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Abstract

Let D be a strongly double triangle subspace lattice on a nonzero complex reflexive Banach space
X and let δ : AlgD→ AlgD be a linear mapping. We show that δ is Jordan derivable at zero, that
is, δ(AB + BA) = δ(A)B + Aδ(B) + δ(B)A + Bδ(A) whenever AB + BA = 0 if and only if δ has the form
δ(A) = τ(A) + λA for some derivation τ and some scalar λ. We also show that if the dimension of X
is greater than 2, then δ satisfies δ(AB + BA) = δ(A)B + Aδ(B) + δ(B)A + Bδ(A) whenever AB = 0 if and
only if δ is a derivation.
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1. Introduction

Throughout this paper, X will denote a nonzero complex reflexive Banach space with
topological dual X∗. The terms operator and subspace will mean ‘bounded linear
mapping’ and ‘norm closed linear manifold’, respectively. As usual, the set of all
bounded linear operators on X is denoted by B(X). If e∗ ∈ X∗ and f ∈ X, then e∗ ⊗ f
denotes the operator (e∗ ⊗ f )x = e∗(x) f for every x ∈ X. For any nonempty subset
Y ⊆ X, Y⊥ denotes its annihilator, that is, Y⊥ = { f ∗ ∈ X∗ : f ∗(y) = 0 for every y ∈ Y}.
For any nonempty subset Z ⊆ X∗, ⊥Z denotes its pre-annihilator, that is, ⊥Z = {x ∈ X :
f ∗(x) = 0 for every f ∗ ∈ Z}.

By a subspace lattice on X we mean a family L of subspaces of X with (0) and X
in L such that for every family {Lγ}γ∈Γ of elements of L, both

⋂
γ∈Γ Lγ and

∨
γ∈Γ Lγ

belong to L , where
∨

denotes ‘closed linear span’. For any subspace lattice L on X,
we define AlgL by

AlgL = {T ∈ B(X) : T L ⊆ L, for every L ∈ L}

and L⊥ = {L⊥ : L ∈ L}.
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A double triangle subspace lattice on X is a set D = {(0), K, L, M, X} of
subspaces of X satisfying K ∩ L = L ∩ M = M ∩ K = (0) and K ∨ L = L ∨ M = M ∨
K = X (see [2, 6, 8]). If one of the three sums K + L, L + M and M + K is closed,
we say that D is a strongly double triangle subspace lattice. It is known from [7,
Proposition 3.1] that AlgD contains no rank-one operators. Observe that D⊥ =

{(0), K⊥, L⊥, M⊥, X∗} is a double triangle subspace lattice on the reflexive Banach
space X∗. We follow the notation used in [6, Definition 2.1] and put K0 = K ∩ (L + M),
L0 = L ∩ (M + K), M0 = M ∩ (K + L) and Kp = K⊥ ∩ (L⊥ + M⊥), Lp = L⊥ ∩ (M⊥ +

K⊥), Mp = M⊥ ∩ (K⊥ + L⊥). Note that Kp, Lp and Mp play the same role for D⊥

as K0, L0 and M0 do forD. By [6, Lemma 2.2], the dimensions of the linear manifolds
K0, L0 and M0 are the same and the common dimension is denoted by m. Similarly,
the dimensions of the linear manifolds Kp, Lp and Mp are the same and the common
dimension is denoted by n.

Let A be a unital algebra. Recall that a linear mapping δ from A into itself
is a derivation (respectively, a generalized derivation) if δ(AB) = δ(A)B + Aδ(B)
(respectively, δ(AB) = δ(A)B + Aδ(B) − Aδ(I)B) for any A, B ∈ A. Recall that δ is
derivable at Z ∈ A if δ(AB) = δ(A)B + Aδ(B) for any A, B ∈ A with AB = Z, and δ
is Jordan derivable at Z ∈ A if δ(AB + BA) = δ(A)B + Aδ(B) + δ(B)A + Bδ(A) for any
A, B ∈ A with AB + BA = Z.

In recent years, there have been a number of papers on the study of conditions
under which derivations and Jordan derivations of operator algebras can be completely
determined by the action on some sets of operators (for example, see [1, 3, 4, 9, 10]).
In [9], Pang and Yang showed that every linear mapping δwhich is derivable at zero on
a strongly double triangle subspace lattice algebra has the form δ(A) = τ(A) + λA for
some derivation τ and some scalar λ. Motivated by this, we study the local action
of Jordan derivations on AlgD for a strongly double triangle subspace lattice D.
Our main results are Theorems 2.1 and 2.5. It is shown that every linear mapping δ
which is Jordan derivable at zero from AlgD into itself has the form δ(A) = τ(A) + λA
for some derivation τ and some scalar λ. We also show that if the dimension of X
is greater than two, then every linear mapping δ from AlgD into itself satisfying
δ(AB + BA) = δ(A)B + Aδ(B) + δ(B)A + Bδ(A) whenever AB = 0 is a derivation. We
first recall some results which we require in Section 2.

L 1.1 [6, Lemma 2.1]. Let D be a double triangle subspace lattice on X. Then
the following statements hold:

(i) K0 ⊆ K ⊆⊥ Kp, L0 ⊆ L ⊆⊥ Lp and M0 ⊆ M ⊆⊥ Mp;
(ii) K0 ∩ L0 = L0 ∩ M0 = M0 ∩ K0 = (0);
(iii) Kp ∩ Lp = Lp ∩ Mp = Mp ∩ Kp = (0);
(iv) K0 + L0 = L0 + M0 = M0 + K0 = K0 + L0 + M0;
(v) Kp + Lp = Lp + Mp = Mp + Kp = Kp + Lp + Mp.

T 1.2 [6, Theorem 2.1]. LetD be a double triangle subspace lattice on X.

(i) Every finite-rank operator of AlgD has even rank (possibly zero).
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(ii) If e, f ∈ X and e∗, f ∗ ∈ X∗ are nonzero vectors satisfying e ∈ K0, f ∈ L0, e + f ∈
M0 and e∗ ∈ Kp, f ∗ ∈ Lp, e∗ + f ∗ ∈ Mp, then R = e∗ ⊗ f − f ∗ ⊗ e is a rank-two
operator of AlgD. Moreover, every rank-two operator of AlgD has this form
for some such vectors e, f , e∗, f ∗.

(iii) Every nonzero finite-rank operator of AlgD (if there are any) is a finite sum of
rank-two operators of AlgD.

(iv) AlgD contains a nonzero finite-rank operator if and only if m , 0 and n , 0.

L 1.3 [6, Lemma 3.2]. Let D be a double triangle subspace lattice on X. Let
e, f , e∗ and f ∗ be nonzero vectors satisfying e ∈ K0, f ∈ L0, e + f ∈ M0, e∗ ∈ Kp,
f ∗ ∈ Lp and e∗ + f ∗ ∈ Mp and put R = e∗ ⊗ f − f ∗ ⊗ e. Then e∗( f ) = − f ∗(e) and
R2 = e∗( f )R.

T 1.4 [6, Theorem 2.3]. Let D be a double triangle subspace lattice on X. If
the vector sum K + L is closed, then:

(i) K0 is dense in K, L0 is dense in L and M0 = M;
(ii) K0 + L0 + M0 is dense in X;
(iii) Kp + Lp + Mp is dense in X∗.

The following lemma is essentially included in the proof of [9, Theorem 2.3].

L 1.5. Let D be a strongly double triangle subspace lattice on X. Then every
rank-two operator is a linear combination of at most two rank-two idempotents in
AlgD.

2. Main results

Our first result is Theorem 2.1 which says that every linear mapping Jordan
derivable at zero on a strongly double triangle subspace lattice algebra is a special
kind of generalized derivation.

T 2.1. Let D be a strongly double triangle subspace lattice on X and let
δ : AlgD→ AlgD be a linear mapping. If δ is Jordan derivable at zero, then δ(I) = λI
for some scalar λ ∈ C, and there is a derivation τ such that δ(A) = τ(A) + λA for every
A ∈ AlgD. In particular, if δ(I) = 0, then δ is a derivation.

To prove Theorem 2.1, we need some lemmas. The first of the following lemmas is
included in the proof of [3, Theorem 3.1]. We leave the proof to the reader.

L 2.2. If δ is Jordan derivable at zero from a unital algebra A into itself and
δ(I) = 0, then for any idempotents P and Q inA, the following statements hold:

(i) δ(P) = δ(P)P + Pδ(P);
(ii) δ(PQ + QP) = δ(P)Q + Pδ(Q) + δ(Q)P + Qδ(P).

For every A ∈ AlgD and every rank-two operator R ∈ AlgD, the operator AR
(respectively, RA) has rank at most two, so since AlgD contains no rank-one operators,
it is zero or has rank two.
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L 2.3. Let D be a strongly double triangle subspace lattice on X. If δ is Jordan
derivable at zero from AlgD into itself and δ(I) = 0, then for every A ∈ AlgD and
every rank-two operator R ∈ AlgD, we have δ(AR + RA) = δ(A)R + Aδ(R) + δ(R)A +

Rδ(A).

P. Combining Lemmas 1.5 and 2.2, for any rank-two operators R1, R2 ∈ AlgD,
we have δ(R1R2 + R2R1) = δ(R1)R2 + R1δ(R2) + δ(R2)R1 + R2δ(R1). For every A ∈
AlgD and every rank-two idempotent R̃ ∈ AlgD, since R̃⊥AR̃⊥R̃ + R̃R̃⊥AR̃⊥ = 0, by
assumption we have

δ(R̃⊥AR̃⊥R̃ + R̃R̃⊥AR̃⊥)

= δ(R̃⊥AR̃⊥)R̃ + R̃⊥AR̃⊥δ(R̃) + δ(R̃)R̃⊥AR̃⊥ + R̃δ(R̃⊥AR̃⊥).
(2.1)

Since R̃A is zero or a rank-two operator in AlgD, it follows that

δ(R̃AR̃ + R̃R̃A) = δ(R̃A)R̃ + R̃Aδ(R̃) + δ(R̃)R̃A + R̃δ(R̃A). (2.2)

Similarly, we have

δ(R̃⊥AR̃R̃ + R̃R̃⊥AR̃) = δ(R̃⊥AR̃)R̃ + R̃⊥AR̃δ(R̃) + δ(R̃)R̃⊥AR̃ + R̃δ(R̃⊥AR̃). (2.3)

Since A = R̃⊥AR̃⊥ + R̃A + R̃⊥AR̃, it follows from (2.1)–(2.3) that δ(AR̃ + R̃A) =

δ(A)R̃ + Aδ(R̃) + δ(R̃)A + R̃δ(A). Hence by Lemma 1.5, for every rank-two operator
R ∈ AlgD, we have δ(AR + RA) = δ(A)R + Aδ(R) + δ(R)A + Rδ(A). �

For a double triangle subspace lattice, each x in K0 can be expressed uniquely in the
form x1 + x2, where x1 ∈ L0 and x2 ∈ M0. Similarly, each f ∗ in Kp can be expressed
uniquely in the form f ∗1 + f ∗2 , where f ∗1 ∈ Lp and f ∗2 ∈ Mp.

L 2.4. Suppose that D is a strongly double triangle subspace lattice on X with
K + L = X. Let Φ : K0 × Kp→ AlgD be a bilinear mapping. If Φ(x, f ∗)(ker( f ∗) ∩
ker( f ∗1 )) ⊆ span{x, x1}, for every x = x1 + x2 ∈ K0 and every f ∗ = f ∗1 + f ∗2 ∈ Kp, where
x1 ∈ L0, x2 ∈ M0, f ∗1 ∈ Lp and f ∗2 ∈ Mp, then there exist linear mappings S : L0→ L0,
T : K0→ K0, V : Kp→ X∗ and W : Kp→ X∗ such that

Φ(x, f ∗) = f ∗ ⊗ Sx1 + f ∗1 ⊗ T x + V f ∗ ⊗ x + W f ∗ ⊗ x1,

for every x = x1 + x2 ∈ K0 and every f ∗ = f ∗1 + f ∗2 ∈ Kp.

P. For any nonzero vectors x ∈ K0 and f ∗ ∈ Kp, since Φ(x, f ∗)(ker( f ∗) ∩
ker( f ∗1 )) ⊆ span{x, x1}, there exist linear functionals Vx, f ∗ and Wx, f ∗ on ker( f ∗) ∩
ker( f ∗1 ) such that for every z ∈ ker( f ∗) ∩ ker( f ∗1 ),

Φ(x, f ∗)z = Vx, f ∗(z)x + Wx, f ∗(z)x1.

Since K + L is closed and K ∩ L = (0), we have Vx, f ∗ and Wx, f ∗ are continuous by
[5, Corollary 1.8.8].

Let ω f ∗ be in L0 such that f ∗(ω f ∗) = 1 and γ f ∗ be in K0 such that f ∗1 (γ f ∗) = 1.
Then X = Cω f ∗ ⊕ Cγ f ∗ ⊕ (ker( f ∗) ∩ ker( f ∗1 )). Let Ṽx, f ∗ and W̃x, f ∗ be continuous
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extensions of Vx, f ∗ and Wx, f ∗ to X. Then Ṽx, f ∗ − Ṽx, f ∗(ω f ∗) f ∗ − Ṽx, f ∗(γ f ∗) f ∗1 and
W̃x, f ∗ − W̃x, f ∗(ω f ∗) f ∗ − W̃x, f ∗(γ f ∗) f ∗1 are also continuous extensions of Vx, f ∗ and Wx, f ∗

and vanish at span{ω f ∗ , γ f ∗}. We use Vx, f ∗ and Wx, f ∗ to denote such extensions.
Now define linear mappings S f ∗ : L0→ L0 by S f ∗y1 = Φ(y, f ∗)ω f ∗ and T f ∗ : K0→

K0 by T f ∗y = Φ(y, f ∗)γ f ∗ , for every y = y1 + y2 ∈ K0, where y1 ∈ L0 and y2 ∈ M0. Then
for λ, µ ∈ C and every z ∈ ker( f ∗) ∩ ker( f ∗1 ),

Φ(x, f ∗)(λω f ∗ + µγ f ∗ + z) = λS f ∗ x1 + µT f ∗ x + Vx, f ∗(z)x + Wx, f ∗(z)x1

= f ∗(λω f ∗ + µγ f ∗ + z)S f ∗ x1 + f ∗1 (λω f ∗ + µγ f ∗ + z)T f ∗ x

+ Vx, f ∗(λω f ∗ + µγ f ∗ + z)x + Wx, f ∗(λω f ∗ + µγ f ∗ + z)x1.

Hence
Φ(x, f ∗) = f ∗ ⊗ S f ∗ x1 + f ∗1 ⊗ T f ∗ x + Vx, f ∗ ⊗ x + Wx, f ∗ ⊗ x1, (2.4)

for every x ∈ K0 and every f ∗ ∈ Kp.
We claim that Vx, f ∗ and Wx, f ∗ depend only on f ∗. To see this, fix a nonzero

functional f ∗ = f ∗1 + f ∗2 ∈ Kp, where f ∗1 ∈ Lp and f ∗2 ∈ Mp. Let x = x1 + x2 and y =

y1 + y2 be nonzero vectors in K0, where x1, y1 ∈ L0 and x2, y2 ∈ M0. Then x + y =

(x1 + y1) + (x2 + y2), where x + y ∈ K0, x1 + y1 ∈ L0 and x2 + y2 ∈ M0.
Suppose that x and y are linearly independent. Since K0 ∩ L0 = L0 ∩ M0 = M0 ∩

K0 = (0), we have that x1 and y1 are linearly independent and x2 and y2 are linearly
independent. Then for every z ∈ ker( f ∗) ∩ ker( f ∗1 ), by (2.4),

Φ(x + y, f ∗)(ω f ∗ + γ f ∗ + z)

= S f ∗(x1 + y1) + T f ∗(x + y) + Vx+y, f ∗(z)(x + y) + Wx+y, f ∗(z)(x1 + y1)

and

Φ(x + y, f ∗)(ω f ∗ + γ f ∗ + z)

= Φ(x, f ∗)(ω f ∗ + γ f ∗ + z) + Φ(y, f ∗)(ω f ∗ + γ f ∗ + z)

= S f ∗ x1 + T f ∗ x + Vx, f ∗(z)x + Wx, f ∗(z)x1 + S f ∗y1 + T f ∗y + Vy, f ∗(z)y + Wy, f ∗(z)y1.

Comparing the above equations,

(Vx+y, f ∗(z) − Vx, f ∗(z))x + (Vx+y, f ∗(z) − Vy, f ∗(z))y

= (Wx, f ∗(z) −Wx+y, f ∗(z))x1 + (Wy, f ∗(z) −Wx+y, f ∗(z))y1 ∈ K0 ∩ L0 = (0).

Hence Vx+y, f ∗ = Vx, f ∗ = Vy, f ∗ and Wx+y, f ∗ = Wx, f ∗ = Wy, f ∗ .
Suppose that x and y are linearly dependent. Let y = kx. Then y1 = kx1 and y2 = kx2.

By (2.4),

Φ(y, f ∗) = f ∗ ⊗ S f ∗(kx1) + f ∗1 ⊗ T f ∗(kx) + Vy, f ∗ ⊗ y + Wy, f ∗ ⊗ (kx1)

and

Φ(y, f ∗) = kΦ(x, f ∗) = k f ∗ ⊗ S f ∗ x1 + k f ∗1 ⊗ T f ∗ x + kVx, f ∗ ⊗ x + kWx, f ∗ ⊗ x1,

which yields (Vy, f ∗ − Vx, f ∗) ⊗ y = (Wx, f ∗ −Wy, f ∗) ⊗ x1. It follows from K0 ∩ L0 = (0)
that Vx, f ∗ = Vy, f ∗ and Wx, f ∗ = Wy, f ∗ . We establish the claim.
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Therefore, for every f ∗ ∈ Kp, there exist unique functionals V f ∗ and W f ∗ in X∗ which
vanish at span{ω f ∗ , γ f ∗} such that

Φ(x, f ∗) = f ∗ ⊗ S f ∗ x1 + f ∗1 ⊗ T f ∗ x + V f ∗ ⊗ x + W f ∗ ⊗ x1, (2.5)

for every x ∈ K0.
Let f ∗ = f ∗1 + f ∗2 and g∗ = g∗1 + g∗2 be nonzero vectors in Kp, where f ∗1 , g∗1 ∈ Lp and

f ∗2 , g∗2 ∈ Mp. We claim that if f ∗ and g∗ are linearly independent, then Sg∗ − S f ∗

is a scalar multiple of the identity IL0 on L0 and Tg∗ − T f ∗ is a scalar multiple of
the identity IK0 on K0. The independence of f ∗ and g∗ gives ker( f ∗) * ker(g∗) and
ker(g∗) * ker(g∗), so there exist two vectors u ∈ ker( f ∗) and v ∈ ker(g∗) such that
g∗(u) = 1 and f ∗(v) = 1. For every x1 ∈ L0, there exist unique vectors x ∈ K0 and
x2 ∈ M0 such that x1 = x − x2. By (2.5),

Φ(x, f ∗ + g∗) = ( f ∗ + g∗) ⊗ S f ∗+g∗ x1 + ( f ∗1 + g∗1) ⊗ T f ∗+g∗ x + V f ∗+g∗ ⊗ x + W f ∗+g∗ ⊗ x1

and

Φ(x, f ∗ + g∗) = Φ(x, f ∗) + Φ(x, g∗)

= f ∗ ⊗ S f ∗ x1 + f ∗1 ⊗ T f ∗ x + V f ∗ ⊗ x + W f ∗ ⊗ x1

+ g∗ ⊗ Sg∗ x1 + g∗1 ⊗ Tg∗ x + Vg∗ ⊗ x + Wg∗ ⊗ x1.

Comparing the above equations and applying them to u − v,

Sg∗ x1 − S f ∗ x1 + W f ∗(u − v)x1 + Wg∗(u − v)x1 −W f ∗+g∗(u − v)x1 ∈ L0 ∩ K0 = (0).

Hence for every x1 ∈ L0, Sg∗ x1 − S f ∗ x1 = λ f ∗,g∗ x1 for some scalar λ f ∗,g∗ ∈ C. The
independence of f ∗ and g∗ implies that f ∗1 and g∗1 are independent. Similarly, we have
that for every x ∈ K0, Tg∗ x − T f ∗ x = µ f ∗,g∗ x for some scalar µ f ∗,g∗ ∈ C. We establish the
claim.

Now fix a nonzero functional f ∗0 = f ∗01 + f ∗02 ∈ Kp, where f ∗01 ∈ Lp and f ∗02 ∈ Mp.
Set S = S f ∗0

and T = T f ∗0
. Let f ∗ = f ∗1 + f ∗2 ∈ Kp, where f ∗1 ∈ Lp and f ∗2 ∈ Mp. If f ∗

and f ∗0 are linearly independent, then there exist scalars λ f ∗ and µ f ∗ in C such that
S f ∗ x1 − Sx1 = λ f ∗ x1 for every x1 ∈ L0 and T f ∗ x − T x = µ f ∗ x for every x ∈ K0. Then
by (2.5),

Φ(x, f ∗) = f ∗ ⊗ (Sx1 + λ f ∗ x1) + f ∗1 ⊗ (T x + µ f ∗ x) + V f ∗ ⊗ x + W f ∗ ⊗ x1

= f ∗ ⊗ Sx1 + f ∗1 ⊗ T x + (λ f ∗ f ∗ + W f ∗) ⊗ x1 + (µ f ∗ f ∗1 + V f ∗) ⊗ x,
(2.6)

for every x ∈ K0. If f ∗ and f ∗0 are linearly dependent, we may assume that f ∗ = η f ∗ f ∗0
for some scalar η f ∗ ∈ C. Then f ∗1 = η f ∗ f ∗01 and f ∗2 = η f ∗ f ∗02. By (2.5),

Φ(x, f ∗) = η f ∗Φ(x, f ∗0 ) = η f ∗( f ∗0 ⊗ S f ∗0
x1 + f ∗01 ⊗ T f ∗0

x + V f ∗0
⊗ x + W f ∗0

⊗ x1)

= f ∗ ⊗ Sx1 + f ∗1 ⊗ T x + η f ∗V f ∗0
⊗ x + η f ∗W f ∗0

⊗ x1,
(2.7)

for every x ∈ K0. It follows from (2.6) and (2.7) that there exist unique functionals
V f ∗ and W f ∗ in X∗ such that Φ(x, f ∗) = f ∗ ⊗ Sx1 + f ∗1 ⊗ T x + V f ∗ ⊗ x + W f ∗ ⊗ x1. It
is easy to see that the mappings V, W : Kp→ X∗ are well defined and linear. The proof
is complete. �

https://doi.org/10.1017/S0004972711002449 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711002449


306 Y.-H. Chen and J.-K. Li [7]

P  T 2.1. Assume that the vector sum K + L is closed. We divide the
proof into several claims.

Claim 1. δ(I) = λI for some scalar λ ∈ C.

For any idempotent P ∈ AlgD, since P(I − P) + (I − P)P = 0, we have
δ(P)(I − P) + Pδ(I − P) + δ(I − P)P + (I − P)δ(P) = 0, which implies that δ(I)P =

Pδ(I). By the proof of [9, Theorem 2.3], we have δ(I) = λI for some scalar λ ∈ C.
Now define τ(A) = δ(A) − λA for every A ∈ AlgD. It is easy to see that τ is

Jordan derivable at zero and τ(I) = 0. For every x ∈ K0 and every f ∗ ∈ Kp, there
exist unique vectors x1 ∈ L0, x2 ∈ M0, f ∗1 ∈ Lp and f ∗2 ∈ Mp such that x = x1 + x2 and
f ∗ = f ∗1 + f ∗2 . Then f ∗ ⊗ x1 − f ∗1 ⊗ x ∈ AlgD by Theorem 1.2. Define a mapping
Φ : K0 × Kp→ AlgD by Φ(x, f ∗) = τ( f ∗ ⊗ x1 − f ∗1 ⊗ x). It is easy to see that Φ is
bilinear.

Claim 2. By the above notation, Φ(x, f ∗)(ker( f ∗) ∩ ker( f ∗1 )) ⊆ span{x, x1}, for every
x ∈ K0 and every f ∗ ∈ Kp.

If one of x and f ∗ is 0, then Φ(x, f ∗) = 0. We now assume that x , 0 and f ∗ , 0.

Case 1. Suppose that f ∗(x1) = m , 0. Then (1/m)( f ∗ ⊗ x1 − f ∗1 ⊗ x) is an idempotent
in AlgD. By Lemma 2.2,

1
m
τ( f ∗ ⊗ x1 − f ∗1 ⊗ x) =

1
m2
τ( f ∗ ⊗ x1 − f ∗1 ⊗ x)( f ∗ ⊗ x1 − f ∗1 ⊗ x)

+
1

m2
( f ∗ ⊗ x1 − f ∗1 ⊗ x)τ( f ∗ ⊗ x1 − f ∗1 ⊗ x).

Applying the above equation to z in ker( f ∗) ∩ ker( f ∗1 ), we obtain Φ(x, f ∗)z ∈
span{x, x1}.

Case 2. Suppose that f ∗(x1) = 0. Then there exists a vector y1 ∈ L0 such that f ∗(y1) ,
0. Hence there exist unique vectors y ∈ K0 and y2 ∈ M0 such that y1 = y − y2. By
Case 1, for every z ∈ ker( f ∗) ∩ ker( f ∗1 ),

Φ(y + x, f ∗)z = k1(y + x) + l1(y1 + x1),

Φ(y − x, f ∗)z = k2(y − x) + l2(y1 − x1),

and
Φ(y, f ∗)z = k3y + l3y1,

for some scalars ki, li (i = 1, 2, 3) in C. Comparing the above equations gives

k1(y + x) + l1(y1 + x1) + k2(y − x) + l2(y1 − x1) = 2k3y + 2l3y1,

which yields

k1(y + x) + k2(y − x) − 2k3y = 2l3y1 − l1(y1 + x1) − l2(y1 − x1) ∈ K0 ∩ L0 = (0).

Since x1 and y1 are linearly independent and x and y are linearly independent, we have
l1 = l2 = l3 and k1 = k2 = k3. Hence Φ(x, f ∗)z = k1x + l1x1 ∈ span{x, x1}.
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Claim 3. τ is a derivation.

By Claim 2 and Lemma 2.4, there exist linear mappings S : L0→ L0, T : K0→ K0,
V : Kp→ X∗ and W : Kp→ X∗ such that

τ( f ∗ ⊗ x1 − f ∗1 ⊗ x) = f ∗ ⊗ Sx1 + f ∗1 ⊗ T x + V f ∗ ⊗ x + W f ∗ ⊗ x1, (2.8)

for every x = x1 + x2 ∈ K0 and every f ∗ = f ∗1 + f ∗2 ∈ Kp. It follows from Lemma 2.3
that for every A ∈ AlgD,

τ( f ∗ ⊗ Ax1 − f ∗1 ⊗ Ax + A∗ f ∗ ⊗ x1 − A∗ f ∗1 ⊗ x)

= f ∗ ⊗ τ(A)x1 − f ∗1 ⊗ τ(A)x + Aτ( f ∗ ⊗ x1 − f ∗1 ⊗ x)

+ τ( f ∗ ⊗ x1 − f ∗1 ⊗ x)A + τ(A)∗ f ∗ ⊗ x1 − τ(A)∗ f ∗1 ⊗ x,

which according to (2.8) implies that

f ∗ ⊗ S Ax1 + f ∗1 ⊗ T Ax + VA∗ f ∗ ⊗ x + WA∗ f ∗ ⊗ x1

= f ∗ ⊗ τ(A)x1 − f ∗1 ⊗ τ(A)x + f ∗ ⊗ ASx1 + f ∗1 ⊗ AT x

+ A∗V f ∗ ⊗ x + A∗W f ∗ ⊗ x1 + τ(A)∗ f ∗ ⊗ x1 − τ(A)∗ f ∗1 ⊗ x.

Applying the above equation to u in X such that f ∗1 (u) = 1, we have that there exists a
linear mapping µ : AlgD→ C such that

τ(A)x = AT x − T Ax + µ(A)x, (2.9)

for every A ∈ AlgD and every x ∈ K0. Hence by (2.9), for A, B ∈ AlgD and x ∈ K0,

τ(AB)x = τ(A)Bx + Aτ(B)x + µ(AB)x − µ(A)Bx − µ(B)Ax. (2.10)

In the following, we show that µ(A) = 0 for every A ∈ AlgD. Since the vector sum
K + L is closed, we have m = dim M0 , 0 and n = dim Mp , 0. Hence by Theorem 1.2,
there exists a rank-two idempotent in AlgD. Let R = u∗ ⊗ v − v∗ ⊗ u be a rank-two
idempotent in AlgD, where u, v ∈ X and u∗, v∗ ∈ X∗ are nonzero vectors satisfying
u ∈ L0, v ∈ M0, u + v ∈ K0 and u∗ ∈ Lp, v∗ ∈ Mp, u∗ + v∗ ∈ Kp. By Lemma 1.3, u∗(v) =

−v∗(u) = 1. Putting A = B = R and x = u + v in Equation (2.10) gives τ(R)(u + v) =

τ(R)(u + v) + Rτ(R)(u + v) − µ(R)(u + v), and Lemma 2.2 implies that τ(R)(u + v) =

τ(R)(u + v) + Rτ(R)(u + v). Hence µ(R) = 0 for every rank-two idempotent R in AlgD.
Now fix a rank-two idempotent R in AlgD. For every A ∈ AlgD, if u∗(Av) = m , 0,
then µ(AR) = mµ(u∗ ⊗ ((1/m)Av) − v∗ ⊗ ((1/m)Au)) = 0; if u∗(Av) = 0, then µ(AR) =

µ(u∗ ⊗ (v + Av) − v∗ ⊗ (u + Au)) − µ(u∗ ⊗ v − v∗ ⊗ u) = 0. Hence µ(AR) = 0 for every
A ∈ AlgD. Similarly, µ(RA) = 0 for every A ∈ AlgD.

Now for every A ∈ AlgD, by (2.10),

τ(AR)(u + v) = τ(A)(u + v) + Aτ(R)(u + v) − µ(A)(u + v)

and
τ(RA)(u + v) = τ(R)A(u + v) + Rτ(A)(u + v) − µ(A)(u + v).
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By Lemma 2.3,

τ(AR + RA)(u + v) = τ(A)(u + v) + Aτ(R)(u + v) + τ(R)A(u + v) + Rτ(A)(u + v).

Hence µ(A) = 0 for every A ∈ AlgD.
Now for A, B ∈ AlgD, by (2.10), we have τ(AB)x = τ(A)Bx + Aτ(B)x for every

x ∈ K0. Since K0 is dense in K, we have τ(AB)x = τ(A)Bx + Aτ(B)x for every x ∈ K.
Similarly, we have τ(AB)x = τ(A)Bx + Aτ(B)x for every x ∈ L. Since K + L = X, it
follows that τ is a derivation. The proof is complete. �

T 2.5. LetD be a strongly double triangle subspace lattice on X of dimension
greater than two and let δ : AlgD→ AlgD be a linear mapping satisfying
δ(AB+BA) = δ(A)B+Aδ(B)+δ(B)A+Bδ(A) whenever AB = 0. Then δ is a derivation.

To prove Theorem 2.5, we need the following lemma.

L 2.6. If δ is a linear mapping from a unital algebra A into itself satisfying
δ(AB + BA) = δ(A)B + Aδ(B) + δ(B)A + Bδ(A) whenever AB = 0, then for every
idempotent P inA and every A inA, the following statements hold:

(1) δ(I)P = Pδ(I) and δ(P) = δ(P)P + Pδ(P) − δ(I)P;
(2) δ(PA + AP) = δ(P)A + Pδ(A) + δ(A)P + Aδ(P) − δ(I)PA − PAδ(I);
(3) δ(PA + AP) = δ(P)A + Pδ(A) + δ(A)P + Aδ(P) − δ(I)AP − APδ(I).

P. (1) For every idempotent P ∈ A, it follows from P(I − P) = 0 that
δ(P)(I − P) + Pδ(I − P) + δ(I − P)P + (I − P)δ(P) = 0. This implies that 2δ(P) =

2δ(P)P + 2Pδ(P) − δ(I)P − Pδ(I). Multiplying the above equation from the left
and right by P, respectively, we have Pδ(I) = δ(I)P, which yields δ(P) = δ(P)P +

Pδ(P) − δ(I)P.
(2) For every idempotent P ∈ A and every A ∈ A, since P(I − P)A = (I − P)PA = 0,

we have

δ(P(I −P)A + (I −P)AP) = δ(P)(I −P)A + Pδ((I −P)A) + δ((I −P)A)P + (I −P)Aδ(P)

and

δ((I −P)PA + PA(I −P)) = δ(I − P)PA + (I −P)δ(PA) + δ(PA)(I −P) + PAδ(I −P).

Comparing the above equations, we arrive at δ(PA + AP) = δ(P)A + Pδ(A) + δ(A)P +

Aδ(P) − δ(I)PA − PAδ(I).
(3) Since AP(I − P) = A(I − P)P = 0, we similarly have that δ(PA + AP) = δ(P)A +

Pδ(A) + δ(A)P + Aδ(P) − δ(I)AP − APδ(I). �

P  T 2.5. We claim that δ(I) = 0. Similar to the proof of [9,
Theorem 2.3], we have δ(I) = λI for some scalar λ ∈ C. Suppose that λ , 0. Then
by Lemma 2.6(2) and (3), AP = PA for every idempotent P in AlgD and every A in
AlgD. By the proof of [9, Theorem 2.3] again, we have that A = µ(A)I for some scalar
µ(A) ∈ C. That is, for every A ∈ AlgD, the range of A is X or 0. However, since D is
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strongly double triangle subspace lattice, AlgD contains a rank-two operator. This is
a contradiction. Hence δ(I) = 0. Then by the proof of Theorem 2.1, we may show that
δ is a derivation. �

R 2.7. In Theorem 2.5, if dim X =2, δmay not be a derivation since AlgD=CI.
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