
Glasgow Math. J. 47 (2005) 249–253. C© 2005 Glasgow Mathematical Journal Trust.
doi:10.1017/S0017089505002454. Printed in the United Kingdom

A GENERALIZATION OF SUPERSOLVABILITY

TUVAL FOGUEL
Auburn University Montgomery, Department of Mathematics, PO Box 244023, Montgomery,

AL 36124-4023 USA
e-mail: tfoguel@mail.aum.edu

(Received 14 November, 2003; accepted 27 October, 2004)

Abstract. In this paper we consider a generalization of supersolvability called
groups of polycyclic breadth n for n ≥ 1, we see that a number of well known results for
supersolvable groups generalize to groups of polycyclic breadth n. This generalization
of supersolvability is especially strong for the groups of polycyclic breadth 2.
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1. Introduction.

DEFINITION 1.1. A group G is of polycyclic breadth n (PBn-group) if it has a normal
series whose factors are all abelian groups with no more than n generators [7, page 57].

Note that PBn-groups are polycyclic groups and that every polycyclic group is a
PBn-group for some n, in particular PB1-groups are the same as supersolvable groups.
Finite groups of polycyclic breadth n, are also known in the literature as solvable
groups of rank n [2]. We will show that some well known results about supersolvable
such as [5],

THEOREM 1.2. The elements of odd order form a finite characteristic subgroup in a
supersolvable group,

and

THEOREM 1.3. The derived group of a supersolvable group is nilpotent,

have nice natural generalizations for polycyclic groups of breadth n. We see that if G
is a PBn-group, then G(n+3) is nilpotent, so the derived length of a polycyclic group
quotient by its Fitting subgroup is bounded by a function of of its breath. We prove that
the torsion elements of 6′ order in a PB2-group form a finite characteristic subgroup.

2. Breadth of a polycyclic group. In this section we will look at general results
about PBn-groups.

DEFINITION 2.1. Given a polycyclic group G let B(G) = n if G is PBn-group, but
not a PBk-group for k < n.

DEFINITION 2.2. Let n = pα1
1 . . . pαk

k where the pi’s are distinct primes, then set

α(n) = max
1≤i≤k

{αi}.
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The first three lemmas we introduce have very standard proofs and are thus
omitted.

LEMMA 2.3. Let G be a finite solvable group of order n, then it is a PBα(n)-group.

LEMMA 2.4. Let G be a PBn-group. Then a principal factor of G is an elementary
abelian p-group of B(G) ≤ n generators (note that equality is achieved at least once).

LEMMA 2.5. The class of PBn-groups is closed with respect to forming subgroups,
images, and finite direct products.

LEMMA 2.6. If G is a solvable subgroup of GLn(�) where � is an arbitrary field or
the integers, then G has derived length ρ(n) ≤ n + 3.

Proof. See [1, 4]. �
REMARK 2.7. The Fitting subgroup of a polycyclic group is nilpotent [7].

REMARK 2.8. We will denote the Fitting subgroup by F .

THEOREM 2.9. If G is a PBn-group, then G/F has derived length less than or equal
to ρ(n). In particular G(ρ(n)) is nilpotent.

Proof. Let

1 = G0 ≤ G1 · · · ≤ Gk = G

be a normal series of G whose factors are abelian groups with less than or equal to n
generators. Set Fi = Gi/Gi−1 and

C = ∩
1≤i≤k

CG(Fi).

Now since every solvable subgroup of Aut(Fi) is has derived length ≤ ρ(n). Thus so is
G/C. Moreover C is nilpotent; for it has the central series (C ∩ Gi)i=0,..., k. �

COROLLARY 2.10. If G is a supersolvable group, then G/F is abelian. In particular
G′ is nilpotent.

Proof. Since, ρ(1) = 1 by Theorem 2.9 G/F has derived length 1. �
COROLLARY 2.11. If G is a PB2-group, then G/F has derived length less than or

equal to 4.

Proof. Since, ρ(2) = 4 by Theorem 2.9 G/F has derived length less than or equal
to 4. �

COROLLARY 2.12. If G is a polycyclic group, then Gρ(B(G)) is nilpotent.

REMARK 2.13. From Corollary 2.12 we get that derived length of a polycyclic
group quotient by its Fitting subgroup is bounded by a function of B(G).

DEFINITION 2.14. Given a group G, let

P(G) = {the set of all primes p such that p = |g| for some g ∈ G}.
REMARK 2.15. If P(G) = ∅, then G is trivial or torsion free.

REMARK 2.16. If G is a polycyclic group, then P(G) is a finite set.
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DEFINITION 2.17. An element of a group G is called an n′-element if it is a torsion
element and its order is relatively prime to n. A group G is called an n′-group if every
p ∈ P(G) is relatively prime to n (i.e. if every torsion element in G is an n′-element).

DEFINITION 2.18. For any integer n > 0:

g(n) =
∏

{prime p≤n+1}
p.

LEMMA 2.19. If A ∈ GLn(�) is a nontrivial torsion element, then the greatest common
divisor of |A| and g(n) is greater than 1.

Proof. See [3]. �
THEOREM 2.20. If G is a PBn-group, then the g(n)′-elements generate a finite subgroup

of G.

Proof. Let H = 〈X〉, where X is the set of g(n)′-elements in G. By [6, 5.4.15]
there exists a torsion-free normal subgroup L of finite index in H. We first claim that
L ≤ Z(H). To establish our claim, we will use induction on the derived length of L. If
L(k) 
= 1 is abelian, then given a ∈ L(k) let K = 〈a〉H , since r(K) ≤ n, by Lemma 2.19
any x ∈ X acts trivially on K , so L(k) ≤ Z(H). Assume that L′ is abelian but L is not.
By induction [x, a] ∈ L′ ≤ Z(H). So by [6, Exercise 5.1.4] [x, a]|x| = [x|x|, a] = 1, and
since L′ is torsion-free we get that [x, a] = 1. Thus L ≤ Z(H) and H is central-by-finite.
By [5, Theorem 4.12], |H ′| < ∞, thus H is finite. �

COROLLARY 2.21. The torsion elements in a g(n)′-PBn-group form a finite
characteristic subgroup.

COROLLARY 2.22. The elements of odd order in a 2′-supersolvable group form a finite
characteristic subgroup.

3. Polycyclic breadth 2. In this section we will look at some results about PB2-
groups, this results are very similar to the supersolvable case.

THEOREM 3.1. If G is a finite PB2-group of odd order, then there is a normal series

1 = G0 ≤ G1 · · · ≤ Gk = G

with the factors of descending prime exponent.

Proof. [2, Satz VI.9.1.d] and induction. �
THEOREM 3.2. If G is a PB2-group, then there is a normal series

1 = G0 ≤ G1 · · · ≤ Gk = G

with finite elementary abelian 6′ factors of descending prime exponent, followed by free
abelian factors, followed by factors of exponents 2 and 3.

Proof. Since G is a PB2-group, we obtain a normal series

1 = H0 ≤ H1 · · · ≤ Hm = G

whose factors are elementary abelian p-groups or free abelian groups of rank at most 2.
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Suppose that Hi+1/Hi is an elementary abelian p-group, where p > 3 and Hi/Hi−1 is
free abelian. Then Aut(Hi/Hi−1) is isomorphic to a subgroup of GLn(�). If Hi+1/Hi−1 is
free abelian, delete Hi. Otherwise there is an elementary abelian p-subgroup Hi/Hi−1 of
Hi+1/Hi−1. By Lemma 2.19 this subgroup acts trivially on Hi/Hi−1. So Hi+1/Hi−1

is abelian and Hi+1/Hi is free abelian. So, we can replace Hi by Hi.
Suppose that Hi+1/Hi is an elementary abelian p-group, where p > 3, and Hi/Hi−1

is an elementary abelian q-group where q = 2 or 3. Then |Aut(Hi/Hi−1)| divides 48,
which is not divisible by p. Let Hi/Hi−1 be an elementary abelian p-subgroup of
Hi+1/Hi−1. This subgroup acts trivially on Hi/Hi−1. Hence, we see that Hi+1/Hi−1 is
abelian, and Hi � G; also Hi+1/Hi is an elementary abelian q-group. So, we can replace
Hi by Hi.

Suppose that Hi+1/Hi is free abelian and Hi/Hi−1 is an elementary abelian p-group
where p = 2 or 3. Since | Aut(Hi/Hi−1) | divides 48, we may replace Hi+1 by Hi+1 where
Hi+1/Hi = (Hi+1/Hi)48, if needed, and assume that Hi+1/Hi acts trivially on Hi/Hi−1

forcing Hi+1/Hi−1 to be abelian. Let Hi ≤ G be such that Hi/Hi−1 = (Hi+1/Hi−1)p. It
follows that Hi/Hi−1 is an infinite cyclic group. Also Hi � G and [Hi+1 : Hi] = k which
divides p4. So there exists Ĥi � G such that

[Hi+1 : Ĥi]
∣∣ p2 and [Ĥi : Hi]

∣∣ p2

Delete Hi and insert Ĥi and Hi. Thus we move the infinite factors to the left.
Applying Theorem 3.1 completes the proof. �
REMARK 3.3. A4 and S3 are PB2-groups, A4 has a normal series of a factor of

exponent 2 followed by one of exponent 3, while S3 has a normal series of a factor of
exponent 3 followed by one of exponent 2.

COROLLARY 3.4. The elements of 6′ order in a PB2-group form a finite characteristic
subgroup.

REMARK 3.5. In the supersolvable case the elements of odd order form a finite
characteristic subgroup [5].

COROLLARY 3.6. If G is a PB2-group and

pmax = max {prime p ∈ P(G)} > 3,

then G has a charecteristic subgroup H of exponent pmax .

Proof. By Theorem 3.2 G has a normal subgroup G1 of exponent pmax , let

H = �f ∈aut(G) f (G1).

�
REMARK 3.7. If G is a supersolvable group and

pmax > 2,

then G has a charecteristic subgroup H of exponent pmax .
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