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NONLINEARLY CONSTRAINED
OPTIMAL CONTROL PROBLEMS

INVOLVING PIECEWISE SMOOTH CONTROLS
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(Received September 1989)

Abstract

In this paper, we consider a class of optimal control problems involving inequality
continuous-state constraints in which the control is piecewise smooth. The require-
ment for this type of control is more stringent than that for the control considered
in standard optimal control problems in which the controls are usually taken as
bounded measurable functions. In this paper, we shall show that this class of op-
timal control problems can easily be transformed into an equivalent class of com-
bined optimal parameter selection and optimal control problems. We shall then
use the control parametrisation technique to devise a computational algorithm for
solving this equivalent dynamic optimisation problem. Furthermore, convergence
analysis will be given to support this numerical approach. For illustration, two
nontrivial optimal control problems involving transferring cargo via a container
crane will be solved using the proposed approach.

1. Introduction

In [2] and [16], the concept of control parametrisation is used to devise a
computational method for solving a general class of optimal control prob-
lems subject to canonical constraints, both in equality as well as inequality
form. By the concept of control parametrisation, we mean that the control is
approximated by a piecewise constant function with possible discontinuities
at the preassigned switching points.

For the inequality continuous state constraints, a simple constraint tran-
scription is used in [2] to convert these inequality continuous state constraints
into equivalent equality constraints in canonical form. However, there are
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many nonstandard optimal control problems which cannot be solved using
the algorithm of [2]. Examples include optimal parameter selection problems;
free terminal time optimal control problems, including minimum time prob-
lems; minimax optimal control problems (problems with Chebyschev cost
functional); and boundary value control problems, including problems with
periodic boundary conditions and inter-related boundary conditions. Thus,
a more general class of dynamic optimisation problems known as combined
optimal parameter selection and optimal control problems is considered in
[16]. It is then shown that all the above-mentioned nonstandard optimal
control problems can be converted into special cases of this general class of
dynamic optimisation problems.

Note that the constraint transcription used in [2] to deal with the inequality
continuous state constraints is very easy to apply. However, it has the dis-
advantage that the equality constraints so obtained do not satisfy the usual
constraint qualification, and hence convergence is not guaranteed and some
oscillation may result in numerical computation. According to [17], the al-
gorithm rarely converges for nontrivial optimal control problems involving
inequality continuous state constraints, although it does give good approxi-
mate results. Again, according to [17] it is impossible to overcome numeri-
cally the violations of the continuous state constraints, using the constraint
transcription presented in [2]. Nonetheless, a general purpose optimal con-
trol software known as MISER (cf. [3]) was developed using the results of
[2] and [16].

In [17], the idea of [5] together with the concept of control parametrisa-
tion is used to devise a computational algorithm for solving a general class of
optimal control problems involving inequality continuous state constraints.
The main contribution of the paper is to overcome the two disadvantages ex-
isting in the constraint transcription introduced in [2]. Numerical experience
conducted in [17] has demonstrated that the new algorithm is a much more
stable one. The idea of this constraint transcription can be easily incorpo-
rated in MISER for dealing with inequality continuous state constraints. We
refer the reader to [1] for many interesting theoretical results for the class of
optimal control problems considered in [17].

In this paper, we are concerned with a class of optimal control problems
involving inequality continuous state constraints in which the control is piece-
wise smooth (i.e., the control is continuous and its derivative is piecewise
smooth). Since the requirement for this type of control is more stringent than
that for the control in [17], this class of optimal control problems cannot be
solved directly using the results of [17]. Furthermore, the optimal control
software MISER cannot be used directly. However, in view of the idea pre-
sented in Section 6 of [16], we can transform this class of optimal control
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problems into an equivalent class of combined optimal parameter selection
and optimal control problems. The equivalent problems can be solved nu-
merically by several optimal control algorithms such as gradient-restoration
algorithms due to Miele (cf. [4], [6-11]), multiplier methods (cf. [12] and
[13]), and control parametrisation algorithms (cf. [16]). In this paper, we
shall use the control parametrisation technique to handle this equivalent dy-
namical optimisation problem. Furthermore, vigorous convergence analysis
will be given to support this numerical approach. For illustration, two non-
trivial optimal control problems involving transferring cargo containers via
a container crane will be solved using the proposed approach.

2. Problem statement

Consider a process described by the following state differential equations
denned on the fixed time interval (0, T]:

x(t) = f(t,x(t),u(t)) (2.1a)

where
x = [x,, . . . , xn]

T e l " , u = [ui, ... , uf € Rr

are, respectively, state and control vectors; f =[fl, •.. , fn] G M" is a given
real valued function; and the superscript denotes the transpose.

The initial condition for the differential equation (3.2.1a) is:

x(0) = x° (2.1b)

where x° = [xf, ... , x®]T e l " is a given vector. Define

U = {v = [ « , , . ..,vf 6 K r : a,. <vt <0., i = 1, . . . , r} (2.2)

where a, , / = \, ... ,r, and 0., i — 1, . . . , r, are given real numbers.
Note that U is a compact and convex subset of M.r.
DEFINITION 2.1. A function u : [0, T] -* Rr is said to be piecewise smooth
if it is continuous and its derivative is piecewise continuous.

Let u be a piecewise smooth function defined on [0, T] with values in
U, and let u denote the derivative of u . If

c , - < 6 , ( 0 <<* , - . V t e [ 0 , T ] , i = l , . . . , r , (2.3)

where ct, i = \, ... , r, and dt, i — 1, . . . , r, are given real numbers,
then the u is called an admissible control. Let % be the class of all such

o

admissible controls. Furthermore, let % be a subset of the set ^ defined
by

&= {!*€#: a,. < K , ( O < 0 , , W e [ 0 , 7 1 , i = 1 r} (2.4)
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Note that the class % of admissible controls considered in this section
is more restrictive than that considered in [17], where bounded measurable
functions are taken as admissible controls.

For each u e ^ , let x(- | «) be an absolutely continuous function denned
on [0, T] which satisfies the differential equation (2.1a) almost everywhere
in (0, T] and the initial condition (2.1b). This function is called the solution
of the system (2.1) corresponding to the control a e ^ .

The inequality terminal state constraints and inequality continuous state
constraints are specified as follows:

) ) > 0 , i=l,...,NT (2.5)

where O., i = 1, . . . , NT , are given real valued functions defined on K" ,
and

hi{t,x(t\u),u{t))>0, Vte[0,T], i=l,...,N, (2.6)

where ht, i = I, ... , N, are given real valued functions defined on [0, T] x
inx

Note that our admissible controls are required to be piecewise smooth.
Thus, they are allowed to appear in the inequality continuous state constraints
(2.6). This is a slight generalisation of that considered in [17].

If u € ^ satisfies the constraints (2.5) and (2.6), then it is called a feasible
control. Let &~ be the class of all feasible controls.

We may now state our optimal control problem as follows:
PROBLEM (P). Given the system (2.1), find a control « s / such that the
cost functional

go(u) = O 0 (x( r | u)) + C &Q{t, x(t I u),u{t))dt (2.7)
Jo

is minimised over &~, where <J>0 and ^ are given real valued functions,
and T is the terminal time of the problem.

The following conditions are assumed throughout:

(Al) / : [ 0 J ] x K " x R ' - * R " is piecewise continuous on [0, T] for
each ( x , a ) e l " x l r , and continuously differentiable with respect
to each of the components of x and u for each t e [0, T]; and
furthermore, for any given compact subset C c R r , there exists a
constant K > 0 such that

for all (t, x, u) e [0, T] x C x W , where | • | denotes the usual
Euclidean norm;

(A2) For each / = 1, . . . , iVT , O( : M
n —> R is continuously differentiable;
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(A3) For each i = I, ... , N, ht : [0, T] x R" x Rr -* R is continuously
differentiable;

(A4) <J>0 : R" —• R is continuously differentiable;
(A5) J?o : [0, T] x R" x Rr -» R is piecewise continuous on [0, T] for

each ( x , « ) e l " x l ' , and continuously differentiable with respect
to each of the components of x and u for each t € [0, T].

Define
e = { « e a r : * l . ( x ( r | M ) ) > o , / = I , . . . , J V T } (2.8)

a n d

^ = {w € G : * , . (* ,*(* | M ) , W ( 0 ) > 0 , W e [ 0 , 7 1 , i = 1, . . . , # } . (2-9)
o o

Let 6 and & be, respectively, subsets of the sets 0 and & defined by

e={ue&:<I>i{x(T\u))>0, i=\,...,NT} (2.10)

and

£ ' = { u € & : h i ( t , x ( t \ u ) , u ( t ) ) > 0 , V t e [ 0 , T ] , i = l,...,N} ( 2 . 1 1 )

To continue, we assume that the following condition is satisfied.
o

(A6) For any « e / , there exists a it e£?~ such that

f V a e ( 0 , l ] .

3. Model transformation

In this section, our aim is to convert the problem (P) into a form solvable
by the optimal control software MISER. To begin, we follow the idea of
Section 6 of [ 16] to introduce an extra set of differential equations for the
control u:

u(t) = v(t) (3.1a)

with the initial conditions:
w(0)=£ (3.1b)

where « = [ « , , . . . , vf e Rr; and £ = [ £ , , . . . , £r]
T .

In view of (3.1a), we see that u is now a state function rather than the
control function. It is determined by the new control function v and the
initial vector £,. For convenience, let ^ be referred to as the system param-
eter. Clearly, for a given system parameter vector £,, if v is approximated
by a piecewise constant function, then u will be a piecewise linear function.
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Define
x = [xl,...,xH,xa+l,...,xH+r]

T, (3.2)

where
xn+i~un i=l,...,r. (3.3)

Thus, by appending (3.1) to (2.1), we have

x(t) = f{t,x{t),v{t)) (3.4a)

JE(O) = x°(£) (3.4b)

where
/ = [ / , , ...,fn,vl,...,vf (3.4c)

and
xo{S) = [ x ° x , . . . , x l , S l , . . . , £ , ] . (3.4d)

In view of the definition of f/, the following constraints must be satisfied.

<*,<£,</?,., i=l,...,r, (3.5)

a, < * „ + , ( ' ) < £ , . W e [ 0 , 7 1 , i = l , . . . , r , (3.6)

and
c, <«,(*) <<*,-, W e [ 0 , 7 1 , i = l , . . . , r . (3.7)

Let JT be the set containing all vectors £ such that the constraints (3.5)
are satisfied. Furthermore, let 'V be the set containing all functions v such
that the constraints (3.7) are satisfied.

We shall call elements from W admissible controls and "V the class of
admissible controls. Furthermore, we shall call elements from Z system
parameter vectors and 3> the set of system parameter vectors.

o

To continue, let 2^ be a subset of the set 'V such that the following
constraints are satisfied.

o, < xfl+|.(0 < J8,, W e [ 0 , 7 1 , i=\,...,r.

For each (<(;, v) e 3? x 'V, let Jc(- | £, v) be the corresponding solution of
the system (3.4). The constraints (3.6) can be written as:

hi+N(t,x(t\t,v)) = fii-xll+i(t\t,v)>0, W e [ 0 , 7 1 , i = l , . . . , r
(3.8a)

and

0, W e [ 0 , 7 1 , i = l , . . . , r .
(3.8b)

For the inequality terminal state constraints (2.5) and the inequality contin-
uous state constraints (2.6), they are written as:

^ 0, i=l,...,NT (3.9)
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a n d

h l ( t , x ( t \ t , v ) ) = h l ( t , x { t \ u ) , u ( t ) ) > 0 , W e [ 0 , 7 1 , i = l , . . . , N .
(3.10)

Define

i t , v ) ) > 0 , i=l,...,NT} (3.11)

and

& = {{£,v)ee:~hl(t,x{t\Z,v))>0, W e [ 0 , 7 1 , i = 1 , . . . , N + 2r).

(3.12)
o o

Let 0 and &~ be, respectively, the subsets of the sets © and & defined by

e=Ut,v)€3?x'r:Q>i(x(T\Z,v))>0, i=l,...,NT\ (3.13)

and

r= l{Z,v) e&.hfc, x{t\Z, v)) >0, w e [ 0 , r ] , / = l , . . . , N + 2r\ .
(3.14)

We now consider the following combined optimal parameter selection and
optimal control problem:

Given the dynamical system (3.4), find a combined parameter vector and
control (£, v) £&~ such that the cost functional

f
Jo

& (3.15)f Qo

is minimised over &~, where

%(x(T\^,v)) = <t>0(x(T\u)) (3.16)

and

J?0(t,x(t \Z, v),v(t))=&0{t,x(t | u), u{t)) (3.17)

while Q>0(x(T \ u)) and £?0{t, x(t \ u), «(/)) are given in (2.6)—the cost
functional of the problem (P).

For convenience, let this combined optimal parameter selection and opti-
mal control problem be referred to as the problem (Q). In fact, it is obvious
that the problem (P) is equivalent to the problem (Q). Nonetheless, this
trivial result is presented in the following as a theorem for convenience in
future reference.

https://doi.org/10.1017/S0334270000008407 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000008407


158 K. L. Teo, K. K. Leong and G. J. Goh [8]

THEOREM 3.1. The problem (?) is equivalent to the problem (Q) in the sense
that for each u e &~ there corresponds uniquely a (£,,v) e &" such that
§o(u) = go(€, v) and vice versa.

4. Control parametrisation

In view of Theorem 3.1, it suffices to solve the problem (Q). Since the
problem (Q) is in the form considered in [17], the constraint transcription
introduced in [5] can be used together with the concept of control parametri-
sation to solve the problem (Q). To begin, we use the problem (Q) to
construct a sequence of problems such that the solution of each of these ap-
proximate problems is a suboptimal solution to the problem (Q). This is
achieved through the discretisation of the control space by approximating
each control with a piecewise constant function with possible discontinuities
at preassigned switching points. Since the problem (P) is equivalent to the
problem (Q), each of these suboptimal solutions generates readily a sub-
optimal solution to the problem (P). The details of the approximation of
control space are given as follows:

Consider a monotonically nondecreasing sequence {Sp}p
x>

=1 of finite sub-
sets of [0, T]. For each p , let np+1 points of Sp be denoted by tp

0 , tp , . . . ,
f . These points are chosen such that tp

0 = 0, f — T, and tp._. < fk,
p p

k — 1, 2, ... , np. Thus, associated with each Sp there is the obvious
partition J ^ of [0, T) denned by J ^ = {Ik : k = 1, . . . , np}, where

We choose Sp such that the following two properties are satisfied:

(Cl) Sp+l is a refinement of Sp; and
(C2) lim ^ Sp is dense in [0, T]. This is equivalent to requiring that

p

where \IP\ = t0. - tp
k_l , the length of the kth interval.

Let 2^"p consist of all those elements from "V which are piecewise con-
stant and consistent with the partition J r P . It is clear that each v e "V" can
be written as:

vp(t) = J2°" Xi>(t)> (4-1)
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where X[ denotes the indicator function of / denned by

*'(0 = { i Inhere (4'2)
ap'k € K,and

V = { v e R r : c i < v i < d i , / = 1 , . . . , / • } . (4.3)

L e t ap = [ a p - l \ . . . , a p ' n ' ] T w h e r e ap^ = [ o f ' * , . . . , o f ' * ] .
Restricting to 2^p , the control constraints denned in (4.3) become:

Cf<af'k<dit i = \ , . . . , r ; k = \ , . . . , n p . (4.4)

Let Sp be the set of all those ap vectors which satisfy the constraints (4.4).
Clearly, for each control vp € 'Vp there exists a unique control parameter

vector ap e Ep such that (4.1) is satisfied. Conversely, there also exists a
unique control vp e ^p corresponding to each control parameter vector
apeEp.

With v € 2^p , the differential equation (3.4) takes the form:

*(0 = /(',*(0V), (4.5a)
where

.T T
p "

.T T -_

and ap — [ap' , ... , ap'"" ] . The initial condition remains the same:

*(O) = JC°«;). (4.5b)

Define 6P — (£, ap). For convenience, let 6P be referred to as the com-
bined vector. Let x(- | 6P) be the solution of the system (4.5) corresponding
to the combined vector 6" e 2" x E" .

Similarly, by restricting v in 2^p , the constraints in (3.11) and (3.12) are
reduced, respectively, to

^l(x(T\0p))>O, i=l,...,Nr (4.6)

and
h i { t , x { t \ 6 p ) ) > 0 , i = l , . . . , N + 2r (4.7)

Define

A" = {6p€3rxEp: fl>,(jc(r \0P))>O, i=l,...,NT} (4.8)

and

/ " A P : h i ( t , x ( t \ d p ) ) > 0 , i = l , . . . , N + 2 r } . (4.9)
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o o

Furthermore, let Ap and Qp be, respectively, subsets of the sets Ap and
iV denned by

AP = {6P e2TxZp : £ , . ( J c ( r I d")) > 0 , i=l,...,NT} (4.10)

and

h" = {dp eAp:hi(T,x(t\e"))>0, i=l,...,N + 2 r } . (4 .11)

We may now specify the approximate problem (Q(p)) as follows:
PROBLEM ((?(/?)). Find a control parameter vector 9" GQF such that the

cost functional

Tj?0(t,x(t\ep),dp)dt (4.12)[
Jo

is minimised over Of , where J?'0 is obtained from Jt?Q in an obvious man-
ner.

In the rest of this section, some preliminary results are summarised in two
lemmas and two remarks.

LEMMA 4.1. Let {6P' }£1, be a sequence of combined vectors in J x E p

such that l i m ^ ^ \dp'k - Bp\ = 0. Then,
(i) dpe3rxZp;
(ii) {x(- | 0"'*)}£!, C X, where X is a bounded subset of Rn ;

(iii) l i m ^ ||*(- | 6p'k)-x(- \8p)\\oo = 0;

(iv) for each te[0,T], l i m ^ ^ \x(t \ d"'k) - x((t \ BP)\ = 0; and

PROOF, (i) follows from the fact that the set Z xEp is compact. The results
presented in (ii)-(v) can be established by techniques similar to those given
in the relevant parts of the proofs of Lemmas 4.2 to 4.4 of [19].

REMARK 4.1. For each v e.T' and each p, let vp(t) be constructed from
v according to (4.1) with

aP'k=w\Lv{s)ds (4j3a)

and
\I^\ = \tp

k-t
p
k_l\. (4.13b)

Then, it follows from Lemma 4.1 and its proof of [ 18] that

/->v (4.14a)
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almost everywhere in [0, T], as p —> oo; and furthermore,

lim / \v"{lim / \vp(t)-v(t)\dt = O. (4.14b)
p-

Again, by using techniques similar to those given in the relevant parts of
the proofs of Lemmas 4.2 and 4.4 of [19], we have the results presented in
the following lemma.

LEMMA 4.1. Let {{£,p, vp)}™=i be a bounded sequence of elements in Rr x L^
such that

lim \vp(t)-v{t)\ = 0, a.e. on [0,1],
P—•OO

J ^ o X - { | = 0. Then
(i) {*(• | <f, u p ) } ~ , C X, where X is a bounded subset of R 'x
(ii) l i m ^ ||*(- | lp , vp) - X(. K, ̂ L , = 0;
(iii) for each te[0,T], l i m ^ \x(t \ ZP , v") - x(t \ £,, v)\ = 0;

REMARK 4.2. In view of Lemma 4.2(ii)-(iii) and (3.3), it follows that
l i m ^ \\up - uW^ = 0, and for each t e [0, T], l i m ^ ^ \up(t) - u(t)\ = 0,
where i / and u are, respectively, related to {£,p, vp) and (£, v) according
to (3.1). Furthermore, by virtue of the argument similar to that given for
Lemma 4.4 of [19], we have l i m ^ ^ go(u

p) = go(u).

5. Constraints approximation

In view of Theorem 3.1, we recall that the problem (P) is equivalent to the
problem (Q). For problem (Q), it is to be solved via the control parametri-
sation technique. In other words, instead of solving the problem (Q), we
need only to solve a sequence of finite dimensional optimisation problems
(Q(P)) • However, the problem (Q(p)) cannot be solved directly as such by
the software MISER. In this section, we shall convert the problem (Q{p))
into a form solvable by MISER.

For each / = 1, . . . , N+2r, the corresponding inequality continuous state
constraint in (3.10) is equivalent to

|,(0")= / mm{hi(t,x(t\ep)),0}dt = 0. (5.1)
Jo

However, it should be noted that the equality constraints (5.1) are non-
differentiable with respect to those 6" at which ht: = 0.
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For convenience, let (Q(p)) with (4.7) replaced by (5.1) be again denoted
by (Q(p)) • Clearly, the set Ci? can also be written as:

(5.2)

Since the equality constraints (5.1) are nondifferentiable, the smoothing
technique of [5] will be used, that is, replace min{/j,(f, x{t \ 6")), 0} by
Sie(t,x(t\Bp)), where

2>Jt,x(t\d"))

( ht{t,x{t\dp)), iihi{t,x{t\dp))<-e

= | -(Af.(*, x{t | 6")) - ef/4e, if - e < h({t, x(t \ dp)) < e (5.3)

l o , if hi{t,x(t\6p))>e
This function is obtained by smoothing out the sharp corner of the function

, x(t | 6")), 0} .
For each i = 1, . . . , N + 2r, define

f - ? E(t,X(t\6P))dt. (5.4)
o

We now define two related approximate problems which will be referred
to as (Qe(p)) and {Qe y{p)). The first approximate problem is:
PROBLEM (QE{p)). The problem (Q) with the inequality continuous state
constraints (4.7) replaced by

iJ 0, i=l,...,N + 2r. (5.5)

Let Q^ be the feasible region of (Qe(p)) defined by

QP
E={dpeAp:kije") = 0, i=l,...,N} (5.6)

Then, for each e > 0, fi£ c Of .
Note that the equality constraints (5.5) fail to satisfy the usual constraint

qualification. Thus, we may encounter numerical difficulty if they are used
in their present form. This situation is similar to that in Remark 5.3 of [2].

To overcome this difficulty, we consider our second approximate problem
as follows:
PROBLEM (QE y(p)). The problem {Q) with (4.7) replaced by

7 + t / , e ( O > 0 , i=l,...,N + 2r. (5.7)

To continue, we assume that the following condition is satisfied.

(A7) For any d"e Of , there exists a 9" e Q" such that

ad" + {\ - a)^&h" Vae(0, 1].
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LEMMA 5.1. Let {6%'*} be a sequence in e of the optimal combined vectors
of the problems {QE{p)). Then,

Lep
e-') = kQ(0P''), (5-8)

where 6P'* is an optimal combined vector of the problem (Q(p)).

PROOF. The proof is similar to that given for Lemma 3.1 of [17].

LEMMA 5.2. Let dp'* and 6P'* be as defined in Lemma 5.1. If there exists
a combined vector 9" e Z x Z" such that l i m ^ \6P'* - 6P\ = 0, then Bp is
also an optimal combined vector of (Q(p)).

PROOF. The proof is similar to that given for Lemma 3.2 of [17]. The main
alterations are to replace Lemmas 4.2 and 4.3 of [19], Lemma 2.1 of [17]
and Lemma 3.1 of [19] by Lemma 3.4.1(iv), (iii), (ii) and Lemma 3.5.1,
respectively.

LEMMA 5.3. There exists a y(e) > 0 such that for all y, 0 < y < y(e), any
6P

 y of the problem (Qe y(feasible combined vector 6P
 y of the problem (Qe y(p)), i.e.,

is also a feasible combined vector of the problem (Q(p)).

PROOF. The proof is similar to that given for Lemma 3.3 of [17].
At this stage, the algorithm presented in Section 4 of [17] can be used to

generate a solution of the problem (Q(p)). For convenience, this algorithm
is recalled as follows:

ALGORITHM 5.1.

Data, e > 0, y > 0 . (In particular, we may choose e = 10~ and
y = Te/16).

Step 1. Solve (Qey(p)) to give 0Pt*.
Step 2. Check feasibility of h^t, x(t | 6P-*)) > 0 for all t e [0, T] and

for all i = 1, . . . , N + 2r.
Step 3. If 6P'* is feasible, go to Step 5.
Step 4. Set y = y/2 and go to Step 1.
Step 5. Set e = e/10, y = y/10. Go to Step 1.

REMARK 5.1. From Lemma 5.3, we see that the halving process of y in Step
4 of the algorithm needs only to be carried out a finite number of times.
Thus, the algorithm produces a sequence of suboptimal parameter vectors to
the problem (Q(p)), where each of them is in the feasible region of (Q(p)).
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Note that the other two remarks given for the algorithm in Section 4 of
[17] are obviously valid, also.

THEOREM 5.1. Let {6P>*} be a sequence in e of the suboptimal combined
vectors produced by the algorithm 5.1. Then go{6p'*) —> ko(d

p'*), as e ~*
0, where 9P'* is an optimal combined vector of (Q(p)). Furthermore, any
accumulation point of {6P'*} is a solution of (Q(p)).

PROOF. Clearly,

io(0<io(0*$o(0. (5-23)
where 6P'* is as denned for Lemma 5.1. Thus, by the same lemma, we have

io(<i;)-'!o(*'1*)-
To prove the second part of the theorem, we note that the sequence {8P ' *}

in e is in 3? x Ep which is a compact subset of M.s+rN". Thus, the existence
of an accumulation point is ensured. On this basis, the proof of the second
part of the theorem follows easily from an argument similar to that given for
Lemma 5.2.

REMARK 5.4. Let 6P' * be an optimal combined vector of the approximate
problem (Q{p)). Then, we know that 6"'* defines a unique combined
parameter vector and control (£,p'* ,vp'*) in !?. Thus, we shall refer to
(£"'* ,vp'*) as an optimal combined parameter vector and control of the ap-
proximate problem (Q(p)). Furthermore, it follows from Theorem 3.1 that
there corresponds uniquely a piecewise smooth control u"'* of the problem

6. Some convergence results

In this section, we shall discuss some convergence properties of the se-
quence of approximate optimal controls. To be more precise, for each p =
1, 2, . . . , let 6P'* = (iP, ap) be an optimal combined vector to the finite
dimensional optimization problem Q(p); furthermore, let {{£,p'*, vp'*)}™=l

be the corresponding sequence of elements in &. In view of (Cl) given
in Section 3, we see that each of these elements is a suboptimal one to the
problem (Q), and is such that £0(<f+1>*, vp+l'*) < go(Z

P'*, vp'*) for all
p=\,2,....

In view of Theorem 3.1, we note that {(£p' *, vp' * )}£!, generates a unique
sequence {u"'*}^ of elements in &~ such that go(z/'*) = go(£

P'*, vp'*)
where go(wp'*), which is the cost functional of the problem (P), is defined
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by (2.6). Furthermore, it is easy to see that go(u"+l'*) < go(u"'*) for all

THEOREM 6.1. Let (£p'*, vp'*) be an optimal combined parameter vector
and control of the approximate problem (Q(p)). Suppose that the original
problem (P) has an optimal control u*. Then there exists a unique element
i / !* ey such that ^mp^oog0(u

p'*) = gQ(u*).

Choose a2 = a , / 2 . Then it is clear that ua &&~. Thus there exists a

ua2))>d2, i=l,...,NT, (6.2)

PROOF. From (A6), there exists u e&~ such that
o

ua = au + (l -a)u* = u* +a(u-u*) e&~, Va € (0, 1].

For any S{ > 0, 3 a, e (0, 1) such that
* O + ^ i ' V a e ( 0 , a , ) . (6.1)

S2 > 0 such that

a n d , for all te[0,T],

h i ( t , x ( t \ u a 2 ) ) > S 2 , i=l,...,N, (6.3a)

Pi-Ua2,i(
t)>d2> i=l,...,r, (6.3.b)

and
ua2,i(

t)-a,>S2' i = \,..-,r, (6.3c)

where u • denotes the z'th component of the control u .
a2,i ^ a2

In view of Theorem 3.1, we see that w* (respectively, ua ) gives rise
uniquely to an element (£*, v*) (respectively, (£Q , va )) in &. Further-
more, it can be easily verified that (£Q , va ) satisfies:

O , . ( x ( r \ i a i , v a i ) ) > S 2 , i=l,...,NT. (6.4)

and, for all te[0,T],

h l ( t , Z ( t \ Z a i , v a i ) ) > 6 2 , i = l , . . . , N + 2 r . (6.5)

Let vp
a be the control defined from va according to (4.1). Then, by

virtue of Remark 4.1, Lemma 4.2(iv), (Al) and (A3) there exists a p0 such
that (£Q2, t £ ) e & for all p > p0 .
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From (4.1), (£Q , v^ ) gives rise uniquely to a combined vector Bp
a e Q? .

Clearly,

lo (0 P '*)<l o <) (6-6)
for all p > p0, where 6P' * is an optimal combined vector of the problem

Let {£,"'*, vp'*) be the corresponding element in &". Furthermore, let
up'* be the element in ^ corresponding to {£,"'* ,vp'*). Then, for all
P > Po , we have

? * p * , v p
Q 2 ) (6.7)

and

*o(«">*)^ *<>(<)• (6-8)
Next, by virtue of Remark 4.1 and the second part of Remark 4.2, we have

Combining (6.1), (6.8) and (6.9), we obtain

go(u) < J|im go(i/'*) < go(ua2) < go(u*) + d1. (6.10)

Since Sx > 0 is arbitrary and u* is an optimal control, we conclude that
l i m ^ ^ #0(1/'*) = <?o(M*) • T m s completes the proof.

The next theorem presents a convergence result for { 1 / * } . This result
is stronger than that presented in Theorem 5.2 of [17]. More precisely, in
this theorem, the sequence {if'*} is shown, rather than being assumed as in
Theorem 5.2 of [3], to possess an accumulation point in the uniform topology.
Any such accumulation point is then shown to be an optimal control of the
original optimal control problem (P).

THEOREM 6.2. Let {£,p'*, vp'*) be an optimal solution of the approximate
problem (Q{p)), and let {up'*} be the corresponding sequence in &~. Then,
the sequence {if'*} possesses an accumulation point in the uniform topology
in [0, T]. Furthermore, any such accumulation point is an optimal control
of the original optimal control problem (P).

PROOF. In view of (2.3), it follows from the Ascoli-Arzela theorem that the
sequence { M P * } has a subsequence, again denoted by the original sequence,
such that

u"'*-^u (6.11)

uniformly in [0, T]. Next, we shall show that u satisfies the constraints
specified in (2.3). For this, we note that, for each i — \, ... , r, and for any
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A > 0 ,

[(«.(* +A)-fl.(0)/A]

By the definition of {*/'*} , we recall that it is in %. Hence,

c(. <(<•'(* +A)-M?'*(0)/A<rfl-.
Thus,

ct - [(<•*(/ + A) - 0,(/ + A))/A] + [(<'* (0 - «,(0)/A]

< 4 - [ ( < * * ( ' + A) - fl,(* + A))/A] + [ (< '*(0 - a,.(0)/A]. (6.12)

Therefore, it follows from (6.11) and (6.12) that a is also in ^ .
Next, by virtue of the second part of Remark 4.2, we have

o g 0 ( ) g 0 ( ) (6.13)

An argument similar to that given in the proof of Lemma 3.2 of [17] shows
that w is a feasible point of the problem (P). Let u* be an optimal control
of (P). Then, by a similar argument as that used to obtain (6.1), there exists,
for each <J, > 0, an a2 6 (0, 1) such that

* * ( 6 . 1 4 )

where u G£?~ . Thus, there exists a <5, > 0 such that

<!>i(x(T\ua2))>S2, i=l,...,NT. (6.15)

and, for all t e [0 , T],

hi(t,x(t\uai))>62, i=l,...,N. (6.16a)

Pi-Ua2,tt)>
52> i=l,...,r (6.17b)

and
ua2,i(

t)-ai>S2> i=U-..,r (6.17c)

In view of Theorem 3.1, we see that u* (respectively, ua ) gives rise

uniquely to an element (£*, v*) (respectively, (<Ja , va )) in &. Further-
more, it can be easily verified that (£Q , va ) satisfies:

. « J ) > « 2 . i=l,...,NT. (6.18)
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and, for all te [0, T],

iZa2,va2))>S2, i=l,...,N + 2r. (6.19)

Let vp
a be the control denned from va according to (4.1). Then, by

virtue of Remark 4.1, Lemma 4.2(iv), (A2) and (A3) there exists a p0 such
that ( ^ , v*2) e & for all p > p0.

From (4.1), (£Q , v
p ) gives rise uniquely to a combined vector 6p

a G Cif .
Clearly,

}0(^'*)<l0(^2) (6.20)

for all p > p0, where 6P' * is an optimal combined vector of the problem

Let {£,p' * , vp' *) be the corresponding element in &~. Furthermore, let vf
be the element in &~ corresponding to (£p'*, vp'*). Then, for all p > pQ,
we have

^o(^'*^P'*)<to(^'<) (6-21)

and
SoC""'*) < £ „ ( < ) • (6.22)

Next, by virtue of Remark 4.1 and the second part of Remark 4.2, we have

Jfim gQ{u"'*) = ^0(fl) < plim go(<2) = *o("a2)- (6-23)

Combining (6.14) and (6.23), we have ^0(M) < £0(«*) + Sx . Since 5l > 0 is
arbitrary and u* is an optimal control, it is clear that u is also an optimal
control of the problem (P). This completes the proof.

7. Examples

To illustrate the applicability of the proposed numerical procedure, we
consider two optimal control problems involving cargo transfer via container
crane.
EXAMPLE 7.1. (minimum swing). In [14], a realistic and complex problem
of transferring containers from a ship to a cargo truck at the port of Kobe
was considered. The container crane is driven by a hoist motor and a trolley
drive motor. For safety reasons, the objective is to minimise the swing during
and at the end of the transfer.

This problem was solved in [14], using the algorithm of [12]. It was re-
solved in [2] and [17], where piecewise constant functions were used to ap-
proximate the controls in the control parametrisation procedure. This is
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feasible theoretically, but in practice, the controls are difficult to realise. Es-
sentially, piecewise constant controls in this crane problem corresponds to the
stepping of the current in the motors to provide the necessary driving torque.
This creates electrical noise in the system which might affect the performance
of other electronic circuitries, in particular, sensing equipments. The time
constants of the current drives will also mean that the piecewise constant
controls cannot be realised exactly. Furthermore, piecewise constant con-
trols entail infinite jerk at the switching points, thus resulting in undesirable
jerky forces on the load. In addition, it may also excite a large bandwidth
of vibration modes and induce structural vibrations. Hence smooth control
is much preferred for smoother operations of the motors and the problem
is best solved by the proposed method. In this example, we solve the same
problem with the controls approximated by piecewise linear functions.

Recall that in the crane problem in [14], the controls are given by ul(t)
and u2(t). Since the controls are required to be smooth, we introduce an
extra set of differential equations for the controls as follows:

6,(0 = «,(0 (7.1a)
U2(t) = v2(t) (7.1b)

with the initial conditions

M,(0) = {1 (7.2a)

«2(0) - £2 (7.2b)

where the <{;, and £,2 are the system parameters to be determined.
In view of (7.1), u{{t) and u2{t) are now state functions instead of con-

trol functions. They are determined by the new control functions v^it),
v2(t) and the system parameters £x, £2 • Lrt u s denote ul(t) and u2(t)
respectively by x-j(t) and xs(t). To prevent the original control variables u
from changing too rapidly with time, we need to impose bounds for the new
control functions v . Here, we assume that \v(t)\ < 10, V7.

The final formulation of the problem after appropriate normalisation is:

/ [x2M) + x2M)]dt (7.3)
Jo

subject to the dynamical equations

minimised

*, = 9*4, (7.4a)

x2 = 9x5, (7.4b)

xi = 9x6, (7.4c)

= 9 ( X 7 + 1 7 . 2 6 5 6 X 3 ) , (7.4d)
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where

x 5 = 9x%,

x6 = -9[x7 + 27.0756x, + 2x5x6]/x2,

x7 = 9t/,,

xs = 9v2,

x(0) = [ 0 , 2 2 , 0 , 0 , - 1 , 0 , £ , , < y T ,

= [ 1 0 , 1 4 , 0 , 2 . 5 , 0 , 0 ] T ,

with x ^ l ) and xg(l) being unspecified; and control constraints

| v , ( 0 l < 1 0 , Vte[0,l],

| « 2 (0 l<10 , V/€[0 , 1],

together with state inequality constraints

|* 4 (0 l<2 .5 , V r e [ 0 , l ] ,
\x5(t)\<l.O, V r e [ 0 , l ] ,

| x 7 ( 0 l < 2.83374, V f e [ 0 , l ] ,

-0 .80865 < x g ( 0 < 0.71265, V r e [ 0 , l ] .

(7.4e)

(7.4f)

(7.4g)

(7.4h)

(7.5)

(7.6)

(7.7a)

(7.7b)

(7.8a)

(7.8b)

(7.8c)

(7.8d)

TABLE 1. Results for piecewise linear controls: Example 7.1.

e

io-3

lO"5

lO"6

V

io-4

4 x 10~8

4 x 10~9

0.5493 x IO"2

0.5441 x 10~2

0.5412 x 10~2

These results were obtained using the general optimal control software
MISER. The value of the cost functional is marginally higher than that ob-
tained in [17] using the same algorithm. This is probably a tradeoff for using
a smoother control.

Figures l(a)-l(e) present the states and controls of the crane problem and
should be compared to the graphs given in [17]. The horizontal axis has been
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E »

Time

FIGURE la. History of state variable x, , Example 7.1.

0 1 2 3 4 5

Time

FIGURE lb. History of state variable x2 , Example 7.1.
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t L._

2 3 4 5

Time

FIGURE lc. History of state variable x , , Example 7.1.

1 2 3 4 5 6 7

Time

FIGURE Id. History of optimal control u, , Example 7.1.

8 9
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4 5

Time

8 9

FIGURE le. History of optimal control u2 , Example 7.1.

rescaled so that the graphs shown are in real time rather than normalised
time (cf. [17]). All the trajectories of the various state variables and controls
are observed to satisfy the given boundary conditions. Using piecewise linear
functions as approximations to the controls, we see that the rate of change
of the swing, given by x3 in Figure 1 (c) is much more gradual as compared
to that of Figure 2(c) in [17]. Figures l(d) and l(e) shows the corresponding
piecewise linear controls used in this crane problem.

EXAMPLE 7.2. (minimum time). This is a follow up to Example 7.1 above.
Since the main goal in any industry is profit making, as thousands of cargo
transfer operations are carried out at the port each day, or anywhere for that
matter, it is obvious that one would like to minimise the transfer time for
greater efficiency if safety in the working environment is not compromised.
Hence in this example, we will consider the corresponding minimum time
problem where the swing is subjected to lie within the acceptable bounds
as obtained from Example 7.1. Similarly, piecewise linear controls are used
as the approximations to provide smooth operations of the motors of the
container crane.

The problem is to seek a control such that the cost functional

f'r
go(u) = tf =

J Jo
\dt
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is minimised, subjecting to the same constraints and boundary conditions as
in Example 7.1 together with the following additional constraints:

x3min<x3(t)<x3aax, te[O,tf]

x6min<x6(t)<x6mn, te[0,tf]

where
tr is an unknown parameter to be determined;
x3 min-lower bound of the swing angle obtained from the minimum swing

problem;
x3 max-the corresponding upper bound;
x6 min-lower bound of the velocity of the swing obtained from the mini-

mum swing problem; and
x6 max-the corresponding upper bound.
We shall represent tj- by <jf3 in conjunction with the notations for system

parameters as used in Example 7.1.
After appropriate normalisation, the minimum time problem becomes:

minimise^,. <j;3

subject to the dynamical equations

•*1 = ^3*4 ' X2 = £$X5 ' X3 = ^3X6 ' X4 = ^ X l "*" 1

where

x(0) = [0, 22, 0, 0, - 1 , 0, ^l, £2f,

x({3) = [10, 14, 0 , 2 . 5 , 0 , 0] T ,

with Jc7(< 3̂) and xs(£3) being unspecified; and control constraints

| u , ( 0 l < 1 0 , | « 2 (0 l<10 , Vf€[O, 1],

together with state inequality constraints

|JC4(0I < 2.5, |JCS(O| < 1.0, |JC7(0I < 2.83374,
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0.80865 < x g ( 0 < 0.71265,

175

TABLE 2. Results for piecewise linear controls: Example 7.2.

e

io-3

io-4

io-5

io-6

2

4

4

y

io-4

X

X

X

io-6

io-8

io-9

i'o(»)
8.7115

8

8

8

7120

7167

7166

The results are again obtained using the MISER program. It is observed
that in solving the time optimal control problem, the program is sensitive
to the lower bounds of the cost functional £3 (recall that cf3 represents the
terminal time to be determined). That is, for whatever initial guess of <!;3
(this cannot be negative for obvious reasons), the program will start iterating
from the specified lower bound, ignoring the hard constraints and then work
its way until the hard constraints are satisfied. This is due to the optimisation
routine NLPQL (cf. Ref. 15) employed in MISER.

From numerical experiences, it was noted that if the lower bound is too
small, then convergence fails. The problem may, however, be solved as fol-
lows:

An artificial lower bound for <̂ 3 was initially imposed so that a local opti-
mal solution can be found. The lower bound is then decreased gradually to
obtain subsequent local optimal solutions. For each run of the program with
£3 reduced, the control inputs were taken from the outputs of the previous
run. This process is repreated until the required accuracy for the minimum
time is achieved.

The states and controls of this minimum time crane problem are as shown
in Figures 2(a)-2(e). As in the previous example, the graphs are given in real
time. Comparing with Figures l(a)-l(e), there is little difference between the
two sets of graphs except that in this minimum time problem, the terminal
time for the transfer is 8.7166 seconds as compared to 9 seconds in the
minimum swing problem. Note also that the second control in Figure 2(e) is
much smoother than that given in Figure l(e).
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1 2 3 4 5 6 7

Time

FIGURE 2a. History of state variable x. , Example 7.2.

9

E 2

1 2 3 4 5 6 7

Time

FIGURE 2b. History of state variable x2 , Example 7.2.

8 9
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- i 1

8 9

FIGURE 2C. History of state variable Xj, Example 7.2.

3 co

Time

FIGURE 2d. History of optimal control «, , Example 7.2.
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a
s

FIGURE 2e. History of optimal control u2 , Example 7.2.

Recall that this transfer time is only for the diagonal motion in the total
transferring path (see [14]). In this example, we have reduced this transfer
time by 3.1 percent. This may not look much, but bearing in mind that
there are thousands of cargo transfer operations being carried out each day, a
substantial amount of time can be saved, thus resulting in greater productivity
and ultimately increased profits.
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