp ¢(g)
is an one-dimensional continuous representation of G and f(d) = expm, where
d& D and m is an integer., Now take a basis {L,,. .., Ls} of the Lie algebra
& of & as in Theorem 3. Then f(expl;} = expm;, where m; are integers.
Since f(C(GY)) =1, if L &(@®@), mi=0. Let L,,...,L, be the elements of
this basis which is not contained in €(&). Then we obtain a representation g
of &/€(8) such that g(L)=m; (i=1,...,7) and g(L;) =0 (j> 7). Coversely
to every one dimensional representation of &/€(®) such that L; correspond to
the integers m1;, there corresponds an element ¢ & Hom(D, I), where ¢(exp L;)
=m; for i< 7 and ¢(expL;)=0 forj> ». Hence we see that Hom(D, I) and
the group of the such representations of G/€(®) are isomorphic and the sub-
group of D generated by expLrsy,. .., expLx, i.e. D\ C(G) coincides with
the above mentioned group D,. Since D/D N\ C(G) is a free abelian group
with the free generators exp Ly, . . ., exp L,, Hom(D, I) = Hom(D/D NCG, I
is a free abelian group of rank 7 and 7 =dim® — dim €(®). Thus H,(D) is
a free abelian group of rank 7. Since H,(D) is isomorphic to the 1-st integral
cohomology group Hi1(M) of M and H,(M) is isomorphic to the 1-st Betti group
B!'(M) of M. On the other hand the 1-st homology group H'(M) of M is iso-
morphic to D/C(D). Hence the 1-st torsion group of M is isomorphic to D
N C(G)/C(D). Thus we have proved the following,

THEOREM 5, Lei M be a compact homogeneous space and M = G/D, where
G is a connected siniply connected rational nilpotent group with the Lie algbera
@& and D is « uniform discrete subgroup of G. Further let C(G), C(D) and
C(®) be the commuitatoy groups and algebya of G, D and & respectively. Then
the 1-si Beiti number of B is equal to dim @ - dim () and the 1-st torsion
group of M is isomorphic to DM\ C(G)/C(D). Therefore the 1-si cohomology
group of 5 with raiional coefficients is isomovphic io the 1-si cohomology group
of the raiional Lie algebra & with rational coefficients,'

5, Naxi we consider the 2-nd cohomology group of M. We propose to show
that the 2-nd cohomology group of M is isomorphic to the 2-nd cohomology
group of the rational Lie algebro & with rational coefficients, For this purpose
we resume here the connections befween the 2-nd cohomology groups of groups

W Let Ly,..., Ly ba a basis of @ such that its structure constants are rational. Then
Li1,..., Ly span o Lis algabra Gr over railonal numbers, If L/,..., Ly is another

basis of & possessing the above property and if &g’ is defined analogously, then Ge
and & are not always isomorthic but have the iscmorphic cohomology groups., Cf
the preof of Theorem 6,
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and Lie algebras and their central extensions.'” The group C?(D) of the g¢-
dimensional integral cochain of the discrete group D is defined as the group of
all functions f of ¢ variables in D with values in the additive group 7 of in-
tegers. Addition in C?(D) is defined by

(fi+ )y, . oo, %g) =/1(%0,. o %) FSo(Xs, . . ., Xg)s
‘The coboundary operator ¢ : C?(D)— C7*!(D) is defined by the formula

(O )( %1y e v oy Xger) =T (%2y o o o, Xguy) +¢§1“‘ (= 1Y f(%rse ooy Xiivrs -« o 5 Xgn)
F+ (=1 f( %1, . . ., %)
Cocycles, coboundaries and cohomology groups are defined as usual. Let D*, D
and E be three groups and ¢ : D* -> D a homomorphism of D* onto D such that
E is the kernel of ¢. If E is contained in the center of D*, the pair (D*, ¢) is
called a central extension of D* by the kernel E. Two extension (D;* ¢;) and
(D:*, ¢o) with the kernel £ are called equivalent if there is an isomorphism ©
of D* onto Dg* such that ¢.r = ¢, and every element of E is fixed under r.
We consider here only the central extensions with infinite cyclic groups as
kernels and hence we call for simplicity such extensions simply the extensions
of D. Now let (D* ¢) be such an extension of D, For each x& D select a
representative #(x) & D* such that ¢(#(x)) = x. Since ¢ is a homomorphism,
u (%)% (x,) and u(x,x:) have the same image x,%. in D under ¢, so
u(x)2e(%2) = (X1, X)u(X%:1%2), %1, % E D,
where g(x5, x:) € E, the kernel of the extension. g(x,, %:) is called the factor
set corresponding to the given set of representatives {u#(x)}. It satisfies the
relation g{%5, %) &(%1%s, %3) = §(Xe, X3) g( Xy, X2X3) for %5, %2, %5 D. Since E is
infinite cyclic, let ¢ be a fixed free generator of £ and g(x;, x:) = ef %1, #2),
‘Then f(x:, x.) i3 an integral 2-cochain of D and satisfies the relation
S (%1, %) + f (%1%, X3) = [ (X2, 25) + f (%1, %2%5).

Hence f(%5, %;) is a cocycle. Now let {v(x)} be another set of representatives
and h{x;, x.) the 2-cocycle corresponding to {¥(x)} in the above manner. Then
we can show that f(x;, x:) and k(x,;, x.) are cohomologous. We conclude that
each extension (D¥*, ¢) determines uniquely an element of the 2-nd cohomology
group H.(D) of D. Conversely it can be shown that to each element of H.(D)
there corresponds an extension (D*, ¢) which is unique within an equivalence
class. Thus there is a 1—1 correspondence between the elements of H,(D) and
the equivalence classes of extensions. Now let & be a Lie algebra over a field
K. A g-linear alternating mapping of & into K will be called a g-chain and

) For the details see Eilenberg and MacLane [4] and Chevalley and Eilenberg [2].

https://doi.org/10.1017/50027763000010096 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000010096

DISCRETE SUBGROUPS AND HOMOGENEOUS SPACES 105

they form a linear space C?(L) over K. The coboundary operater ¢ is a linear
mapping of C?(L) into C?*!(L) and is defined by the formula
OF)Y(xs, . . ., Xqus) '—:'_;(-—1)"*"“[([:5;, X, Xiyo o oy Xine o Xy o, Xga)e
It holds the relation 667/ = 0 and cocycles, ccboundaries and cohomology groups
are defined as usual. Now let §*, & and B be three Lie algebras and §: G*
- & a homomorphism of &* onto & and OV the kernel of 4. If B is contained
in the center of &*, the pair (8%, 0) is called a central extension of & by the
kernel B. The equivalence of two extensions are defined as in the case of the
group extensions. We consider in the following only the central extensions
with one-dimensional kernel and so we call such extensions simply the exten-
sions of @. Given such an extension (8% 9) of & we select a linear mapping
v: Q- &* with 6v(x)=x. The set {v(x)} is called a system of represen-
tatives of the extension (8* 6). Since f([v(x), 2(3)]) =[x, ¥1 = 0v([x, v]),
there is an element g(x, y) € B such that
Lo(x), v(»)] = g%, ¥) -+ 2%, y.

Since B is one-dimensional, we may consider g{x,y) as an element of C*(L)
and is called the factor set corresponding the representatives {v(x)}. We may
prove that the factor set g(x,y) is a cocycle and it {#(x)} is a different system
of representatives, the factor set g(x, y) corrosponding to {#(x)} is cchonio-
logous to g(x,y). Thus to each extension (&* f) there corresponds a definite
element of the 2-nd cohomology group H.(&) of &. Coversely it can be shown
that to each element of H.(®) there corresponds an extension (&* #) which
is unique up to equivalence. Hence there is a 1~ 1 correspondence between the
elements of H.(®) and the equivalence classes of cxtensions.

Now let D be a discrete subgroup of a connected simply connected nilpotent
group G. Then, since G is nilpotent and centains no element of finite order,
the same holds for D and by Theorem 1 D has finite generators. Iet, con-
versely, D be a (discrete) finitely generated nilpotent group without element
of finite order. It has been proved by Malcev' that there exists a connected
simply connected nilpotent group G such that D iz a2 uniform discrete subgroup
of G. For the sake of convenience and completeness we sketch here a proof
of this thecrem of Malcev. Let D be as above. There exists a series of
normal subgroups of D: DD D;D...DD, 2D, ={e}, such that D;/D,.,
are infinite cyclic. We call it a normal series of . The length # of the
normal series is' an invariant of D and is called the length of D. Let us
assume that the theorem has been proved aiready for all groups whose length

1%) See Malvec [8].

https://doi.org/10.1017/50027763000010096 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000010096

106 Y0z0 MATSUSHIMA

are < 7. Let D be the group of length . Then D = {d, D,}, where D/D, is
infinite cyclic and d mod D, is a generator of D/D;. Let G, be a connected
simply connected nilpotent group which contain D, as a uniform discrete sub-
group. Let ¢(x) = dxd~! be the automorphism of D;,. Then we can extend ¢ to
a continuous automorphism ¢ of G, (Theorem 4). ¢ induces an automorphism
0 of the Lie algebra @&, of G, and we can show without difficulties that the
eigen-values of § are 1. Then log 6 = y is a derivation of &, whose eigen values
are all 0 and whence the extesion of @&, by » is a nilpotent Lie algebra @& and
the simply connected group G corresponding to & contains D as a uniform
discrete subgroup.

6. Now we prove the following

THEOREM 6. Let §r be a nilpotent Lie algebra over the field R of rational
numbers and & the Lie algebra obtained from g by extending the ground filed
R to the field P of real numbers., Further let G be the simply connected nilpoient
group corresponding to & and M the compact homogeneous space of G on
which G is almost effective.® Then the 2-nd cohomology group H.(®r) of Gz
is isomorphic to the 2-nd cohomology group with rational coefficients of M.

Proof. Let M =G/D, where D is a uniform discrete subgroup of G. Let
&i,. . . ,8n be a fixed canonical basis® of .D and g = exp-L;. Then the set G¥’
of all linear combinations of Z;,. . ., L, with rational coefficients forms a Lie
algebra over R* which is not always isomorphic to Bz. But H:(Gzr)= H.(8x').
for by extending ground field R to P @z and &% yield the same Lie algebra
®, and H,(Q) regarded as a vector space over P is obtained from H,(®z) and
H(®y') respectively by extending R to P. Hence we may assume &z = Gz
The 2-nd integral cohomology group H:(M) of M is isomorphic to the 2-nd
cohoraology group H.(D) of D.® Let us take an element of H.(D) or equiva-
lently an extension (D*, ¢) of D. Since D* is a central extension of D with an
infinite cyclic group £ as the kernel, D is also a finitely generated nilpotent
group without element of finite order. ILet ¢(g*) =g; for {=1,...,n and
&%, @ fixed generator of £, Then g* form a canonical basis of D*, Let now
G* be the simply connected nilpotent group containing D* as a uniform discrete
siubgroup and let gi* = exp L%, Then L*,. .., L¥  span the Lie algebra ®z*
over R."™ We can extend ¢ to a contincus homomorphism of G* onto G and
we get a homomorphism § of &x=* onto Gxr. 0 is defined by §(L;*) = L; for

M There exists always such a homogeneous space. Cf, ®,

" We may show as in the prool of Theorem 1 that the structurc constants of Li,..., La
are rational.
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i=1,....nand 0(L},,) =0 (cf. the proof of Theorem 4.). Since the kernel

of § is one dimensional and is contained in the center of Gg*, (8g* 6) is an
extension of Gz and hence determines an element of H;(Gz). We shall show

that the correspondence (D* ¢)— (8z* 6) is a homomorphism of H(D) into
H,(Gg). Let, for simplicity, g* = & and Li* = Mi, u(g . . ., &) =15 . . . ha'»

(s; being integers) and v(:gl a;L;) =§l‘; aiM; (a; being rational numbers) form
a set of representativ@s of (D%, ¢) and (Gz*, §) respectively. Let (B . . .hs)
(Bt Tafn) = 1 By and U3 M, 33 BiM] = f;z’:';ka. Then tnss
=nd(gf'. . ;gns", &'t @)=, e, Sm by Be) A0d Taa = G0 @il
?:j!, BiLs) ;—.B:;]a;ﬁj, ¢+t are the 2-cocycles corresponding to (D*, ¢) and (Gg, 0)
respectively. We consider ¢(s1,...,82,%1,...,%s) as a function of s;,. ..,

Sny iy - - -, in and show that it is a polynomial of s and ¢ with rational co*
efficients and that ¢ is the form

¢ ‘/’(shv--,Smtla---,tn)=~1-is,‘tjct’~“+...,
2 55 i
where . .. denote the terms of degree > 2.

By the formula of Hausdorff (exp M) (expN) = exp(M + N + —%— [M, NJ
+ ...) we have, ‘I:% exp s;M; = exp (§_:, s;M;+ % (%‘, sis; [M;, Mj])+ . . .) and
‘I:]g exp siM; ’f}] exp LiM; = exp (:‘g (si + &) Mi + —; (g (sisj + titj +sit;) [ M;, M;j])
+...)= expé__‘;‘@k(s,t)Mk, where
(2) Or(S, £) = sp + Ip + -% ,E,] (sisj + titj + sitj)ek; + . . .

are the polynomials with rational coefficients. Moreover since {M;, Mis, . . .,

My,;} are the ideals of @* for i =1,2,...,7n+ 1 the terms of degree =2 of
. nil
¢r are the polynomials of s;,...,s%-: and #,...,%-1. Let exp (‘E!}A;M,-)
n+
3

ndi n+l 3
= [1expu;M;. Then since H’ expulM; = exp >, (u; + ai(#))M;, we have
i=1 i=

i=1

A =i + a;(n);

1
where ai(u) = o> %‘2; upsich; + . . .
are the polynomials of #,. .., %, with rational coefficients and . . . denotes

the terms of degree > 2.
Then we can easily show inductively that

up = AetBe(Ar, o o s Arer),
where Br(As, o o oy dpur) = = %‘2 Ridjefi + - ..
252
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are the polynomials of 4;, . . ., A1 With rational coefficients. Then, substituting
@i in 4;, we have

W5 D) = gnir = 5 2Pl +
¥

and by a simple calculation we may verify the desired properties of ¢(s,¢). Then
we obtain the relation:
(3 g(_é a;L;, _Zn BiLi)=2 x (The term of degree 2 of ¢(a, B)).

Leti{x:)w (D,":,—lqﬁ,) be another extension of D and let G/*, 8%, k%, . . ., B},
N, . . Ny, Nusr, (85,0, be defined as in the case of (D%, ¢). Then k*
=expN;, 8k =RNi+ ...+ RNy and 0,(N:)=L;,i=1,...,%n 0,(Nnu)=0.
We take the representatives of (D,*, ¢,) and (8%, 6,) respectively as in the case
of (D*, ¢) and (8r* 0) and obtain the cocycles (g%, . . . &, &1 . . . &a'")
=¢i(s, 1) and & (f/__;‘ aiL;, ﬁ,} BiL:) of D and @ respectively. Then the relation
(3) holds also for g; and ¢;. Let do(g® . . . @, &1 . . . g% = ¢u(s, t) =d+ d;
= ¢(s, 1) + ¢i(s, t). Then d. = ¢:(s,t) is a cocycle of D. Now we construct
an extension (D.*, ¢,) of D as follows: Let D,* be the set of symbols A}
.. hfsepEssei where s; are integers and we define the product in D,* by the

formula
(h¥ss ... h;ksnh;f:ir;-ﬂ)(h;ktl ... hi‘"k;*i’i“) =p}a., .. h:unhgzn:‘x+tn+1+%(5.t*,
where u,;,. .., u, are determined by the relation
s

(&, . .8 (&fr . . . g =g . .. g
We may easily verify that D.* forms a group and {k}{n*1} is contained in the
center of D,* and ¢u(hfs. . . ARy =g . . ., g, is a homomorphism of
D.* onto D with the kernel E = {h}$+} and hence (D.*, ¢.) is an extension of
D. Clearly h;* form a canonical basis of D,* such that ¢.(%;*) = gi and ¢s(s, t)
is the cocycle of D corresponding to the representatives u.(g! . . . g%5») = h}%
.. . h¥". Then we can construct an extension (&%, 0:) of Gr such that the
cocycle g, of Gr corresponding to this extension satisfies the relation anologous
to (3). Since ¢o(s, ) = ¢ (s, 1) + ¢u(s, 1), we get by (3) (X, V) =g(X, V) +&
(X.Y), where X, Y& @z*. Thus the correspondence (D*, ¢) - (8%, 6) de-
fines a homomorphism & of Hx(D) into H.(®r). We show that the kernel of
¢ is the group T of all elements of finite order of H.(D). -Since H,(®r) con-
tains no element of finite order T is contained in the kernel of &. Let con-
versely £(¢(s, 1)) =g(X, Y) and g~0 in Hy(®z). Then there exitss an element
F(x)E CY(Bx) such that g(X, Y)=46f(X, Y)=/([X, Y1). Then g(z};; a;l;,

"

DAL =3 cftaiBy = £(3) aliLLLD) = 3 aipjchf(L). Hence ¢/

=1 £,1,%=1
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=,§ ¢k, f (Lx). Let L/ = L*+ f(L)L},, for i=1,...,n and L, = L%, .
Then & ={L/,...,L,} is an ideal of @* isomorphic to & under the corre-
spondence L/ -» L; and &* = & + {L!,,}. If f(L,) are all integers, then ¢(s, t)
~0. For then g/ = g*g¥f" =expL/ (i=1,...,n) and g%,,=g%,, form a
canonical basis of D* and g/, .. . &/ generate a subgroup isomorphic to D and
hence D* splits over £ = {g},,}. If /(L) are rational, take an integer m such
that myf (L;) are the integers. Then since &(my(s, t)) = mg((X, Y) = mif (X,
Y') and mf(L;) are integers, m¢(s, t)~0. Thus the cohomology class containing
¢(s, t) is of finite order. Hence the kernel of & is equal to 7. Now take an
element of H.(©z) or equivalently an extension (Gr*, 0) of Gz. Let {L/*, .

Lk, Lk .} be a basis of @g* such that 6(L*)=L; (L=i=mn) and (L}, ) =0

and g(X,Y) = g(ﬁ] a;L;, }n_‘. BiLi) = }rj a;f;ctt be the cocycle (= factor set)
i=1 i=1 i, =1

v n.
corresponding to the representatives v(>) aili) = >] «;Li* where ¢! are the
t=1 =1

structure constants of the basis {L;*). We show that there exist an integer m
and ¢(s, t) such that &(¢(s,t)) = mg(X,Y). Let G* be the simply connected

n+1 n+y n+s
group corresponding to &* and TII exp s;LZ;* T1exp#:L;* = I]exp u;L;* Since
i=1 i=1 i=1i

exp Ly*, . . .,expL,* generate a group isomorphic to D mod. expitL} , if s;, t;
are integers, #;,. . ., %, are also integers. Now
Un+s = Snsy + tn+) + ([)(S; e e Sy, t;, ey tn),

where ¢(s, t) is, as proved before, a polynomial with rational coefficients of s, ¢.
‘Then there exists an interger m such that the value of m¢(s, t) is an integer for
integers s, ¢. This shows that exp L,*, . . ., expL,™ exp LZ*’ generate a uni-
form discrete subgroup D* of G* which is clearly an extension of D and the
cocycle ¢'(s, t) corresponding to the representatives ,"11 exp siLi* =2 (g% ... 8,5)
is my(s,t). Then &(my(s,t)) = mg(X, Y). Thus for each element z &€ H.(8r)
there exists an integer m such that mz & 2(H.(D)). ¢&(H(D) is a free abelian
group of rank 7 and 7 is equal to the rank of /,(D). We may easily see that
7 is equal to the dimension . of H:(®z) over R. On the other hand, since
H,(D)=>~ H,(M), 7 is equal to the 2-nd Betti number p. of M and hence ps = ..
Thus H,(®g) and the 2-nd cohomology group H.(M, R) with rational coef-
ficients are the vector spaces over R of the same dimensions and hence they are
isomorphic.

Remark. The 2-nd cohomology group of any Lie algebra @ is the dual
space of the full exterior center of . It is a theorem of Ado that, if @ is
nilpotent, then H:(®) = 0. See Chevalley and Eilenberg [2].
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