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ABSTRACT

Kaas, Dannenburg & Goovaerts (1997) generalized Jewell’s theorem on exact
credibility, from the classical Bühlmann model to the (weighted) Bühlmann-
Straub model. We extend this result further to the “Bühlmann-Straub model
with a priori differences” (Bühlmann & Gisler, 2005). It turns out that exact
credibility holds for a class of Tweedie models, including the Poisson, gamma
and compound Poisson distribution – the most important distributions for
insurance applications of generalized linear models (GLMs). Our results can
also be viewed as an alternative to the HGLM approach for combining credi-
bility and GLMs, see Nelder and Verrall (1997).
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1. INTRODUCTION

Credibility estimators are often derived under the assumption of linearity in
the observations. Exact credibility, on the other hand, refers to the situation
where we can find distributional assumptions under which this linear credibility
estimator is optimal (in mean square error) in the unrestricted class of all func-
tions of the observations.

A famous theorem by Jewell (1974) states that exact credibility occurs when
observations are drawn from a one-parameter exponential distribution with
natural conjugate prior for the risk parameter. Another way to put this is that
Jewell gives distributional assumptions under which the Bühlmann (1967) lin-
ear credibility estimator is the unrestricted best estimator.

This result was generalized by Kaas, Dannenburg & Goovaerts (1997) to
the weighted Bühlmann-Straub model. It may be noted that they assume the
observations to follow an exponential dispersion model, the class of distribu-
tions used in Generalized Linear Models (GLMs).
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The Bühlmann-Straub model can be extended to the case known as “the
Bühlmann-Straub model with a priori differences”, where different contracts
may have different a priori means, see Bühlmann & Gisler (2005, Chapter 4.13).
We agree with these authors that this extension “enormously increases the
applicability of the Bühlmann-Straub model in practice.”

In practice this corresponds to the important situation where one has a
number of ordinary rating factors alongside the factor estimated by credibility.
An example is private motor car insurance, where we perform a GLM analysis
with a number of rating factors such as Sex and Age of driver, Age of car,
Mileage per year, or Power of engine, whereas a credibility approach is appro-
priate for the factor Car model. The reason for this is that Car model is a rating
factor with far too many levels for accurate estimation in a GLM analysis.
For more information on this and other practical applications, see Ohlsson &
Johansson (2004).

The object of this paper is to prove an extension of Jewells theorem (in its
generalized form given by Kaas et al.) to “the Bühlmann-Straub model with
a priori differences”. The placement of our result in credibility theory is shown
schematically in Figure 1.
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It should be noted that our result suggests a different weighting than the one
given in Bühlmann & Gisler, except in the Poisson case where they coincide.
In Ohlsson (2004), we derive the linear credibility estimators that have pre-
cisely the same weights as our exact credibility estimators here.

As will be indicated below, our work here also has some relation to the
work by Nelder and Verrall (1997) on the combination of credibility and GLMs
using the theory of hierarchical generalized linear models, HGLM.

2. TWEEDIE MODELS AND RANDOM EFFECTS

In non-life insurance pricing with GLMs, one studies the effect of rating factors
on some key ratio Yi , typically the risk premium, claims frequency or average
claim amount. By far, the most commonly used models are GLMs with a
variance function of the form v (m) = mp for some p. We start out by repeating

FIGURE 1:

SCHEMATIC RELATION OF OUR WORK TO OTHER PAPERS ON CREDIBILITY.
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some basic facts about these so called Tweedie models, before deriving our
extension of Jewell’s theorem.

2.1. Tweedie models

The rating factors divide the portfolio into tariff cells, and the key ratio Yi is
computed over the policies in cell i. In GLMs, Yi is assumed to have a frequency
function of the form
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where � is the dispersion parameter and wi is the known exposure weight, i.e.
the denominator of the key ratio (number of policy years for claim frequencies,
number of claims for average claim amount, etc.). The function b(q) is twice
differentiable with a unique inverse for the first derivative b�(q). With � = 1
and all wi = 1, (2.1) is the exponential family with canonical parameter con-
sidered by Jewell (1974). Following Jørgensen (1997), the models defined by
(2.1) are called exponential dispersion models (EDMs).

From standard GLM theory we know that mi 0 E(Yi) = b�(qi). If we further
denote the inverse of b� by h(m), we can express the variance as

Var(Yi) = �b�(qi) /wi = �v(mi) /wi , (2.2)

where v(m) = b�(h(m)) is known as the variance function. In this paper, we will
only consider the subclass of EDMs where, for some p,

v(m) = m p. (2.3)

In the terminology of Jørgensen, these are called the Tweedie models. In the
rest of this section we recapitulate some of their theory – for proofs, see Jør-
gensen (1997). The Tweedie models are defined only for p outside the interval
0 < p < 1. Renshaw (1994) concludes that models with p ≤ 0 “are of no prac-
tical concequence” in non-life insurance rating – one reason being that they have
support on the whole real line, while our key ratios are non-negative. We thus
restrict ourselves to the class with p ≥ 1. Our calculations below carry through
for p = 0 (Gaussian distribution), but that model is not appropriate for the
non-negative key ratios with multiplicative rating factors that we consider here
and is hence omitted.

The following Tweedie models are of special interest in non-life insurance
pricing:

• p = 1: (Weighted) Poisson distribution.

• 1 < p < 2: Compound Poisson distribution with gamma distributed summands.

• p = 2: Gamma distribution.
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The case 1 < p < 2 is applicable to risk premiums Yi with a Poisson distributed
number of claims and gamma distributed claim sizes. Here p = (2 + g) / (1 + g),
where g is the shape parameter of the gamma distribution, see Jørgensen & Paes
de Souza (1994), and hence g–1/2 is the coefficient of variation of that distribution.

From the relation between v(m) and b�(q), Jørgensen derives the functional
form of the b(q) corresponding to a variance function as in (2.3). The result
is (for p ≥ 1)
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The canonical (maximal) parameter space M is
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We will also need expressions for the derivative b�(q),
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and its inverse h(m),
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In GLM theory, h(m) is called the canonical link function. Note, however, that
we do not assume the use of canonical link, but instead use a log-link (multi-
plicative model) throughout. Multiplicative models are standard in insurance
practice and usually a very reasonable choice.

2.2. Random effects in Tweedie models

Suppose we have a number of ordinary rating factors, dividing the portfolio
into I tariff cells – by an ordinary rating factor we mean one that is not treated
as a random effect. As before, mi is the expected value of our key ratio, and
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since we use a multiplicative model mi is in effect the product of a number of
price relativities for the rating factors.

To this model we add a random effect with K levels, where level k is given
by the random variable Uk. Let wik denote the exposure weight in the ith tariff
cell with respect to the ordinary rating factors and for the kth level of the ran-
dom effect. Let Yik denote the corresponding observed key ratio.

With uk denoting the outcome of Uk, the multiplicative model is now exten-
ded to

E (Yik |Uk = uk) = mi uk. (2.8)

Since the systematic effects are captured by mi, we can let the Uk’s be purely ran-
dom, so that we have E(Uk) = 1, and hence E(Yik) = mi.

Note. To explicitly write down the entire multiplicative model, let g(r)
j (i) denote

the price relativity for rating factor number r at the level j(i), the level that is
attained in the i :th tariff cell. Then, if there are R ordinary rating factors

mi = g0 g(1)
j (i) g(2)

j (i) ··· g(R)
j (i) ,

where g0 is the base value. (For some base cell, say i = 1, all g(r)
j (1) are set to 1 for

unambiguous parametrisation.) The model with an added random effect is
now

E (Yik |Uk = uk) = g0 g(1)
j (i) g(2)

j (i) ··· g(R)
j (i) uk.

The g(r)
j (i)’s may be estimated by the standard GLM procedure. For simplicity,

we will not write out the entire multiplicative model below. ¡

Conditionally on Uk = uk we assume that Yik follows a Tweedie model with
expectation mi uk. Now, the frequency function in (2.1) is defined in terms of
the canonic parameter q = h(m), rather than the expectation m, and in our case
this parameter becomes q̂ik = h(mi uk). We make the corresponding transforma-
tion of the random effect and introduce the random variable Qk = h(Uk), which
corresponds to the risk parameter in Jewell (1974) and other sources on credi-
bility theory, taking values qk = h(uk).

Note that by (2.7)

q̂ik = h(miuk) =
;

> ;

log h u p

h u p

m

m

1

1( )

k

p
k

1

+ =

- -

i

i

^ ^
^

h h
h* (2.9)

and then by (2.4),
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b(q̂ik) = b(h(miuk))
(2.10)
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where c1 and c2 are constants that do not depend on qk, and into c2 we have
incorporated the terms log(mi) appearing in (2.9) and (2.10).

Conditional on Qk = qk, or equivalently on Uk = uk, the Yik’s are assumed
independent. We can then perform a standard GLM analysis of the ordinary
rating factors, using log(uk) as an offset variable. Now, the Uk’s are of course
non-observable and must be estimated. We will follow Jewell (1974) and assume
that the density function of Q = h(U) is the natural conjugate prior (or associate
conjugate) to the family in (2.1), which is given by

, / ,exp
a a

f c
b

q d
qd q1

1Q =
-] ] ]g g g( 2 (2.12)

for q ! M (the canonical parameter space of (2.1)). Here d and a are so called
hyperparameters and c (d,a) is a normalizing constant. For all p ≥ 1, this is a
proper distribution if a > 0 and d > 0, which we assume in the following.

Lemma 2.1. Let U = b�(Q), where Q follows the distribution in (2.12) and let
infM and supM denote the lower and upper bound of the interval M in (2.5).

(a) Suppose that fQ(infM ) = fQ(supM ) = 0. Then

d = E(U )

(b) In addition to the assumption in (a), suppose that f�Q(infM ) = f�Q(supM )
= 0. Then

.a U
E U
Var

p

= ] g8 B
(2.13)
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Proof. We have

f�Q(q) = a(d – b�(q)) fQ(q),

f �Q(q) = a2(d – b�(q))2 fQ(q) – ab�(q) fQ(q).

Upon integrating these equations we get, under the assumptions of the limit-
ing behavior of fQ(q) and f�Q(q), respectively,
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Now the fact that u = b�(q) and that b�(q) = b�(h(u)) = v(u) = up completes the
proof. ¡

We next investigate to what extent the assumptions of the lemma are satisfied
for Tweedie models with p ≥ 1.

Lemma 2.2. (a) The assumptions of Lemma 2.1(a) are satisfied for 1 ≤ p ≤ 2.
They are not valid for p > 2.

(b) The assumptions of Lemma 2.1(b) are satisfied for 1 ≤ p < 2. For p = 2 they
are satisfied if a > 1, but not for a ≤ 1. For p > 2 they are invalid.

The proof of this lemma is straightforward. For p = 2 one may add that when
a ≤ 1 the variance Var(U ) does not exist.

Lemma 2.1 is fundamental to the proof of our main result and since it’s
conclusion is – by Lemma 2.2 – valid only when 1 ≤ p ≤ 2, we restrict the dis-
cussion to that case in what follows. Under this restriction, the two lemmas
show that d = E(U) = 1 so that, in effect, we have just one parameter in the
conjugate distribution, a > 0. Fortunately, 1 ≤ p ≤ 2 contains the most com-
monly used distributions in insurance applications of GLMs, namely the Pois-
son, gamma and compound Poisson-gamma distributions. (Note that the
assumptions of Lemma 2.1(a) also appear in the original theorem by Jewell
(1974) and so his results are not valid for Tweedie models with p > 2).

3. MAIN RESULTS

In his classical result, Jewell (1974) assumed an exponential family of distribu-
tions for Y, conditionally on the so called risk parameter (our Qk). Kaas et al
(1997) generalized Jewell’s theorem to the exponential dispersion models used
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in GLMs, including weights w. Before presenting our extension of these results,
we make some basic assumptions that are more or less standard in credibility
theory.

Assumption 1. (a) Qk ; k = 1, 2, …, K are independant and identically distributed
random variables.

(b) For k = 1, 2, …, K, the pairs (Yik, Qk) are independent.

(c) Conditioned on Qk the random variables Y1k,Y2k,…,YIk,k are independent.

By (2.8) we have E(Yik|Uk) = miUk, where mi is the mean given by the ordinary
rating factors, which can be estimated by standard GLM methods once we
have the uk. Hence, in our case the search for credibility estimators amounts
to finding an estimator of Uk, for every k. In exact credibility, this means that
we look for the function g of our data vector Y that minimizes

k
2 .E U g Y- ]^ gh8 B (3.1)

It is well known that the solution to this minimization problem is g(Y) = E[Uk|Y ].
By assumption 1(b) we can restrict the conditioning to Yk = {Yik; i = 1, 2, …, Ik}
and our optimal estimator is g(Y) = E [Uk |Yk ] = E [b�(Qk) |Yk ]. An expression
for this posterior mean is given in the following extension of Jewell’s theorem,
which is our main result.

Theorem 3.1. Let Assumption 1 be satisfied. Suppose that conditionally on Uk

we have a Tweedie model for Yik with 1 ≤ p ≤ 2 and that Qk = h(Uk) follows the
natural conjugate distribution given by (2.12), where a > 0 and d > 0. Then the
optimal estimator E [Uk |Yk ] of the random effect Uk can be written as
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Proof. To compute the posterior expectation we need the posterior distribution
of Qk, which we get from Bayes theorem, plus (2.11) and (2.12).
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(3.3)
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Since we are using a conjugate prior, it is no surprise that the posterior distri-
bution is a member of the same family, with new “updated” parameters

i ,
z

a a w m1� k
i

p2= + -

i! d� = uk, (3.4)

where uk is given by (3.2). Finally, from Lemma 2.1(a) and 2.2(a) the expectation
of Uk in the posterior distribution is just d� and the proof is complete. ¡

We shall rewrite (3.2) in the form of a credibility estimator. First note that
since Yik|Uk follows a Tweedie model, (2.2) and (2.3) give

Var(Yik|Uk = uk) =
i i
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This result is valid under the assumptions of Theorem 3.1, except for the
case p = 2 with a ≤ 1, where Var(Uk) is not finite. Next, introduce the weighted
average

ûk =
i

i i /
.

y m

w
w

ki

k ki i

!
!

(3.6)

We call ûk the experience factor, indicating how one might adjust the expected
values mi to take into account the observed multiplicative deviances yik /mi. The
unconventional notation ûk is motivated by the fact that this is an average that
estimates Uk, with E [Uk |Uk ] = Uk.
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Corollary 3.1. Under the assumptions of Theorem 3.1, except for the case p = 2
with a ≤ 1, the exact credibility estimator of Uk is

uk = zk ûk + (1 – zk) · 1, (3.7)

where the credibility factor zk is defined by

zk 0
i

i

/
.

s tw
w

ki

ki
2 2+!

!
(3.8)

Thus the estimator uk is a credibility weighted adjustment factor to the rating
by the ordinary factors, mi. The rating for insurances in cell i having level k on
the random effect is then obtained from multiplying by mi ,

mi uk = zk(mi uûk) + (1 – zk) · mi .

The unknown mi’s can be estimated by GLMs, treating uk as a known offset
variable. Since mi also appears in the definition of wik, this calls for an iterative
procedure over the estimation of mi by a GLM, treating uk as an offset, and
the estimation of uk, treating m̂i as known. See Ohlsson (2004) for a detailed
algorithm and an application.

3.1. Comparison with linear credibility

Here we specialise to the case where all exposure units at random effect level k
have the same expectation, denoted here by mk. Then the risk premium (or
whichever key ratio we are considering) is estimated by

mkuk = zk y“ k + (1 – zk) · mk, (3.9)

where

y“ k =
i

i i ,
w
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since in this case
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In the Poisson case p = 1 we then have exactly the same credibility estimator
as that given in Corollary 4.15 of Bühlmann & Gisler (2005). Indeed, they
motivate their variance assumption with the Poisson case. The conclusion is
that our result is the exact credibility counterpart of the Bühlmann & Gisler
(2005) estimator in this case (as claimed in Figure 1).

In the gamma ( p = 2) and compound Poisson (1 < p < 2) cases, our factor
mk

2–p differs from the mk that is recommend Bühlmann & Gisler. Since they moti-
vate the choice mk only in the Poisson case, our estimator is in this respect a
“fine tuning” of theirs.

On the other hand, the strength of Bühlmann & Gisler (2005) is that the
approach is distribution-free, i.e. only requires assumptions on expectations
and variances, as is generally the case with linear credibility as opposed to exact
credibility. In this distribution-free setting, our estimator can be derived directly
from the Bühlmann-Straub estimator, see Ohlsson (2004), where the variance
assumption is

Var(Yik |Uk) =
i

ki ,w
s s

k

2 2 U^ h

for some constants s2
i and some function s2(Uk). The result of the present paper

corresponds to the case s2
i = mi

2–p, while the assumption (4.83) of Bühlmann &
Gisler is obtained by letting s2

i = mi . The advantage of exact credibility is that
we get the proper variance directly from the GLM model used, while in the non-
parametrical case we have to guess the value of s2

i .
We also work in a slightly different setting than Bühlmann & Gisler, by

allowing the possibility that level k occurs with different mi for different contracts
(a certain Car model k may be owned by drivers of different age driving differ-
ent mileage, etc.). However, the Bühlmann & Gisler estimator could be extended
to this case without difficulty.

3.2. Special cases

Finally, it is of interest to specialize our estimators to the important special cases
p = 1 (Poisson) and p = 2 (gamma), by looking at the corresponding experience
factors.

p = 1 & ûk =
i

i i .
w

w y

mki

k ki

i!
!

(3.10)

p = 2 & ûk =
i

i i /
.

w

w y m

ki

k ki i

!
!

(3.11)

It can be noted that equation (3.10) corresponds to an estimating equation in
the so called method of marginal totals and that (3.11) corresponds to the so
called direct method (see, e.g., Kaas et al., 2001, pp. 179-181).
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In these cases – and in general – equation (3.6) is easily verified to be the esti-
mating equation for uk if considered a fixed effect in a standard GLM analysis
(remembering that we are using a log-link). This is appealing: in a case with very
high credibility our estimating equations are the same as those resulting from
treating the random effect as just another covariate in our GLM. Under the
iterative procedure mentioned after Corollary 3.1, high credibility would then
give the same estimates uk as a GLM would have done, while with less credi-
bility these estimates are “shrinked” towards 1.

3.3. Comparison with HGLM

Besides the credibility interpretation, our models could also be described as GLMs
with a random effect. Lee and Nelder (1996) and Nelder & Verall (1997) suggest
a general likelihood-based approach to this type of models, using the concept of
h-likelihood, under the name HGLM (Hierarchical Generalised Linear Models).
For the Tweedie case with p = 1, our estimator (3.2) is a w-weighted version of
the estimator on p. 623 in Lee & Nelder (1996). In the case p = 2 with weights
wik / 1, our (3.2) becomes, with nk denoting the number of cells i for level k,

uk = i /
,

z

z

a

a

n
y m

k

k ii

+

+!

while Lee & Nelder’s (2.12) is, in our notation,

uk = i /
,

z z

z

a

a

n
y m

k

k ii

+

+

+

!

the difference being the term +z that appears in the denominator by which the lat-
ter is not a credibility estimator proper. The case 1 < p < 2 is not explicitly treated
in Lee & Nelder (1996) or Nelder & Verall (1997). Notwithstanding the rather sim-
ilar results, note that our approach to these models is quite different from HGLM.

3.4. Estimation of variance parameters

In applications, one has to estimate za, or alternatively s2 and t2, whose ratio
is za. There are several possibilities, the simplest perhaps being to use a counter-
part of the unbiased estimators in the classical Bühlmann-Straub model. These
estimators are given in Ohlsson (2004, Section 2.1).
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