
1
Introduction

This book is about the fundamentals of algorithms for solving continuous
optimization problems, which involve minimizing functions of multiple real-
valued variables, possibly subject to some restrictions or constraints on the
values that those variables may take. We focus particularly (though not
exclusively) on convex problems, and our choice of topics is motivated by
relevance to data science. That is, the formulations and algorithms that we
discuss are useful in solving problems from machine learning, statistics, and
data analysis.

To set the stage for subsequent chapters, the rest of this chapter outlines
several paradigms from data science and shows how they can be formulated
as continuous optimization problems. We must pay attention to particular
properties of these formulations – their smoothness properties and structure –
when we choose algorithms to solve them.

1.1 Data Analysis and Optimization

The typical optimization problem in data analysis is to find a model that agrees
with some collected data set but also adheres to some structural constraints that
reflect our beliefs about what a good model should be. The data set in a typical
analysis problem consists of m objects:

D := {(aj,yj), j = 1,2, . . . ,m}, (1.1)

where aj is a vector (or matrix) of features and yj is an observation or label.
(We can assume that the data has been cleaned so that all pairs (aj,yj), j =
1,2, . . . ,m have the same size and shape.) The data analysis task then consists
of discovering a function φ such that φ(aj) ≈ yj for most j = 1,2, . . . ,m. The
process of discovering the mapping φ is often called “learning” or “training.”

1

https://doi.org/10.1017/9781009004282.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009004282.002

2 1 Introduction

The function φ is often defined in terms of a vector or matrix of parameters,
which we denote in what follows by x or X (and occasionally by other
notation). With these parametrizations, the problem of identifying φ becomes
a traditional data-fitting problem: Find the parameters x defining φ such that
φ(aj) ≈ yj , j = 1,2, . . . ,m in some optimal sense. Once we come up with
a definition of the term “optimal” (and possibly also with restrictions on the
values that we allow to parameters to take), we have an optimization problem.
Frequently, these optimization formulations have objective functions of the
finite-sum type

LD(x) := 1

m

m∑
j=1

�(aj,yj ;x). (1.2)

The function �(a,y;x) here represents a “loss” incurred for not properly
aligning our prediction φ(a) with y. Thus, the objective LD(x) measures the
average loss accrued over the entire data set when the parameter vector is
equal to x.

Once an appropriate value of x (and thus φ) has been learned from the data,
we can use it to make predictions about other items of data not in the set D
(1.1). Given an unseen item of data â of the same type as aj , j = 1,2, . . . ,m,
we predict the label ŷ associated with â to be φ(â). The mapping φ may also
expose other structures and properties in the data set. For example, it may
reveal that only a small fraction of the features in aj are needed to reliably
predict the label yj . (This is known as feature selection.) When the parameter
x is a matrix, it could reveal a low-dimensional subspace that contains most of
the vectors aj , or it could reveal a matrix with particular structure (low-rank,
sparse) such that observations of X prompted by the feature vectors aj yield
results close to yj .

The form of the labels yj differs according to the nature of the data analysis
problem.

• If each yj is a real number, we typically have a regression problem.

• When each yj is a label, that is, an integer drawn from the set {1,2, . . . ,M}
indicating that aj belongs to one of M classes, this is a classification
problem. When M = 2, we have a binary classification problem, whereas
M > 2 is multiclass classification. (In data analysis problems arising in
speech and image recognition, M can be very large, of the order of
thousands or more.)

• The labels yj may not even exist; the data set may contain only the feature
vectors aj , j = 1,2, . . . ,m. There are still interesting data analysis
problems associated with these cases. For example, we may wish to group

https://doi.org/10.1017/9781009004282.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009004282.002

1.1 Data Analysis and Optimization 3

the aj into clusters (where the vectors within each cluster are deemed to be
functionally similar) or identify a low-dimensional subspace (or a
collection of low-dimensional subspaces) that approximately contains the
aj . In such problems, we are essentially learning the labels yj alongside the
function φ. For example, in a clustering problem, yj could represent the
cluster to which aj is assigned.

Even after cleaning and preparation, the preceding setup may contain many
complications that need to be dealt with in formulating the problem in rigorous
mathematical terms. The quantities (aj,yj) may contain noise or may be
otherwise corrupted, and we would like the mapping φ to be robust to such
errors. There may be missing data: Parts of the vectors aj may be missing,
or we may not know all the labels yj . The data may be arriving in streaming
fashion rather than being available all at once. In this case, we would learn φ

in an online fashion.
One consideration that arises frequently is that we wish to avoid overfitting

the model to the data set D in (1.1). The particular data set D available to us
can often be thought of as a finite sample drawn from some underlying larger
(perhaps infinite) collection of possible data points, and we wish the function φ

to perform well on the unobserved data points as well as the observed subset D.
In other words, we want φ to be not too sensitive to the particular sample D that
is used to define empirical objective functions such as (1.2). One way to avoid
this issue is to modify the objective function by adding constraints or penalty
terms, in a way that limits the “complexity” of the function φ. This process is
typically called regularization. An optimization formulation that balances fit
to the training data D, model complexity, and model structure is

min
x∈�

LD(x)+ λ pen(x), (1.3)

where � is a set of allowable values for x, pen(·) is a regularization function or
regularizer, and λ ≥ 0 is a regularization parameter. The regularizer usually
takes lower values for parameters x that yield functions φ with lower complex-
ity. (For example, φ may depend on fewer of the features in the data vectors
aj or may be less oscillatory.) The parameter λ can be “tuned” to provide an
appropriate balance between fitting the data and lowering the complexity of φ:
Smaller values of λ tend to produce solutions that fit the training data D more
accurately, while large values of λ lead to less complex models.1

1 Interestingly, the concept of overfitting has been reexamined in recent years, particularly in the
context of deep learning, where models that perfectly fit the training data are sometimes
observed to also do a good job of classifying previously unseen data. This phenomenon is a
topic of intense current research in the machine learning community.

https://doi.org/10.1017/9781009004282.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009004282.002

4 1 Introduction

The constraint set � in (1.3) may be chosen to exclude values of x that are
not relevant or useful in the context of the data analysis problem. For example,
in some applications, we may not wish to consider values of x in which one
or more components are negative, so we could set � to be the set of vectors
whose components are all greater than or equal to zero.

We now examine some particular problems in data science that give rise to
formulations that are special cases of our master problem (1.3). We will see that
a large variety of problems can be formulated using this general framework, but
we will also see that within this framework, there is a wide range of structures
that must be taken into account in choosing algorithms to solve these problems
efficiently.

1.2 Least Squares

Probably the oldest and best-known data analysis problem is linear least
squares. Here, the data points (aj,yj) lie in Rn × R, and we solve

min
x

1

2m

m∑
j=1

(
aT
j x − yj

)2 = 1

2m
‖Ax − y‖22, (1.4)

where A the matrix whose rows are aT
j , j = 1,2, . . . ,m and y =

(y1,y2, . . . ,ym)T . In the preceding terminology, the function φ is defined
by φ(a) := aT x. (We can introduce a nonzero intercept by adding an extra
parameter β ∈ R and defining φ(a) := aT x + β.) This formulation can
be motivated statistically, as a maximum-likelihood estimate of x when the
observations yj are exact but for independent identically distributed (i.i.d.)
Gaussian noise. We can add a variety of penalty functions to this basic least
squares problem to impose desirable structure on x and, hence, on φ. For
example, ridge regression adds a squared �2-norm penalty, resulting in

min
x

1

2m
‖Ax − y‖22 + λ‖x‖22, for some parameter λ > 0.

The solution x of this regularized formulation has less sensitivity to perturba-
tions in the data (aj,yj). The LASSO formulation

min
x

1

2m
‖Ax − y‖22 + λ‖x‖1 (1.5)

tends to yield solutions x that are sparse – that is, containing relatively
few nonzero components (Tibshirani, 1996). This formulation performs
feature selection: The locations of the nonzero components in x reveal those

https://doi.org/10.1017/9781009004282.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009004282.002

1.3 Matrix Factorization Problems 5

components of aj that are instrumental in determining the observation yj .
Besides its statistical appeal – predictors that depend on few features are
potentially simpler and more comprehensible than those depending on many
features – feature selection has practical appeal in making predictions about
future data. Rather than gathering all components of a new data vector â, we
need to find only the “selected” features because only these are needed to make
a prediction.

The LASSO formulation (1.5) is an important prototype for many problems
in data analysis in that it involves a regularization term λ‖x‖1 that is non-
smooth and convex but has relatively simple structure that can potentially be
exploited by algorithms.

1.3 Matrix Factorization Problems

There are a variety of data analysis problems that require estimating a low-rank
matrix from some sparse collection of data. Such problems can be formulated
as natural extension of least squares to problems in which the data aj are
naturally represented as matrices rather than vectors.

Changing notation slightly, we suppose that each Aj is an n×p matrix, and
we seek another n× p matrix X that solves

min
X

1

2m

m∑
j=1

(〈Aj,X〉 − yj)
2, (1.6)

where 〈A,B〉 := trace(AT B). Here we can think of the Aj as “probing” the
unknown matrix X. Commonly considered types of observations are random
linear combinations (where the elements of Aj are selected i.i.d. from some
distribution) or single-element observations (in which each Aj has 1 in a
single location and zeros elsewhere). A regularized version of (1.6), leading
to solutions X that are low rank, is

min
X

1

2m

m∑
j=1

(〈Aj,X〉 − yj)
2 + λ‖X‖∗, (1.7)

where ‖X‖∗ is the nuclear norm, which is the sum of singular values of X

(Recht et al., 2010). The nuclear norm plays a role analogous to the �1 norm in
(1.5), where as the �1 norm favors sparse vectors, the nuclear norm favors low-
rank matrices. Although the nuclear norm is a somewhat complex nonsmooth
function, it is at least convex so that the formulation (1.7) is also convex. This
formulation can be shown to yield a statistically valid solution when the true

https://doi.org/10.1017/9781009004282.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009004282.002

6 1 Introduction

X is low rank and the observation matrices Aj satisfy a “restricted isometry
property,” commonly satisfied by random matrices but not by matrices with
just one nonzero element. The formulation is also valid in a different context,
in which the true X is incoherent (roughly speaking, it does not have a few
elements that are much larger than the others), and the observations Aj are of
single elements (Candès and Recht, 2009).

In another form of regularization, the matrix X is represented explicitly as
a product of two “thin” matrices L and R, where L ∈ Rn×r and R ∈ Rp×r ,
with r 	 min(n,p). We set X = LRT in (1.6) and solve

min
L,R

1

2m

m∑
j=1

(〈Aj,LRT 〉 − yj)
2. (1.8)

In this formulation, the rank r is “hard-wired” into the definition of X, so
there is no need to include a regularizing term. This formulation is also
typically much more compact than (1.7); the total number of elements in
(L,R) is (n + p)r , which is much less than np. However, this function is
nonconvex when considered as a function of (L,R) jointly. An active line of
current research, pioneered by Burer and Monteiro (2003) and also drawing on
statistical sources, shows that the nonconvexity is benign in many situations
and that, under certain assumptions on the data (Aj,yj), j = 1,2, . . . ,m and
careful choice of algorithmic strategy, good solutions can be obtained from the
formulation (1.8). A clue to this good behavior is that although this formulation
is nonconvex, it is in some sense an approximation to a tractable problem: If we
have a complete observation of X, then a rank-r approximation can be found
by performing a singular value decomposition of X and defining L and R in
terms of the r leading left and right singular vectors.

Some applications in computer vision, chemometrics, and document clus-
tering require us to find factors L and R like those in (1.8) in which all elements
are nonnegative. If the full matrix Y ∈ Rn×p is observed, this problem has the
form

min
L,R
‖LRT − Y‖2F, subject to L ≥ 0, R ≥ 0

and is called nonnegative matrix factorization.

1.4 Support Vector Machines

Classification via support vector machines (SVM) is a classical optimization
problem in machine learning, tracing its origins to the 1960s. Given the input

https://doi.org/10.1017/9781009004282.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009004282.002

1.4 Support Vector Machines 7

data (aj,yj) with aj ∈ Rn and yj ∈ {−1,1}, SVM seeks a vector x ∈ Rn and
a scalar β ∈ R such that

aT
j x − β ≥ 1 when yj = +1, (1.9a)

aT
j x − β ≤ −1 when yj = −1. (1.9b)

Any pair (x,β) that satisfies these conditions defines a separating hyperplane
in Rn, that separates the “positive” cases {aj | yj = +1} from the “negative”
cases {aj | yj = −1}. Among all separating hyperplanes, the one that
minimizes ‖x‖2 is the one that maximizes the margin between the two classes –
that is, the hyperplane whose distance to the nearest point aj of either class is
greatest.

We can formulate the problem of finding a separating hyperplane as an
optimization problem by defining an objective with the summation form (1.2):

H(x,β) = 1

m

m∑
j=1

max(1− yj (a
T
j x − β),0). (1.10)

Note that the j th term in this summation is zero if the conditions (1.9) are
satisfied, and it is positive otherwise. Even if no pair (x,β) exists for which
H(x,β) = 0, a value (x,β) that minimizes (1.2) will be the one that comes
as close as possible to satisfying (1.9) in some sense. A term λ‖x‖2

2 (for some
parameter λ > 0) is often added to (1.10), yielding the following regularized
version:

H(x,β) = 1

m

m∑
j=1

max(1− yj (a
T
j x − β),0)+ 1

2
λ‖x‖22. (1.11)

Note that, in contrast to the examples presented so far, the SVM problem has
a nonsmooth loss function and a smooth regularizer.

If λ is sufficiently small, and if separating hyperplanes exist, the pair
(x,β) that minimizes (1.11) is the maximum-margin separating hyperplane.
The maximum-margin property is consistent with the goals of generalizability
and robustness. For example, if the observed data (aj,yj) is drawn from
an underlying “cloud” of positive and negative cases, the maximum-margin
solution usually does a reasonable job of separating other empirical data
samples drawn from the same clouds, whereas a hyperplane that passes close
to several of the observed data points may not do as well (see Figure 1.1).

Often, it is not possible to find a hyperplane that separates the positive
and negative cases well enough to be useful as a classifier. One solution is
to transform all of the raw data vectors aj by some nonlinear mapping ψ and

https://doi.org/10.1017/9781009004282.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009004282.002

8 1 Introduction

.

Figure 1.1 Linear support vector machine classification, with the one class
represented by circles and the other by squares. One possible choice of separating
hyperplane is shown at left. If the training data is an empirical sample drawn from
a cloud of underlying data points, this plane does not do well in separating the two
clouds (middle). The maximum-margin separating hyperplane does better (right).

then perform the support vector machine classification on the vectors ψ(aj),
j = 1,2, . . . ,m. The conditions (1.9) would thus be replaced by

ψ(aj)
T x − β ≥ 1 when yj = +1; (1.12a)

ψ(aj)
T x − β ≤ −1 when yj = −1, (1.12b)

leading to the following analog of (1.11):

H(x,β) = 1

m

m∑
j=1

max(1− yj (ψ(aj)
T x − β),0)+ 1

2
λ‖x‖22. (1.13)

When transformed back to Rm, the surface {a |ψ(a)T x − β = 0} is nonlinear
and possibly disconnected, and is often a much more powerful classifier than
the hyperplanes resulting from (1.11).

We note that SVM can also be expressed naturally as a minimization
problem over a convex set. By introducing artificial variables, the problem
(1.13) (and (1.11)) can be formulated as a convex quadratic program – that is,
a problem with a convex quadratic objective and linear constraints. By taking
the dual of this problem, we obtain another convex quadratic program, in m

variables:

min
α∈Rm

1

2
αT Qα − 1T α subject to 0 ≤ α ≤ 1

λ
1, yT α = 0, (1.14)

where

Qkl = ykylψ(ak)
T ψ(al), y = (y1,y2, . . . ,ym)T , 1 = (1,1, . . . ,1)T .

Interestingly, problem (1.14) can be formulated and solved without explicit
knowledge or definition of the mapping ψ . We need only a technique to define
the elements of Q. This can be done with the use of a kernel function K : Rn×
R

n → R, where K(ak,al) replaces ψ(ak)
T ψ(al) (Boser et al., 1992; Cortes

https://doi.org/10.1017/9781009004282.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009004282.002

1.5 Logistic Regression 9

and Vapnik, 1995). This is the so-called kernel trick. (The kernel function K

can also be used to construct a classification function φ from the solution of
(1.14).) A particularly popular choice of kernel is the Gaussian kernel:

K(ak,al) := exp

(
− 1

2σ
‖ak − al‖2

)
,

where σ is a positive parameter.

1.5 Logistic Regression

Logistic regression can be viewed as a softened form of binary support vector
machine classification in which, rather than the classification function φ giving
a unqualified prediction of the class in which a new data vector a lies, it returns
an estimate of the odds of a belonging to one class or the other. We seek an
“odds function” p parametrized by a vector x ∈ Rn,

p(a;x) := (1+ exp(aT x))−1, (1.15)

and aim to choose the parameter x in so that

p(aj ;x) ≈ 1 when yj = +1; (1.16a)

p(aj ;x) ≈ 0 when yj = −1. (1.16b)

(Note the similarity to (1.9).) The optimal value of x can be found by
minimizing a negative-log-likelihood function:

L(x) := − 1

m

⎡
⎣ ∑

j :yj=−1

log(1− p(aj ;x))+
∑

j :yj=1

log p(aj ;x)

⎤
⎦ . (1.17)

Note that the definition (1.15) ensures that p(a;x) ∈ (0,1) for all a and x;
thus, log(1− p(aj ;x)) < 0 and log p(aj ;x) < 0 for all j and all x. When the
conditions (1.16) are satisfied, these log terms will be only slightly negative,
so values of x that satisfy (1.17) will be near optimal.

We can perform feature selection using the model (1.17) by introducing a
regularizer λ‖x‖1 (as in the LASSO technique for least squares (1.5)),

min
x
− 1

m

⎡
⎣ ∑

j :yj=−1

log(1− p(aj ;x))+
∑

j :yj=1

log p(aj ;x)

⎤
⎦+ λ‖x‖1,

(1.18)

where λ > 0 is a regularization parameter. As we see later, this term has
the effect of producing a solution in which few components of x are nonzero,

https://doi.org/10.1017/9781009004282.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009004282.002

10 1 Introduction

making it possible to evaluate p(a;x) by knowing only those components of a

that correspond to the nonzeros in x.
An important extension of this technique is to multiclass (or multinomial)

logistic regression, in which the data vectors aj belong to more than two
classes. Such applications are common in modern data analysis. For example,
in a speech recognition system, the M classes could each represent a phoneme
of speech, one of the potentially thousands of distinct elementary sounds
that can be uttered by humans in a few tens of milliseconds. A multinomial
logistic regression problem requires a distinct odds function pk for each class
k ∈ {1,2, . . . ,M}. These functions are parametrized by vectors x[k] ∈ Rn,
k = 1,2, . . . ,M , defined as follows:

pk(a;X) := exp(aT x[k])∑M
l=1 exp(aT x[l])

, k = 1,2, . . . ,M, (1.19)

where we define X := {x[k] | k = 1,2, . . . ,M}. As in the binary case, we
have pk(a) ∈ (0,1) for all a and all k = 1,2, . . . ,M and, in addition, that∑M

k=1 pk(a) = 1. The functions (1.19) perform a “softmax” on the quantities
{aT x[l] | l = 1,2, . . . ,M}.

In the setting of multiclass logistic regression, the labels yj are vectors in
RM whose elements are defined as follows:

yjk =
{

1 when aj belongs to class k,

0 otherwise.
(1.20)

Similarly to (1.16), we seek to define the vectors x[k] so that

pk(aj ;X) ≈ 1 when yjk = 1 (1.21a)

pk(aj ;X) ≈ 0 when yjk = 0. (1.21b)

The problem of finding values of x[k] that satisfy these conditions can again be
formulated as one of minimizing a negative-log-likelihood:

L(X) := − 1

m

m∑
j=1

[
M∑

�=1

yj�(x
T
[�]aj)− log

(
M∑

�=1

exp(xT
[�]aj)

)]
. (1.22)

“Group-sparse” regularization terms can be included in this formulation to
select a set of features in the vectors aj , common to each class, that distinguish
effectively between the classes.

https://doi.org/10.1017/9781009004282.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009004282.002

1.6 Deep Learning 11

1.6 Deep Learning

Deep neural networks are often designed to perform the same function as
multiclass logistic regression – that is, to classify a data vector a into one of M

possible classes, often for large M . The major innovation is that the mapping
φ from data vector to prediction is now a nonlinear function, explicitly
parametrized by a set of structured transformations.

The neural network shown in Figure 1.2 illustrates the structure of a particu-
lar neural net. In this figure, the data vector aj enters at the left of the network,
and each box (more often referred to as a “layer”) represents a transformation
that takes an input vector and applies a nonlinear transformation of the data
to produce an output vector. The output of each operator becomes the input
for one or more subsequent layers. Each layer has a set of its own parameters,
and the collection of all of the parameters over all the layers comprises our
optimization variable. The different shades of boxes here denote the fact that
the types of transformations might differ between layers, but we can compose
them in whatever fashion suits our application.

A typical transformation, which converts the vector al−1
j representing

output from layer l − 1 to the vector al
j representing output from layer l, is

al
j = σ(Wlal−1

j + gl), (1.23)

where Wl is a matrix of dimension |al
j |×|al−1

j | and gl is a vector of length |al
j |.

The function σ is a componentwise nonlinear transformation, usually called an
activation function. The most common forms of the activation function σ act
independently on each component of their argument vector as follows:

- Sigmoid: t → 1/(1+ e−t);

- Rectified Linear Unit (ReLU): t → max(t,0).

Alternative transformations are needed when the input to box l comes from
two or more preceding boxes (as in the case for some boxes in Figure 1.2).

The rightmost layer of the neural network (the output layer) typically has M

outputs, one for each of the possible classes to which the input (aj , say) could
belong. These are compared to the labels yjk , defined as in (1.20) to indicate
which of the M classes that aj belongs to. Often, a softmax is applied to the

Figure 1.2 A deep neural network, showing connections between adjacent layers,
where each layer is represented by a shaded rectangle.

https://doi.org/10.1017/9781009004282.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009004282.002

12 1 Introduction

outputs in the rightmost layer, and a loss function similar to (1.22) is obtained,
as we describe now.

Consider the special (but not uncommon) case in which the neural net
structure is a linear graph of D levels, in which the output for layer l − 1
becomes the input for layer l (for l = 1,2, . . . ,D) with aj = a0

j , j =
1,2, . . . ,m, and the transformation within each box has the form (1.23). A
softmax is applied to the output of the rightmost layer to obtain a set of odds.
The parameters in this neural network are the matrix-vector pairs (Wl,gl),
l = 1,2, . . . ,D that transform the input vector aj = a0

j into the output aD
j of

the final layer. We aim to choose all these parameters so that the network does
a good job of classifying the training data correctly. Using the notation w for
the layer-to-layer transformations, that is,

w := (W 1,g1,W 2,g2, . . . ,WD,gD),

we can write the loss function for deep learning as

L(w) = − 1

m

m∑
j=1

[
M∑

�=1

yj�a
D
j,�(w)− log

(
M∑

�=1

exp aD
j,�(w)

)]
, (1.24)

where aD
j,�(w) ∈ R is the output of the �th element in layer D corresponding to

input vector a0
j . (Here we write aD

j,�(w) to make explicit the dependence on the
transformations w as well as on the input vector aj .) We can view multiclass
logistic regression as a special case of deep learning with D = 1, so that
a1
j,� = W 1

�,·a
0
j , where W 1

�,· denotes row � of the matrix W 1.
Neural networks in use for particular applications (for example, in image

recognition and speech recognition, where they have been quite successful)
include many variants on the basic design. These include restricted connectiv-
ity between the boxes (which corresponds to enforcing sparsity structure on the
matrices Wl , l = 1,2, . . . ,D) and sharing parameters, which corresponds to
forcing subsets of the elements of Wl to take the same value. Arrangements of
the boxes may be quite complex, with outputs coming from several layers, con-
nections across nonadjacent layers, different componentwise transformations
σ at different layers, and so on. Deep neural networks for practical applications
are highly engineered objects.

The loss function (1.24) shares with many other applications the finite-sum
form (1.2), but it has several features that set it apart from the other applications
discussed before. First, and possibly most important, it is nonconvex in the
parameters w. Second, the total number of parameters in w is usually very
large. Effective training of deep learning classifiers typically requires a great
deal of data and computation power. Huge clusters of powerful computers –

https://doi.org/10.1017/9781009004282.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009004282.002

1.7 Emphasis 13

often using multicore processors, GPUs, and even specially architected pro-
cessing units – are devoted to this task.

1.7 Emphasis

Many problems can be formulated as in the framework (1.3), and their
properties may differ significantly. They might be convex or nonconvex, and
smooth or nonsmooth. But there are important features that they all share.

• They can be formulated as functions of real variables, which we typically
arrange in a vector of length n.

• The functions are continuous. When nonsmoothness appears in the
formulation, it does so in a structured way that can be exploited by the
algorithm. Smoothness properties allow an algorithm to make good
inferences about the behavior of the function on the basis of knowledge
gained at nearby points that have been visited previously.

• The objective is often made up in part of a summation of many terms,
where each term depends on a single item of data.

• The objective is often a sum of two terms: a “loss term” (sometimes arising
from a maximum likelihood expression for some statistical model) and a
“regularization term” whose purpose is to impose structure and
“generalizability” on the recovered model.

Our treatment emphasizes algorithms for solving these various kinds of
problems, with analysis of the convergence properties of these algorithms. We
pay attention to complexity guarantees, which are bounds on the amount of
computational effort required to obtain solutions of a given accuracy. These
bounds usually depend on fundamental properties of the objective function
and the data that defines it, including the dimensions of the data set and the
number of variables in the problem. This emphasis contrasts with much of
the optimization literature, in which global convergence results do not usually
involve complexity bounds. (A notable exception is the analysis of interior-
point methods (see Nesterov and Nemirovskii, 1994; Wright, 1997)).

At the same time, we try as much as possible to emphasize the practical
concerns associated with solving these problems. There are a variety of trade-
offs presented by any problem, and the optimizer has to evaluate which tools
are most appropriate to use. On top of the problem formulation, it is imperative
to account for the time budget for the task at hand, the type of computer
on which the problem will be solved, and the guarantees needed for the

https://doi.org/10.1017/9781009004282.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009004282.002

14 1 Introduction

solution to be useful in the application that gave rise to the problem. Worst-case
complexity guarantees are only a piece of the story here, and understanding the
various parameters and heuristics that form part of any practical algorithmic
strategy are critical for building reliable solvers.

Notes and References

The softmax operator is ubiquitous in problems involving multiple classes.
Given real numbers z1,z2, . . . ,zM , we define pj = ezj /

∑M
i=1 ezi and note

that pj ∈ (0,1) for all j , and
∑M

j=1 pj = 1. Moreover, if for some j we have
zj � maxi�j zi , then pj ≈ 1 while pi ≈ 0 for all i � j .

The examples in this chapter are adapted from an article by one of the
authors (Wright, 2018).

https://doi.org/10.1017/9781009004282.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009004282.002

