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Abstract

Choline and betaine are nutrients involved in one-carbon metabolism. Choline is essential for neurodevelopment and brain function.

We studied the associations between cognitive function and plasma concentrations of free choline and betaine. In a cross-sectional

study, 2195 subjects (55 % women), aged 70–74 years, underwent extensive cognitive testing including the Kendrick Object Learning

Test (KOLT), Trail Making Test (part A, TMT-A), modified versions of the Digit Symbol Test (m-DST), Block Design (m-BD), Mini-

Mental State Examination (m-MMSE) and Controlled Oral Word Association Test (COWAT). Compared with low concentrations, high

choline (.8·4mmol/l) was associated with better test scores in the TMT-A (56·0 v. 61·5, P¼0·004), m-DST (10·5 v. 9·8, P¼0·005) and

m-MMSE (11·5 v. 11·4, P¼0·01). A generalised additive regression model showed a positive dose–response relationship between the

m-MMSE and choline (P¼0·012 from a corresponding linear regression model). Betaine was associated with the KOLT, TMT-A and

COWAT, but after adjustments for potential confounders, the associations lost significance. Risk ratios (RR) for poor test performance

roughly tripled when low choline was combined with either low plasma vitamin B12 (#257 pmol/l) concentrations (RRKOLT ¼ 2·6, 95 %

CI 1·1, 6·1; RRm-MMSE ¼ 2·7, 95 % CI 1·1, 6·6; RRCOWAT ¼ 3·1, 95 % CI 1·4, 7·2) or high methylmalonic acid (MMA) ($3·95mmol/l) con-

centrations (RRm-BD ¼ 2·8, 95 % CI 1·3, 6·1). Low betaine (#31·1mmol/l) combined with high MMA was associated with elevated RR on

KOLT (RRKOLT ¼ 2·5, 95 % CI 1·0, 6·2). Low plasma free choline concentrations are associated with poor cognitive performance. There

were significant interactions between low choline or betaine and low vitamin B12 or high MMA on cognitive performance.
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Ageing is the most important risk factor for cognitive decline,

dementia and Alzheimer’s disease. Besides ageing, there are

several other behavioural factors such as diet, obesity, smoking

and physical activity that affect cognitive function(1). There is

considerable evidence that one-carbon metabolites are

essential in neurodevelopment and brain function. High

plasma concentrations of total homocysteine (tHcy) and

low concentrations of folate and/or vitamin B12 have been
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Abbreviations: COWAT, Controlled Oral Word Association Test; KOLT, Kendrick Object Learning Test; m-DST, modified version of the Digit Symbol Test;
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associated with cognitive deficit and Alzheimer’s disease(2).

Betaine and choline are quaternary ammonium compounds

metabolically linked to both lipid and folate-dependent

one-carbon metabolism(3). Choline lowers plasma tHcy con-

centrations, even when dietary consumption of folate and

other B vitamins is adequate(4,5), and high doses of betaine,

alone or in combination with other B vitamins, are used in the

treatment of homocystinuria(3).

Betaine serves as a methyl donor in a reaction converting

homocysteine to methionine, catalysed by the hepatic enzyme

betaine-homocysteine methyltransferase(6). It is not known

whether betaine plays a role within the brain, although a

betaine/g-aminobutyric acid (GABA) transporter has been

identified in astrocytes(7). There is only one published report

of a positive association between plasma concentrations of

betaine and cognition in human subjects(8).

Choline, an essential dietary constituent(9), is required for the

synthesis of acetylcholine, phospholipids and betaine(3).

Because acetylcholine is a neurotransmitter involved in atten-

tion, learning and memory, choline may be important in many

cognitive processes and in brain development(10). Choline,

as a component of phosphatidylcholine, also plays a role in

membrane structure and in membrane-mediated cell signal-

ling(11). In animal studies, rats in impoverished environmental

conditions (no toys or other playing opportunities) fed cytidine

5’-diphosphocholine (CDP)-choline were protected from

memory impairment(12). Moreover, in rats, choline supplemen-

tation during the embryonic period improves memory perform-

ance later in life(13). In contrast, one study found no correlation

between human maternal and cord blood choline concen-

trations and subsequent child intelligence quotient scores at 5

years of age(14). In a folate-fortified human population, low

serum concentrations of total choline were associated with an

elevated risk of neural tube defects(15). In another study(16), a

positive relationship between plasma choline concentration

and acetylcholine concentration was observed in children

with cystic fibrosis who had low choline status, but not in

healthy children. Whether plasma choline concentrations are

associated with acetylcholine concentration in older adults is

not known, and controlled clinical trials have not shown any

clinical value of choline and phosphatidylcholine in the treat-

ment of cognitive dysfunction in Alzheimer’s disease(17,18). On

the other hand, in a recent study in a large, non-demented com-

munity-based cohort, higher concurrent choline intake was

associated with better cognitive performance(19).

Although choline plays an important role in the development

as well as functioning of the central nervous system, few

studies have investigated the association between plasma

concentrations of choline and cognitive function. We have

examined the associations between plasma concentrations of

free choline, betaine and cognitive functions monitored in

an elderly subsample of the Hordaland Health Study. We also

investigated possible interactions with other one-carbon metab-

olites, because choline, betaine and folate are interchangeable

sources of one-carbon units, and, together with vitamin B12,

determinants of tHcy(3), which is a strong marker of future

cognitive decline(2).

Subjects and methods

Study population

The Hordaland Health Study was conducted from 1997 to 1999

as a collaborative effort between the University of Bergen,

University of Oslo, local health services and the National

Health Screening Service (now the Norwegian Institute of

Public Health). Details of the study and of recruitment to the

cognitive sub-study have been described elsewhere(20,21).

Briefly, the cognitive sub-study was confined to all those

living in the city of Bergen and who were born between 1925

and 1927. A total of 2841 elderly subjects attended both the

baseline (1992–3) and the follow-up (1997–9) studies and

were in the latter study invited, independent of their cognitive

status, to participate in cognitive tests; 2197 (77·3 %) of these

subjects agreed to participate. In the present study, we have

restricted the cross-sectional analyses to 2195 individuals for

whom plasma concentrations of free choline and betaine(22)

and cognitive function measurements were available. The

present study was conducted according to the guidelines

laid down in the Declaration of Helsinki and all procedures

involving human subjects were approved by the Regional

Committee for Medical Research Ethics of Western Norway.

Written informed consent was obtained from all subjects.

Data collection

Cognitive testing was performed at the study location by trained

nurses after the standard cardiovascular examinations of the

National Health Screening Service(23) were completed. The cog-

nitive test battery included six tests(24): the Kendrick Object

Learning Test (KOLT, episodic memory)(25); the Trail Making

Test, part A (TMT-A, sensorimotor speed)(26); a modified ver-

sion of the Digit Symbol Test (m-DST, perceptual speed and

executive function)(27); a modified form of the Block Design

(m-BD) (visuospatial skills)(27); a modified version of the

Mini-Mental State Examination (m-MMSE, global cognition)(28);

an abridged version of the Controlled Oral Word Association

Test (COWAT), also called ‘S-task’ (semantic memory)(29). For

all cognitive tests, the higher scores indicate better perform-

ance, except for the TMT-A where the speed of fulfilment is

important, i.e. the shorter the time used, the better the results.

Non-fasting blood samples used for the preparation of

plasma were collected into evacuated tubes containing EDTA,

and stored at 2808C. Plasma concentrations of free choline,

betaine, tHcy and creatinine were measured by normal-

phase liquid chromatography–tandem MS detection(30). The

within- and between-day imprecision (CV) for plasma free

choline and betaine varied between 2·1 and 8·8 %(30). Plasma

concentrations of folate and vitamin B12 were measured

by Lactobacillus casei (31) and L. leichmannii microbiological

assays(32). Plasma methylmalonic acid (MMA) concentration

was measured by a modified GC–MS method based on ethyl-

chloroformate derivatisation(33). Methylenetetrahydrofolate

reductase (MTHFR) 677C ! T and apoE 14 genotypes were

determined in the packed cell fraction of blood samples using

the real-time and one-stage PCR techniques, respectively(34,35).

Details on self-reported information on the history of CVD,

E. Nurk et al.512

B
ri
ti
sh

Jo
u
rn
al

o
f
N
u
tr
it
io
n

https://doi.org/10.1017/S0007114512001249  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114512001249


education, smoking status and depression have been reported

previously(36).

Statistical analyses

Because the distributions of blood measurements showed

a markedly skewed distribution, log-transformed data were

used in all analyses. Pearson’s correlation coefficients were

determined between choline, betaine and different covariates.

Cut-off values for low plasma concentrations of free choline

and betaine were set at the 20th percentile of the study popu-

lation values: #8·4mmol/l for choline and #31·1mmol/l

for betaine. For a comparison between groups, Pearson’s x 2,

independent sample t tests and ANOVA were applied. Pre-

liminary analyses to identify covariates showed that cognitive

performance was associated with education, plasma folate con-

centration and depression (all test scores were significantly

associated). Of the six cognitive test scores, five were signifi-

cantly associated with tHcy and four were associated with

apoE 14 allele and CVD history. Sex, smoking and plasma con-

centration of vitamin B12 were significantly associated with two

out of six cognitive test scores, whereas plasma concentrations

of MMA and creatinine, and the MTHFR 677C ! T T allele were

significantly associated with only one cognitive test score.

Plasma concentrations of free choline or betaine were signifi-

cantly associated with sex, apoE 14 allele, the history of CVD,

education, smoking status, plasma concentrations of folate,

MMA, tHcy and creatinine. Inclusion of plasma concentrations

of vitamin B12, MMA or tHcy as covariates did not alter the

results significantly and are therefore omitted from final statis-

tical models to avoid potential over-adjustment. Thus, the

final adjusted models included the following variables: sex,

education, apoE 14 allele, CVD history, smoking status,

plasma concentrations of folate and creatinine, and MTHFR

677C ! T genotype. Although the depression score was

highly correlated with cognitive performance, it was excluded

from statistical models due to a large proportion of missing

values. However, the effect of depression is reported separately

when it affected otherwise significant results. Given the narrow

age range, adjustment for age did not change the results and has

not been included. In multivariate analyses, subjects with miss-

ing data in one or more variables were excluded. Gaussian

generalised additive regression models, as implemented in

S-PLUS 6.2 for Windows (Insightful Corporation), were used

to generate graphic representations of the dose–response

relationships, using a sex-adjusted model. Multiple linear

regression analyses were used to examine significant associ-

ations between the cognitive test scores and plasma concen-

trations of free choline and betaine using both a sex-adjusted

model and a model adjusted for the variables referred to the

final model above. Potential interaction between plasma free

choline or betaine and other one-carbon metabolites (plasma

concentrations of folate, vitamin B12, MMA and tHcy) on poor

cognitive performance (cut-off points for poor cognitive test

scores were set at about the 10th percentile of the cognitive

test score, except for the TMT-A, for which the 90th percentile

was used) was assessed by multiple logistic regression analyses

including an interaction term where plasma free choline and

betaine concentrations were dichotomous variables both as a

main effect and an interaction term. Similarly, other one-carbon

metabolites were present in interaction models as dichotomous

variables. Cut-off values for low or high concentrations were set

either at the 20th or 80th percentile: low folate #5·06 nmol/l;

low vitamin B12 #257pmol/l; high tHcy $14·3mmol/l; high

MMA $3·95mmol/l. All interaction models were adjusted for

the same covariates as mentioned for the final models above,

except for the models where plasma concentration of folate

was studied as an effect modifier.

All statistical analyses, except for generalised additive

models, were performed using the SPSS version 16.0 for

Windows (SPSS, Inc.). A two-sided P value less than 0·05 was

considered significant.

Results

The characteristics of the study population, including cognitive

scores, are presented in Table 1. Of the 1992 participants who

completed all cognitive tests, 231 (less than 12 %) performed

poorly in two or more tests, including four individuals who

Table 1. Characteristics of the study population

(Number of participants and percentages; mean values and 95 % confi-
dence intervals)

Total n Mean* 95 % CI

Sex
Male (%) 2195 45

MTHFR 677C ! T, T allele
frequency (%)

2195 49·8

ApoE 14 allele
frequency (%)

2180 32·1

Depression, HADS
score $8 (%)

1883 9·2

Previous CVD (%) 2046 35·3
Education

# 9 years (%) 2157 40·9
Smoking

Current smokers (%) 2195 43·1
Blood parameters

Choline (mmol/l) 2195 10·1 10·0, 10·2
Betaine (mmol/l) 2195 39·3 38·8, 39·7
Folate (nmol/l) 2184 7·5 7·4, 7·7
Vitamin B12 (pmol/l) 2192 348 342, 354
Methylmalonic acid
(mmol/l)

2192 0·20 0·20, 0·20

Total homocysteine
(mmol/l)

2195 11·6 11·4, 11·7

Creatinine (mmol/l) 2195 91·7 91·1, 92·3
Cognitive performance

KOLT 2189 35·1 34·8, 35·5
TMT-A 2185 57·6 56·2, 59·1
m-DST 2180 10·2 10·1, 10·4
m-BD 2178 15·0 14·9, 15·1
m-MMSE 2173 11·5 11·5, 11·5
COWAT 2185 15·1 14·8, 15·3

MTHFR, methylenetetrahydrofolate reductase; HADS, Hospital Anxiety and
Depression Scale; KOLT, Kendrick Object Learning Test (episodic memory);
TMT-A, part A of the Trail Making Test (sensorimotor speed); m-DST, modified
version of the Digit Symbol Test (perceptual speed and executive function); m-
BD, modified version of the Block Design (visuospatial skills); m-MMSE, modified
version of the Mini-Mental State Examination (global cognition); COWAT, S-task
from the Controlled Oral Word Association Test (semantic memory).

* Geometric means for blood parameters.
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performed poorly in all six tests, nine in five tests, thirty in four

tests, sixty-five in three tests and 123 in two tests.

The correlation coefficients between choline, betaine and

other plasma values, genetic factors, lifestyle variables and

cognitive performance are presented in Table 2. The strongest

correlation was between plasma concentrations of choline

and betaine, but also several other blood parameters, notably

plasma creatinine, correlated with choline and betaine. CVD

history and education were correlated with choline as well as

betaine, and betaine was also correlated with the number of

apoE 14 alleles. Episodic memory was negatively and sensori-

motor speed positively correlated with plasma concentrations

of choline as well as betaine, although these correlations

were weak. Global cognition was positively correlated with

plasma choline concentration, and perceptual speed, executive

function and semantic memory were positively correlated with

plasma betaine concentration.

Men had significantly higher mean plasma concentrations of

both choline and betaine than women: 10·8 (95 % CI 10·6, 10·9)

v. 9·6 (95 % CI 9·5, 9·7)mmol/l (P,0·001) for choline and 43·9

(95 % CI 43·2, 44·6) v. 35·9 (95 % CI 35·3, 36·4)mmol/l

(P,0·001) for betaine. Participants with low plasma concen-

trations of choline compared with those with high concen-

trations had lower concentrations of betaine (mean 33·0 (95 %

CI 32·1, 33·9) v. 41·0 (95 % CI 40·5, 41·5)mmol/l, P,0·001),

MMA (mean 0·19 (95 % CI 0·18, 0·20) v. 0·20 (95 % CI 0·20,

0·21)mmol/l, P,0·001) and creatinine (mean 87 (95 % CI 85,

88) v. 93 (95 % CI 92, 94)mmol/l, P,0·001). Compared with

high betaine status, subjects with low plasma concentrations

of betaine had lower concentrations of choline (mean 8·7

(95 % CI 8·5, 8·9) v. 10·5 (95 % CI 10·4, 10·6)mmol/l, P,0·001),

folate (mean 6·8 (95 % CI 6·5, 7·2) v. 7·7 (95 % CI 7·6,

8·0)mmol/l, P,0·001), MMA (mean 0·19 (95 % CI 0·19, 0·20) v.

0·20 (95 % CI 0·20, 0·21)mmol/l, P¼0·025) and creatinine

(mean 88 (95 % CI 87, 89) v. 93 (95 % CI 92, 93)mmol/l,

P,0·001), but higher concentrations of tHcy (mean 12·4 (95 %

CI 12·0, 12·8) v. 11·4 (95 % CI 11·2, 11·5)mmol/l, P,0·001).

Participants with low plasma choline concentrations had

poorer cognitive performance in sensorimotor speed, percep-

tual speed and executive function than subjects with high

plasma free choline concentrations (Table 3); the results

became more significant for sensorimotor speed, perceptual

speed and executive function, and global cognition after mul-

tiple adjustments for sex, education, apoE 14 allele, CVD his-

tory, smoking status, plasma concentrations of folate and

creatinine, and MTHFR 677C ! T genotype. Participants with

low plasma betaine concentrations performed significantly

better than those with high betaine concentrations in episodic

memory, whereas performance related to sensorimotor speed

was worse (Table 4). After multiple adjustments, the betaine

associations were no longer significant.

There was a positive dose–response relationship between

global cognition (m-MMSE score) and plasma choline concen-

trations (Fig. 1), and the association remained significant in

the linear regression model after adjustments for sex, education,

apoE 14 allele, CVD history, smoking status, plasma concen-

trations of folate and creatinine, and MTHFR 677C ! T geno-

type (P¼0·012). Plasma betaine concentration was positively

Table 2. Pearson’s correlations between plasma concentrations of free choline, betaine and different covariates

(Number of participants and correlation coefficients)

Choline Betaine

n Correlation coefficient P Correlation coefficient P

Sex
Female 2195 –0·247 ,0·001 –0·349 ,0·001

MTHFR 677C ! T 2195 –0·032 0·14 –0·019 0·37
ApoE 14 allele 2180 0·033 0·12 0·045 0·034
Depression 1883 –0·023 0·32 –0·016 0·49
Previous CVD 2046 0·102 ,0·001 0·065 0·003
Education 2157 0·055 0·011 0·122 ,0·001
Smoking status 2195 0·004 0·84 0·014 0·52
Plasma measurements

Betaine (mmol/l) 2195 0·439 ,0·001
Folate (nmol/l) 2184 0·060 0·005 0·122 ,0·001
Vitamin B12 (pmol/l) 2192 –0·036 0·09 0·000 0·97
Methylmalonic acid (mmol/l) 2192 0·079 ,0·001 0·047 0·027
Total homocysteine (mmol/l) 2195 0·056 0·008 –0·162 ,0·001
Creatinine (mmol/l) 2195 0·294 ,0·001 0·150 ,0·001

Cognitive performance
KOLT 2189 –0·043 0·046 –0·063 0·003
TMT-A 2185 –0·043 0·042 –0·065 0·002
m-DST 2180 0·022 0·31 0·042 0·049
m-BD 2178 0·009 0·68 0·021 0·34
m-MMSE 2173 0·044 0·042 0·038 0·08
COWAT 2185 0·011 0·62 0·043 0·045

MTHFR, methylenetetrahydrofolate reductase; KOLT, Kendrick Object Learning Test (episodic memory); TMT-A, part A of the Trail Making Test (sensori-
motor speed); m-DST, modified version of the Digit Symbol Test (perceptual speed and executive function); m-BD, modified version of the Block Design
(visuospatial skills); m-MMSE, modified version of the Mini-Mental State Examination (global cognition); COWAT, S-task from the Controlled Oral Word
Association Test (semantic memory).
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and linearly associated with sensorimotor speed (TMT-A score)

and semantic memory (COWAT score), and there were also bor-

derline significant linear associations with global cognition (m-

MMSE score), perceptual speed and executive function (m-DST

score). However, none of the linear associations between

plasma concentrations of betaine and cognitive test perform-

ances remained significant after multiple adjustments.

The interaction analyses based on cross-sectional data

showed that low plasma free choline concentrations combined

either with low vitamin B12 or high plasma MMA concentration

increased the risk ratio (RR) for poor performance by 2·6–3·1-

fold in episodic memory, global cognition, semantic memory

and visuospatial skills (Table 5). Similarly, low plasma concen-

trations of betaine combined with high plasma concentrations

of MMA increased the RR for poor performance in episodic

memory 2·5 times (Table 5). In addition, we found that low

plasma concentrations of free choline and betaine together

more than doubled the RR for poor visuospatial skills, the RR

being 2·01 (95 % CI 0·98, 4·12, P¼0·056). There were no

significant interactions between low plasma concentrations

of free choline or betaine and low folate or high tHcy

concentrations on cognitive functions (data not shown).

Because inclusion of the depression score as a covariate

in the interaction models significantly reduced the number

of participants due to missing data, it was excluded from

the final models. However, although most of the interactions

maintained their strength and remained significant after

adjusting for depression (data not shown), the RR were no

longer significant for combinations of low choline and low

vitamin B12 on the KOLT (RR 2·30, 95 % CI 0·88, 6·03) and

m-MMSE scores (RR 2·41, 95 % CI 0·90, 6·46).

Discussion

In a population-based elderly cohort of 2195 individuals, we

have shown that low plasma concentrations of free choline

were cross-sectionally associated with poor performance in

global cognition, sensorimotor speed, perceptual speed and

executive function, after adjusting for other factors known to

influence cognition. The associations between plasma betaine

concentrations and cognitive function were no longer signifi-

cant after controlling for these other risk factors. There were

significant interactions between low plasma concentrations of

free choline or betaine and markers of vitamin B12 status

(plasma vitamin B12 and MMA) on cognitive performance.

The associations of plasma or serum concentrations of cho-

line and betaine with cognition in human subjects have rarely

been studied. Among Dutch elderly people, plasma betaine

concentrations were positively associated with the domains of

construction, sensorimotor speed and executive function(8).

In addition, there was a tendency that participants with the lar-

gest increase in betaine concentrations showed a larger increase

in memory performance when compared with participants with

the smallest increase in betaine concentrations after 24 weeks

of supplementation with folate and vitaminie: B12
(8). In line

with those results, we found positive cross-sectional associ-

ations between plasma concentrations of betaine and sensori-

motor speed, executive function, perceptual speed and

Table 3. Cognitive test performance by status of plasma concentration of free choline*

(Mean values and 95 % confidence intervals, number of participants and percentages)

#8·36mmol/l .8·36mmol/l

n Mean 95 % CI % n Mean 95 % CI % P† P‡

KOLT
Score 435 35·5 34·7, 36·3 1754 35·2 34·8, 35·5 0·85 0·58
Poor performance 47 10·8 188 10·7 0·96

TMT-A
Score 434 61·9 58·3, 65·5 1751 56·2 54·6, 57·8 0·040 0·004
Poor performance 57 13·1 169 9·7 0·033

m-DST
Score 432 9·7 9·3, 10·1 1748 10·4 10·2, 10·6 0·023 0·005
Poor performance 43 10·0 151 8·6 0·39

m-BD
Score 430 15·0 14·7, 15·2 1748 15·0 14·9, 15·1 0·84 0·83
Poor performance 70 16·3 253 14·5 0·35

m-MMSE
Score 428 11·4 11·4, 11·5 1745 11·5 11·5, 11·9 0·062 0·010
Poor performance 51 11·9 160 9·2 0·09

COWAT
Score 433 14·9 14·4, 15·4 1752 15·1 14·9, 15·4 0·22 0·25
Poor performance 53 12·2 186 10·6 0·33

KOLT, Kendrick Object Learning Test (episodic memory); TMT-A, part A of the Trail Making Test (sensorimotor speed); m-DST, modified version of the Digit Symbol Test
(perceptual speed and executive function); m-BD, modified version of the Block Design (visuospatial skills); m-MMSE, modified version of the Mini-Mental State Examination
(global cognition); COWAT, S-task from the Controlled Oral Word Association Test (semantic memory).

* Cut-off value for the low plasma concentration of free choline was set at the 20th percentile of the study population values. Cut-off points for poor cognitive test performance
were set at about the 10th percentile of the cognitive test score, except for the TMT-A, for which the 90th percentile was used: KOLT #25; TMT-A $111; m-DST #5; m-BD
#12; m-MMSE #10; COWAT #8.

† Independent sample t test or Pearson’s x 2.
‡ Univariate ANOVA, adjusted for sex, education, apoE 14 allele, CVD history, smoking status, plasma concentrations of folate and creatinine and methylenetetrahydrofolate

reductase 677C ! T genotype.
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Table 4. Cognitive test performance by status of plasma concentration of betaine*

(Mean values and 95 % confidence intervals, number of participants and percentages)

#31·1mmol/l .31·1mmol/l

n Mean 95 % CI % n Mean 95 % CI % P† P‡

KOLT
Score 440 36·4 35·6, 37·2 1749 34·9 34·6, 35·3 ,0·001 0·13
Poor performance 38 8·6 197 11·3 0·11

TMT-A
Score 440 60·7 57·3, 64·0 1745 56·5 54·9, 58·1 0·034 0·88
Poor performance 41 9·3 185 10·6 0·43

m-DST
Score 439 10·1 9·7, 10·5 1741 10·3 10·1, 10·5 0·58 0·71
Poor performance 40 9·1 154 8·8 0·85

m-BD
Score 439 15·0 14·7, 15·2 1739 15·0 14·9, 15·1 0·39 0·82
Poor performance 68 15·5 255 14·7 0·66

m-MMSE
Score 438 11·5 11·5, 11·6 1735 11·5 11·5, 11·6 0·64 0·58
Poor performance 37 8·4 174 10·0 0·32

COWAT
Score 440 14·9 14·4, 15·4 1745 15·1 14·9, 15·4 0·44 0·92
Poor performance 47 10·7 192 11·0 0·93

KOLT, Kendrick Object Learning Test (episodic memory); TMT-A, part A of the Trail Making Test (sensorimotor speed); m-DST, modified version of the Digit Symbol Test
(perceptual speed and executive function); m-BD, modified version of the Block Design (visuospatial skills); m-MMSE, modified version of the Mini-Mental State Examination
(global cognition); COWAT, S-task from the Controlled Oral Word Association Test (semantic memory).

* Cut-off value for the low plasma concentration of betaine was set at the 20th percentile of the study population values. Cut-off points for poor cognitive test performance were
set at about the 10th percentile of the cognitive test score, except for the TMT-A, for which the 90th percentile was used: KOLT #25; TMT-A $111; m-DST #5; m-BD #12;
m-MMSE #10; COWAT #8.

† Independent sample t test or Pearson’s x 2.
‡ Univariate ANOVA, adjusted for sex, education, apoE 14 allele, CVD history, smoking status, plasma concentrations of folate and creatinine and methylenetetrahydrofolate

reductase 677C ! T genotype.

Table 5. Interaction between low plasma concentrations of free choline or betaine and different covariates on poor cognitive performance*

(Risk ratios and 95 % confidence intervals)

Risk ratio† 95 % CI P Risk ratio†‡ 95 % CI‡ P‡

KOLT
Low choline 1·01 0·72, 1·42 0·95 1·16 0·79, 1·68 0·45
Low vitamin B12 1·01 0·72, 1·41 0·97 0·96 0·66, 1·38 0·82
Low choline and vitamin B12 2·88 1·32, 6·28 0·008 2·57 1·09, 6·06 0·030

KOLT
Low betaine 0·75 0·52, 1·08 0·13 0·98 0·65, 1·48 0·94
High MMA 1·24 0·90, 1·71 0·19 1·19 0·84, 1·71 0·33
Low betaine and high MMA 2·17 0·94, 5·00 0·07 2·53 1·03, 6·21 0·043

m-BD
Low choline 1·16 0·87, 1·54 0·33 1·10 0·79, 1·51 0·58
High MMA 1·07 0·80, 1·43 0·67 1·11 0·81, 1·54 0·51
Low choline and high MMA 2·13 1·04, 4·37 0·038 2·80 1·28, 6·14 0·010

m-MMSE
Low choline 1·31 0·94, 1·84 0·11 1·38 0·95, 2·01 0·10
Low vitamin B12 1·04 0·73, 1·48 0·84 1·04 0·70, 1·54 0·86
Low choline and vitamin B12 2·95 1·35, 6·45 0·007 2·72 1·13, 6·56 0·025

COWAT
Low choline 1·18 0·85, 1·63 0·33 1·40 0·97, 2·01 0·07
Low vitamin B12 1·02 0·73, 1·43 0·89 1·13 0·78, 1·63 0·53
Low choline and vitamin B12 3·06 1·44, 6·51 0·004 3·13 1·37, 7·18 0·007

KOLT, Kendrick Object Learning Test (episodic memory); MMA, methylmalonic acid; m-BD, modified version of the Block Design (visuospatial skills); m-MMSE, modified ver-
sion of the Mini-Mental State Examination (global cognition); COWAT, S-task from the Controlled Oral Word Association Test (semantic memory).

* Cut-off values for low choline and low or high concentrations of other variables were set either at 20th or 80th percentile: low choline #8·36mmol/l; low betaine #31·1mmol/l;
low vitamin B12 #257 pmol/l; high MMA $3·95mmol/l. Cut-off points for poor cognitive test scores were set at about the 10th percentile of the cognitive test score: KOLT
#25; m-BD #12; m-MMSE #10; COWAT #8.

† The reference group includes subjects with normal concentrations of both plasma free choline or betaine and vitamin B12 or MMA.
‡ Adjusted for sex, education, apoE 14 allele, history of CVD, smoking status, plasma folate, creatinine and methylenetetrahydrofolate reductase 677C ! T genotype.
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semantic memory. However, the associations disappeared after

multiple adjustments. Eussen et al.(8) did not find significant

associations between cognition and plasma choline concen-

tration. In contrast, we observed that choline was positively

associated with sensorimotor speed, perceptual speed, execu-

tive function and global cognition. Moreover, we also observed

a significant dose–response relationship between plasma con-

centrations of choline and global cognition. The reasons for the

differences in observations between the present findings and

those of Eussen et al.(8) are unknown, but may be partly due

to different study designs and sample sizes, as the Dutch

study was a randomised, double-blind, placebo-controlled

trial with 195 participants.

Surprisingly, episodic memory was inversely correlated with

plasma concentrations of choline and betaine in our dataset.

The mechanisms behind these associations are unclear, or as

the associations were relatively weak and there was no dose–

response effect, these associations may appear by chance.

It has been suggested that plasma concentration of free

choline represents only a minor fraction of the total choline

pool, and thus may be a poor marker of choline status and

metabolism in the brain(8). Moreover, even if administration of

free choline increases brain choline availability, it does not

increase acetylcholine synthesis or release, which may explain

its ineffectiveness in relieving the cognitive symptoms of

Alzheimer’s disease(17). In animal studies, betaine concentration

among different tissues was lowest in the brain and was about

25 % of that in the plasma; and there was no relationship

between brain and plasma betaine concentrations(37). These

findings may explain why the associations between cognition

and plasma concentrations of free choline or betaine in different

studies are inconsistent and indicate that plasma free choline

and betaine themselves are inadequate predictors of status

of these nutrients in tissues.

The effects of betaine and choline on one-carbon metabolism

are often present only in subgroups, for example, among sub-

jects with folate deficiency or with low plasma concentrations

of other B vitamins (B2, B6 and B12) in combination with

the TT genotype of the MTHFR 677C ! T polymorphism(3).

This reflects the convergence of both betaine-homocysteine

methyltransferase and vitamin B12-dependent methionine

synthase on methionine formation, whereby folate, choline

and betaine become fungible sources of one-carbon units(3).

These interrelationships may explain why combined abnormal

concentrations of one-carbon metabolites have a stronger

effect on cognition than each metabolite alone. In the present

study, neither low concentrations of vitamin B12, nor high

concentrations of MMA alone, were associated with poor

cognitive performance, but low vitamin B12 concentration

in combination with low plasma concentration of choline

nearly tripled the RR for poor cognitive performance related

to episodic memory, global cognition and semantic memory.

Similarly, high MMA concentration combined with low betaine

or low plasma free choline concentrations more than doubled

the RR for poor performance in episodic memory and visuo-

spatial skills, respectively.

The strengths of the present study include a large population-

based sample with six different cognitive tests. A major

Choline

n 2189
P = 0·68

n 2189
P = 0·65

n 2185
P = 0·12

n 2185
P = 0·015

n 2180
P = 0·38

n 2180
P = 0·06

n 2178
P = 0·88

n 2178
P = 0·53

n 2173
P = 0·034

n 2173
P = 0·055

n 2185
P = 0·62

Plasma concentration (µmol/l)

n 2185
P = 0·035

2·0
1·5
1·0
0·5
0·0

–0·5
–1·0
–1·5
–2·0

1·5

1·0

0·5

0·0

–0·5

–1·0

–1·5

0·4
0·2

0·3

0·2

0·1

0·0

–0·1

–0·2

–0·3
2

1

C
O

W
A

T
m

-M
M

S
E

m
-B

D

E
st

im
at

ed
 d

iff
er

en
ce

 in
 c

o
g

n
it

iv
e 

te
st

 s
co

re

m
-D

S
T

T
M

T-
A

K
O

LT

0

–1

6 8 10 12 1416 30 40 506070
–2

0·0
–0·2
–0·4
–0·6
–0·8

15

10

5

–5

0

Betaine

Fig. 1. Associations between different cognitive test scores and plasma

concentrations of choline and betaine obtained by Gaussian generalised addi-

tive regression models. On the vertical axis, the model generates a reference

value of zero that approximately corresponds to the value of cognitive test

score associated with the mean of plasma concentrations of choline and

betaine for all subjects. Solid lines are the estimated dose–response curves;

shaded areas represent 95 % CI. P values adjusted for sex are from corre-

sponding multiple linear regression analyses. The data for the lowest and high-

est 1 percentile of plasma concentrations are not included. KOLT, Kendrick

Object Learning Test; TMT-A, part A of the Trail Making Test; m-DST, modified

version of the Digit Symbol Test; m-BD, modified version of the Block Design;

m-MMSE, modified version of the Mini-Mental State Examination; COWAT,

abridged version of the Controlled Oral Word Association Test (S-task).
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limitation of the study is the cross-sectional design as cognition

in the elderly results from long-term exposures(38,39) and

subjects with impaired cognition may have altered their

diet as a consequence of a change in their cognitive function.

However, because the cognition of participants in the present

study was not seriously impaired, we do not believe that the

present findings are related to reversed causality. There is also

a risk for type I error as the significant associations in the present

study are often weak and partly contrasting. Last but not least, as

77·3 % of the 2841 study attendees volunteered for cognitive

testing, the possibility of recruitment bias should be considered.

In conclusion, the overall associations between cognition

and plasma concentrations of free choline and betaine in

human subjects seem to be modest and further investigations

are needed, particularly in relation to interactions with other

risk factors, and with genetic polymorphisms that may affect

choline(40).
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