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1. Introduction

A contact manifold (M, η) is a smooth manifold M2n+1 together with a global 1-form
η such that η ∧ (dη)n �= 0 everywhere on M . This means that dη has maximal rank
2n on the contact distribution D = ker η. The duality of η defines a unique vector field
ξ, the Reeb vector field. The Reeb flow is a one-parameter group of diffeomorphisms φt

generated by the Reeb vector field ξ.
A Ricci soliton is a natural generalization of an Einstein metric and is defined on a

Riemannian manifold (M, g) by

1
2LV g + Ric −λg = 0, (1.1)

where V is a vector field (the potential vector field) and λ is a constant on M . Obviously,
a Ricci soliton with V Killing is an Einstein metric. Compact Ricci solitons are the fixed
points of the Ricci flow,

∂

∂t
g = −2 Ric,

projected from the space of metrics onto its quotient modulo diffeomorphisms and scal-
ings, and often arise as blow-up limits for the Ricci flow on compact manifolds. The Ricci
soliton is said to be shrinking, steady or expanding if λ > 0, λ = 0 or λ < 0, respec-
tively. Hamilton [11] and Ivey [12] proved that a Ricci soliton on a compact manifold
has constant curvature in dimensions 2 and 3, respectively. If the vector field V is the
gradient of a potential function, then g is called a gradient Ricci soliton. We refer the
reader to [4,10] for details about Ricci solitons or gradient Ricci solitons.
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Then it is interesting to consider a contact Ricci flow which evolves by the Reeb flow
and a (time-dependent) evolving factor at the same time. We will call a solution of the
evolution equation a contact Ricci soliton. We have the contact Ricci soliton equation:

1
2Lξg + Ric −λg = 0. (1.2)

A contact manifold with ξ a Killing vector field is called a K-contact manifold.
One of the main purposes of the present paper is to prove the following theorem.

Theorem 1.1. A contact Ricci soliton is shrinking and is Einstein K-contact.

On the other hand, Boyer and Galicki [3] proved the following result.

Theorem 1.2. A compact Einstein K-contact manifold is Sasakian.

Thus, together with Theorem 1.1 we have the following.

Corollary 1.3. A compact contact Ricci soliton is Sasaki–Einstein.

In the second half of § 3, we prove a homogeneous contact metric manifold admit-
ting a gradient Ricci soliton is either Einstein or locally isometric to En+1 × Sn(4)
(Theorem 3.6). Moreover, we show that a compact contact homogeneous manifold with
a Ricci soliton is Sasaki–Einstein (Corollary 3.7).

2. Preliminaries

We start by reviewing briefly the fundamental materials about contact Riemannian (CR)
geometry and contact pseudo-Hermitian geometry. We refer the reader to [2, 17] for
further details. All manifolds in the present paper are assumed to be connected, oriented
and of class C∞.

2.1. Contact Riemannian structures

A (2n + 1)-dimensional manifold M is a contact manifold if it is equipped with a
global 1-form η such that η ∧ (dη)n �= 0 everywhere. Given a contact form η, there exists
a unique vector field ξ, called the Reeb vector field, satisfying η(ξ) = 1 and dη(ξ, X) = 0
for any vector field X. It is well known that there also exists a Riemannian metric g and
a (1, 1)-tensor field ϕ such that

η(X) = g(X, ξ), dη(X, Y ) = g(X, ϕY ), ϕ2X = −X + η(X)ξ, (2.1)

where X and Y are vector fields on M . From (2.1), it follows that

ϕξ = 0, η ◦ ϕ = 0, g(ϕX, ϕY ) = g(X, Y ) − η(X)η(Y ). (2.2)

https://doi.org/10.1017/S0013091509000571 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091509000571


Notes on contact Ricci solitons 49

A Riemannian manifold M equipped with structure tensors (η, g) satisfying (2.1) is
said to be a contact Riemannian manifold or contact metric manifold and it is denoted
by M = (M, η, g). Given a contact Riemannian manifold M , we define a (1, 1)-tensor
field h by h = 1

2Lξϕ. Then we may observe that h is symmetric and satisfies

hξ = 0, hϕ = −ϕh, (2.3)

∇Xξ = −ϕX − ϕhX, (2.4)

where ∇ is the Levi-Cività connection. From (2.3) and (2.4) we see that each flow of ξ is
a geodesic flow.

A contact Riemannian manifold for which ξ is Killing is called a K-contact manifold.
It is easy to see that a contact Riemannian manifold is K-contact if and only if h = 0.

2.2. Contact pseudo-Hermitian almost-CR structures

For a contact manifold M , the tangent space TpM of M at each point p ∈ M is
decomposed as TpM = Dp ⊕ {ξ}p (direct sum), where we denote Dp = {v ∈ TpM |
η(v) = 0}. Then the 2n-dimensional distribution (or sub-bundle) D : p → Dp is called
the contact distribution (or contact sub-bundle). Its associated almost-CR structure is
given by the holomorphic sub-bundle

H = {X − iJX : X ∈ Γ (D)}

of the complexification CTM of the tangent bundle TM , where J = ϕ|D, the restriction
of ϕ to D. Then we see that each fibre Hp, p ∈ M , is of complex dimension n and
H ∩ H̄ = {0}. Furthermore, we have CD = H ⊕ H̄. For the real representation {D, J} of
H we define the Levi form by

L : Γ (D) × Γ (D) → F(M), L(X, Y ) = −dη(X, JY ),

where F(M) denotes the algebra of differentiable functions on M . Then we see that the
Levi form is Hermitian and positive definite. We call the pair (η, L) (or (η, J)) a contact
strictly pseudo-convex, pseudo-Hermitian structure on M . We say that the almost-CR
structure is integrable if [H,H] ⊂ H. Then the pair (η, J) is called a contact strictly
pseudo-convex (integrable) CR structure and (M, η, J) is called a contact strictly pseudo-
convex CR manifold or a contact strictly pseudo-convex integrable pseudo-Hermitian
manifold.

For a given contact strictly pseudo-convex pseudo-Hermitian manifold M , the pseudo-
Hermitian structure is integrable if and only if M satisfies the integrability condition
Ω = 0, where Ω is a (1, 2)-tensor field on M defined by

Ω(X, Y ) = (∇Xϕ)Y − g(X + hX, Y )ξ + η(Y )(X + hX) (2.5)

for all vector fields X, Y on M [17, Proposition 2.1]. It is well known that for three-
dimensional contact Riemannian manifolds their associated CR structures are always
integrable. In addition, we define the pseudo-Hermitian torsion A = ϕh (cf. [5]).
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A Sasakian manifold is a contact strictly pseudo-convex CR manifold whose Reeb flow
is isometric (or, equivalently, vanishing pseudo-Hermitian torsion). From (2.5) it follows
at once that a Sasakian manifold is also determined by the condition

(∇Xϕ)Y = g(X, Y )ξ − η(Y )X (2.6)

for all vector fields X and Y on the manifold.

3. Proofs of the results

The following lemma has a crucial role in proving Theorem 1.1.

Lemma 3.1. If (g, V ) is a Ricci soliton of a Riemannian manifold, then we have
1
2‖LV g‖2 = dr(V ) + 2 div(λV − SV ), (3.1)

where r denotes the scalar curvature of g and S denotes the Ricci operator defined by
Ric(X, Y ) = g(SX, Y ).

Proof. We adapt a local coordinate system (xi). Then (1.1) implies
1
2LV gij + Rij − λgij = 0. (3.2)

From the above equation (3.2) we compute
1
2‖LV g‖2 = −Rij

LV gij + λgij
LV gij

= −LV r + gijLV Rij + λgijLV gij . (3.3)

We compute the second term of the last equation:

gijLV Rij = gij∇V Rij − gij∇αV iRαj − gij∇αV jRiα

= gij∇V Rij − 2gij∇αV iRαj

= 2dr(V ) − 2 div SV, (3.4)

where we have used dr(V ) = 2V β∇αRα
β . Since gijLV gij = 2 div V , using (3.3) and (3.4)

we obtain (3.1). �

Remark 3.2. By using Green’s Theorem it follows from (3.1) that ‘a compact Ricci
soliton (M, g, V ) with constant scalar curvature is a trivial Ricci soliton’.

Now we suppose that a contact manifold (M, η) admits a Ricci soliton (g, ξ). Then
from (1.1) we get

1
2 (g(∇Xξ, Y ) + g(∇Y ξ, X)) + Ric(X, Y ) − λg(X, Y ) = 0 (3.5)

Use (2.4) to obtain Ric(X, Y ) − g(ϕhX, Y ) − λg(X, Y ) = 0, or

SX = λX + AX (3.6)

for any vector field X on M . Setting X = ξ in (3.6), and since hξ = 0, we have Sξ = λξ.
From (2.3) we can see that tr A vanishes. Hence, from (3.6) we also find that the scalar
curvature r (= (2n+1)λ) is constant. Now, we assume that V = ξ in (3.1); then we have
ξ a Killing vector field. Then (3.6) yields again that M is Einstein. Since Ric(ξ, ξ) = 2n

for a K-contact manifold [2], we see that λ > 0. This completes the proof of Theorem 1.1.
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By (2.5) and (2.6), we have the following corollary.

Corollary 3.3. Let (M, η) be a contact manifold whose associated pseudo-Hermitian
structure (η, J) is CR-integrable. If (M, η) admits a contact Ricci soliton (g, ξ), then M

is Sasaki–Einstein.

A K-contact manifold of constant curvature has constant sectional curvature +1 [16].
Since the Weyl tensor always vanishes on a three-dimensional Riemannian manifold, we
have the following result.

Corollary 3.4. A complete and simply connected contact 3-manifold (M, η) admitting
a contact Ricci soliton (g, ξ) is a unit sphere.

It is notable that every closed 3-manifold admits a contact structure [13].

Corollary 3.5. A conformally flat contact Ricci soliton (M, η, g, ξ) is of constant
curvature +1.

Perelman [14] proved that a Ricci soliton on a compact manifold is a gradient Ricci
soliton and hence the potential vector field V of a compact Ricci soliton is the sum of the
gradient of a function and a Killing vector field. For details we refer the reader to [10].

Theorem 3.6. Let (M, η, g) be a homogeneous contact metric manifold. If g is a
gradient Ricci soliton, then M is either Einstein or locally isometric to En+1 × Sn(4).

Proof. Suppose that M admits a non-trivial Ricci soliton that is non-Einstein. Then
we first recall the recent result of Petersen and Wylie [15] that (M, g) splits as (M1, g1)×
(M2, g2), where M1 is Einstein (Ric1 = λ1g1) and M2 is Euclidean Ek. If λ1 = 0, then
we easily see that M is Ricci-flat. So, let λ1 be non-zero. We may assume that ξ splits
into the factors M1 and M2 as ξ1 + ξ2 orthogonally. We divide our arguments into the
following three cases.

(i) Suppose that ξ1 �= 0 and ξ2 �= 0. Then, for any tangent vector field E2 on M2, we
find S∇E2ξ2 = 0, and hence ∇E2ξ2 is tangent to M2. Since ∇E2ξ1 = 0, we get ∇E2ξ is
tangent to M2. Then using (2.4) we have

g(ϕE2 + ϕhE2, E1) = 0 (3.7)

for any vector field E1 tangent to M1. In a similar argument as above, we have that ∇E1ξ

is tangent to M1 and using (2.4) we have

g(ϕE1 + ϕhE1, E2) = 0 (3.8)

for any vector field E2 tangent to M2. Since ϕh is symmetric, from (3.7) and (3.8) it
follows that ϕE1 (respectively, ϕE2) is tangent to M1 (respectively, M2). Thus, we have
0 = ϕ(ξ1 + ξ2) = ϕξ1 + ϕξ2, which implies ϕξ1 = ϕξ2 = 0. This yields ξ1 = η(ξ1)ξ and
ξ2 = η(ξ2)ξ, which is impossible.
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(ii) Examine the case ξ2 = 0. Then Sξ = λ1ξ and ξ is tangent to M1. Since ∇E2ξ = 0,
we have ϕE2 +ϕhE2 = 0 for any E2 tangent to M2. Applying ϕ, we get hE2 = −E2 and
hϕE2 = ϕE2, where we have used hϕ = −ϕh. Hence, we have that ϕE2 is tangent to M1.
Differentiating Sξ = λ1ξ covariantly for ϕE2, then using (2.4), we have S(E2 − hE2) =
λ1(E2 − hE2). This implies that λ1E2 = 0, which is impossible.

(iii) Let us consider the case ξ1 = 0 and ξ2 �= 0. It follows at once that Sξ = 0, and then
ξ is tangent to M2. Then we have R(X, Y )ξ = 0 for any vector fields X, Y on M , and
hence locally flat in dimension 3 and isometric to Sn(4) × En+1 in higher dimensions [1].
This completes the proof. �

Since the homogeneity implies the constancy of its scalar curvature, with the aforemen-
tioned Perelman’s remark and using (3.1) and the Boyer–Galicki result (Theorem 1.2),
we have the following.

Corollary 3.7. A homogeneous compact contact manifold admitting a Ricci soliton
is Sasaki–Einstein.

We finish the present work by stating the related results recently obtained.

• If a compact real hypersurface M in a complex number space admits a Ricci soliton
whose potential vector field is the Reeb vector field, then M is a sphere [6,7].

• A real hypersurface in a complex projective or hyperbolic space does not admit a
Ricci soliton whose potential vector field is the Reeb vector field [8].

• If a compact real hypersurface M of contact type in a complex number space admits
a gradient Ricci soliton, then M is a sphere [9].

• A Hopf-hypersurface in a complex projective or hyperbolic space, in which the Reeb
vector field is a principal vector field, does not admit a gradient Ricci soliton [9].
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