Chunikhin's existence theorem for subgroups of a finite group

C. D. H. Cooper

We give a simplified proof of a general theorem of Chunikhin on existence of subgroups of a finite group. The proof avoids the technical device of "indexials" which Chunikhin set up for this purpose.

1. Introduction

In [2] (and later in [1], pp. 79-100), Chunikhin proves a very general theorem which asserts, for any finite group and any normal series of that group, the existence of a subgroup having a certain relationship with the terms of the normal series. It includes as special cases the existence of a Hall \(\pi \)-subgroup in a \(\pi \)-soluble group and the existence of subgroups of all possible \(\pi \)-orders in a \(\pi \)-supersoluble group. In this paper we give a much more direct proof than the one in [1], avoiding the elaborate machinery of "indexials" which Chunikhin sets up.

Throughout the paper, all groups are assumed to be finite.

THEOREM 1 (Chunikhin [1], pp. 79-100). Suppose that the group \(G \) has a series
\[1 = G_0 \leq G_1 \leq \ldots \leq G_{2n} = G \] such that if \(1 \leq i \leq n-1 \), \(G_{2i} \trianglelefteq G \) and \(G = G_{2i}N_{G_0}(G_{2i-1}) \). If \(0 \leq i \leq n-1 \), let \(\theta_i \) be the set of primes which divide \(|G_{2j+1}/G_{2j}| \) for some \(j \in \{i, \ldots, n-1\} \). Then there exists a subgroup \(H \) of \(G \) such that if \(H_i = H \cap G_i \) for \(0 \leq i \leq 2n \),

\[
(1) \quad G_{2i+1} = H_{2i+1}G_{2i} \quad \text{for} \quad 0 \leq i \leq n-1 ,
\]

Received 15 December 1970.
(2) \(H_i \triangleleft H \) for \(0 \leq i \leq 2n \),

(3) \(H_{2i}/H_{2i-1} \) is a nilpotent \(\Theta_i \)-group for \(1 \leq i \leq n \),

(4) \(H_{2i+1}/H_{2i} \cong G_{2i+1}/G_{2i} \) for \(0 \leq i \leq n-1 \),

(5) \(|H_{2i}/H_{2i-1}| \) divides \(|G_{2i}:G_{2i-1}| \) for \(1 \leq i \leq n \),

(6) \(H \) is a \(\Theta_0 \)-group.

2. Some definitions

If \(\pi \) is any set of primes, \(\pi' \) denotes the complement of \(\pi \) in the set of all primes. A \(\pi \)-number is an integer whose only prime divisors are elements of \(\pi \), and a \(\pi \)-group is a group whose order is a \(\pi \)-number. A Hall \(\pi \)-subgroup, \(H \), of a group \(G \) is a \(\pi \)-subgroup of \(G \) whose index in \(G \) is a \(\pi' \)-number.

A group \(G \) is \(\pi \)-supersoluble if each chief factor is either a cyclic group of order \(p \) for some \(p \in \pi \), or a \(\pi' \)-group. \(G \) is \(\pi \)-soluble if each composition factor (chief factor) is either a \(p \)-group for some \(p \in \pi \) or a \(\pi' \)-group. \(G \) is \(\pi \)-separable if each composition factor (chief factor) is a \(\pi \)-group or a \(\pi' \)-group. \(G \) is \(\pi \)-decomposable if the order of each composition factor (chief factor) is divisible by at most one prime from \(\pi \). \(G \) is \(\pi \)-partible if the order of each composition factor (chief factor) is a \(\pi' \)-number, or is divisible by at most one prime from \(\pi \).

We are here following Gorenstein [3] in the use of the term "\(\pi \)-separable". Chunikhin uses "\(\pi \)-separable" to refer to what we call \(\pi \)-decomposable. The fact that the above definitions, with the exception of \(\pi \)-supersolubility, can be stated in terms of composition factors or chief factors follows from the fact that every chief factor is a direct product of isomorphic copies of some composition factor.

A \(\pi \)-supersoluble group is clearly \(\pi \)-soluble. A group is \(\pi \)-soluble if and only if it is both \(\pi \)-separable and \(\pi \)-decomposable. \(\pi \)-separability and \(\pi \)-decomposability each imply \(\pi \)-partibility. Subgroups and factor groups of \(\pi \)-supersoluble, \(\pi \)-soluble, \(\pi \)-separable, \(\pi \)-decomposable and \(\pi \)-partible groups are respectively \(\pi \)-supersoluble, \(\pi \)-soluble, \(\pi \)-separable, \(\pi \)-decomposable and \(\pi \)-partible. \(\pi \)-supersoluble and
π-soluble groups are respectively, \(\pi_1 \)-supersoluble and \(\pi_1 \)-soluble for all \(\pi_1 \subseteq \pi \). A \(\pi \)-separable group is \(\pi' \)-separable.

3. Preliminary lemmas

Lemma 1. Suppose \(B \leq A \leq G \) and \(C \leq G \) such that \(B \) permutes with \(C \). Then

\[
\begin{align*}
(a) & \quad A \cap BC = B(AnC), \\
(b) & \quad |AnC|/|BnC| \text{ divides } |A|/|B|, \\
(c) & \quad \text{if } A \leq BC \text{ and } B \leq A \text{ then } AnC/BnC \cong A/B.
\end{align*}
\]

Proof. (a) is the modularity law ([4], p. 121).

(b) \(|B(AnC)| = |B|.|AnC|/|BnC| \) whence \(|AnC|/|BnC| = |B(AnC)|/|B| \) which divides \(|A|/|B| \).

(c) \(A = A \cap BC = B(AnC) \) by (a) whence \(A/B \cong AnC/(AnC)nB = AnC/BnC \).

Lemma 2. (Schur-Zassenhaus [4], p. 224). If \(H \) is a normal Hall \(\pi' \) subgroup of \(G \), \(G \) contains a Hall \(\pi' \) subgroup.

Lemma 3. Conclusions (4) to (6) of Theorem 1 are consequences of (1) to (3).

Proof. (4) follows from (1) by the second isomorphism theorem.

(5). Suppose \(1 \leq i \leq n \). Then

\[
G_{2i-1}H = H_{2i-1}G_{2i-2}H
\]

by (1),

\[
= HG_{2i-2},
\]

since \(G_{2i-2} \subseteq G \). Similarly \(HG_{2i-1} = HG_{2i-2} \) and so \(G_{2i-1} \) is permutable with \(H \). (5) now follows from Lemma 1 (b) on putting \(A = G_{2i} \), \(B = G_{2i-1} \), \(C = H \).

(6). If \(0 \leq i \leq n-1 \), \(H_{2i+1}/H_{2i} \) is a \(\theta_i \) group by (4), and if \(1 \leq i \leq n \), \(H_{2i}/H_{2i-1} \) is a \(\theta_i \) group by (3).

Since \(\theta_0 \supseteq \theta_1 \supseteq \ldots \supseteq \theta_n \), \(H \) is a \(\theta_0 \) group.

Lemma 4. If \(1 = G_0 \leq G_1 \leq \ldots \leq G_{2n} = G \) is a chain of subgroups of
G such that if $1 \leq i \leq n$, $G_{2i} \neq G$ and $G = G_{2i} N_G(G_{2i-1})$ and if S is a subgroup of G such that $G_1 \leq S \leq N_G(G_1)$ and $G = G_2 S$, then putting $S_i = S \cap G_i$,

(a) $G_i = G_2 S_i$ for $2 \leq i \leq 2n$, and

(b) $S = S_{2i} N_{G_2}(S_{2i-1})$ and $S_{2i} \subseteq S$ for $1 \leq i \leq n$.

Proof. (a). Suppose $i \geq 2$. Then

$$G_i = G_i \cap G_2 S = G_2 [G_i \cap S] \text{ by Lemma 1 (a)},$$

$$= G_2 S_i.$$

(b). If $i \geq 2$,

$$S = S \cap G = S \cap G_{2i} N_G(G_{2i-1}),$$

$$= S \cap G_{2i} N_G(G_{2i-1}) \text{ by (a)},$$

$$= S \cap S_{2i} N_G(G_{2i-1})$$

since $G_2 \leq G_{2i-1} \leq N_G(G_{2i-1})$,

$$= S_{2i} \left[S \cap N_G(G_{2i-1}) \right] \text{ by Lemma 1 (a)},$$

$$= S_{2i} N_{G_2}(G_{2i-1}) \leq S_{2i} N_{G_2}(S_{2i-1}).$$

But $S_{2i} N_{G_2}(S_{2i-1}) \subseteq S$ and so $S = S_{2i} N_{G_2}(S_{2i-1})$.

If $i = 1$, $S_{2i-1} = S_1 = G_1 \subseteq S$ whence $N_S(S_{2i-1}) = S$.

4. Proof of Theorem 1

We suppose that the theorem is false and throughout this section G is assumed to be a minimal counter-example. We suppose further that the theorem fails for G in respect of the chain $1 = G_0 \leq G_1 \leq \ldots \leq G_{2n} = G$, $(n \geq 1)$ but holds for every shorter chain. For $0 \leq i \leq n-1$, θ_i denotes the set of primes which divide some $|G_{2j+1}/G_{2j}|$ for $j \geq i$.

Lemma 5. If $G_1 \leq S \leq N_G(G_1)$ and $G = G_2 S$ then $S = G$.

Proof. Suppose $S < G$. It follows from Lemma 4 (b) and the fact that G is a minimal counter-example that there exist $H \leq S$ such that if
for $0 \leq i \leq n-1$, ϕ_i denotes the set of primes which divide some $|S_{2j+1}/S_{2j}|$ for $j \geq i$, then

(i) $S_{2i+1} = H_{2i+1}S_{2i}$ for $0 \leq i \leq n-1$,

(ii) $H_i \triangleleft H$ for $0 \leq i \leq 2n$,

(iii) H_{2i}/H_{2i-1} is a nilpotent ϕ_i-group for $1 \leq i \leq n$,

where H_i is defined to be $H \cap S_i$ for $0 \leq i \leq 2n$.

Now if $i \geq 1$,

$$G_{2i+1} = G_2S_{2i+1} \quad \text{by Lemma 4 (a)}$$

$$= G_2H_{2i+1}S_{2i} \quad \text{by (i)}$$

$$= G_2S_{2i}H_{2i+1}$$

$$= G_{2i}H_{2i+1} \quad \text{by Lemma 4 (a)}.$$

If $i = 0$,

$$G_{2i+1} = G_1 = S_1 = H_1S_0 \quad \text{by (i)},$$

$$= H_1.$$

Thus (1) holds for G.

If $0 \leq j \leq n-1$ it follows from Lemma 1 (b) that $|S_{2j+1}/S_{2j}|$ divides $|G_{2j+1}/G_{2j}|$ and so $\phi_j \subseteq \phi_i$ for $0 \leq i \leq n-1$. Finally, $H \cap S_i = H \cap G_i$ for $0 \leq i \leq 2n$ and so from (ii), (iii) it follows that (2) and (3) hold for G. Hence by Lemma 3, the theorem holds for G, a contradiction. Hence $S = G$.

Lemma 6. If $G_1 \supsetneq G$ then $G_1 = 1$.

Proof. Suppose that $G_1 \neq 1$. Using the symbol $\overline{\cdot}$ to denote images of subgroups of G in G/G_1, we have by the assumptions on the G_i, $\overline{G_i} \triangleleft \overline{G}$ and $\overline{G} = \overline{G_2} \overline{N_G(G_2G_{2i-1})} = \overline{G_2} \overline{N_G(G_2)} \overline{G_{2i-1}}$. Hence by the minimality of G, there is a subgroup H of G such that $G_1 \leq H$ and such that if for $0 \leq i \leq n-1$, α_i denotes the set of primes which divide
some $|\overline{G_{2j+1}}/\overline{G_{2j}}|$ for $j \geq i$,

(i) $\overline{G_{2i+1}} = \overline{H_{2i+1}} \overline{G_{2i}}$ for $0 \leq i \leq n-1$,

(ii) $\overline{H_{i}} \trianglelefteq \overline{H}$ for $0 \leq i \leq 2n$,

(iii) $\overline{H_{2i}}/\overline{H_{2i-1}}$ is a nilpotent α_{i}-group for $1 \leq i \leq n$,

where H_{i} is defined to be $H \cap G_{i}$ for $0 \leq i \leq 2n$.

If $i \geq 1$, it follows from (i) that $G_{2i+1} = H_{2i+1}G_{2i}$. Moreover $G_{1} \trianglelefteq H$ and so $G_{1} = H_{1} = H_{1}G_{0}$. Thus (1) holds for G. From (ii), $H_{i} \trianglelefteq H$ for $i \geq 1$, and clearly $H_{0} \leq H$. Hence (2) holds for G. If $j \geq 1$, $\overline{G_{2j+1}}/\overline{G_{2j}} \cong G_{2j+1}/G_{2j}$. Moreover $\overline{G_{1}}/\overline{G_{0}}$ is trivial. Hence if $0 \leq i \leq n-1$, $\alpha_{i} \subseteq \Theta_{i}$. If $i \geq 1$, $\overline{H_{2i}}/\overline{H_{2i}} \cong H_{2i}/H_{2i-1}$ and so by (iii), $\overline{H_{2i}}/\overline{H_{2i-1}}$ is a nilpotent Θ_{i}-group and so (3) holds for G.

Thus, by Lemma 3, the theorem holds for G, a contradiction. Hence $G_{1} = 1$.

Lemma 7. If $G_{1} = 1$ and G_{2} is nilpotent then $G_{2} = 1$.

Proof. Suppose that $G_{2} \neq 1$. Using the symbol $\overline{\cdot}$ to denote images of subgroups of G in G/G_{2}, then by the assumptions on the G_{i},

$\overline{G_{2i}} \trianglelefteq \overline{G}$ and $\overline{G} = \overline{G_{2i}N_{G}G_{2i-1}} = \overline{G_{2i}}\overline{H_{2i}}\overline{G_{2i-1}}$. Hence by the minimality of G, there is a subgroup K of G such that $G_{2} \leq K$ and such that if for $0 \leq i \leq n-1$, α_{i} denotes the set of primes which divide some $|\overline{G_{2j+1}}/\overline{G_{2j}}|$ for $j \geq i$,

(i) $\overline{G_{2i+1}} = \overline{K_{2i+1}} \overline{G_{2i}}$ for $0 \leq i \leq n-1$,

(ii) $\overline{K_{i}} \trianglelefteq \overline{K}$ for $0 \leq i \leq 2n$,

(iii) $\overline{K_{2i}}/\overline{K_{2i-1}}$ is a nilpotent α_{i}-group for $1 \leq i \leq n$,

(iv) \overline{K} is an α_{0}-group,

where K_{i} is defined to be $K \cap G_{i}$ for $0 \leq i \leq 2n$.

If \(j \geq 1 \), \(\bar{G}_{2j+1}/\bar{G}_{2j} \equiv G_{2j+1}/G_{2j} \), and so \(\alpha_j = \theta_j \). Since \(\bar{G}_1/\bar{G}_0 \) is trivial, \(\alpha_0 = \alpha_1 = \theta_1 \). Thus by (iv), \(K/G_2 \) is a \(\theta_1 \)-group.

Since \(G_2 \) is nilpotent it contains a unique Hall \(\theta_1 \)-subgroup, \(M \). \(M \) is characteristic in \(G_2 \) and hence normal in \(G \). \(G_2/M \) is a \(\theta_1 \)-group and so \(K/M \) is a \(\theta_1 \)-group. By Lemma 2, there exists a Hall \(\theta_1 \)-subgroup \(H \) of \(K \). Thus \(K = MH \) and \(M \cap H = 1 \).

If \(i \geq 2 \), then since \(M \leq G_2 \), we have by Lemma 1 (a) that
\[
K_i = K \cap G_i = MH \cap G_i = M \langle H \cap G_i \rangle = MH_i \quad \text{where } H_i \text{ is defined to be } H \cap G_i
\]
for \(0 \leq i \leq 2n \). If \(i \geq 1 \) we have from (i) that
\[
G_{2i+1} = K_{2i+1} \subseteq G_i = MH_{2i+1} G_{2i} = H_{2i+1} G_{2i}.
\]
Moreover \(G_1 \) and \(H_1 \) are trivial, so \(G_1 = H_1 G_0 \). Thus (1) holds for \(G \).

If \(i \geq 2 \), it follows from (ii) that \(K_i \equiv K \) and so \(MH_i \equiv MH \).

Hence
\[
H_i \leq MH_i \cap H = H_i (M \cap H) \quad \text{by Lemma 1 (a),}
\]
\[
= H_i.
\]
Thus \(H_i \equiv H \). Moreover \(H_2 = G_2 \equiv H \) and \(H_1 = G_1 = 1 \equiv H \). Thus (2) holds for \(G \).

If \(i \geq 2 \), \(\bar{K}_{2i}/\bar{K}_{2i-1} \equiv K_{2i}/K_{2i-1} = MH_{2i}/MH_{2i-1} \equiv H_{2i}/H_{2i-1} \) and so by (iii), \(H_{2i}/H_{2i-1} \) is a nilpotent \(\alpha_i \)-group and so a nilpotent \(\theta_1 \)-group. Since \(H_1 = 1 \), \(H_2/H_1 \equiv H_2 \) and is nilpotent since \(G_2 \) is nilpotent. Since \(K/M \) is a \(\theta_1 \)-group, so is \(H_2 \). Hence (3) holds for \(G \) and so by Lemma 3, the theorem holds for \(G \), a contradiction. Hence \(G_2 = 1 \).

Proof of Theorem 1. We obtain our ultimate contradiction through an interplay of Lemmas 5, 6 and 7. Taking \(S = H_G(G_1) \) in Lemma 5 we conclude that \(G_1 \equiv G \). Hence by Lemma 6, \(G_1 = 1 \). Thus if \(S \) is any subgroup of \(G \) such that \(G = G_2S \), then by Lemma 5, \(S = G \). Hence \(G_2 \)
is contained in the Frattini subgroup of \(G \), whence it is nilpotent. By Lemma 7, \(G_2 = 1 \). Since the theorem holds for \(G \) in respect of the shorter chain \(1 = G_2 \leq G_3 \leq \ldots \leq G_{2n} = G \), it must hold in respect of the original chain, a contradiction.

5. Consequences of Theorem 1

THEOREM 2. Suppose that

\[1 = G_0 < G_2 < G_4 < \ldots < G_{2n} = G \]

is a normal series for \(G \). If for \(1 \leq i \leq n-1 \), the factor \(G_{2i}/G_{2i-2} \) contains a single conjugacy class of Hall \(\pi \)-subgroups and if \(G/G_{2n-2} \) contains a Hall \(\pi \)-subgroup then \(G \) contains a Hall \(\pi \)-subgroup. If these Hall \(\pi \)-subgroups are soluble, \(G \) contains a soluble Hall \(\pi \)-subgroup.

Proof. For \(1 \leq i \leq n \), choose \(G_{2i-1} \) so that \(G_{2i-1}/G_{2i-2} \) is a Hall \(\pi \)-subgroup of \(G_{2i}/G_{2i-2} \). If \(1 \leq i \leq n-1 \), all Hall \(\pi \)-subgroups of \(G_{2i}/G_{2i-2} \) are conjugate whence \(G/G_{2i-2} = G_{2i}/G_{2i-2} \), \(N_{G_{2i-2}}(G_{2i-1}/G_{2i-2}) \) and so \(G = G_{2i}N_G(G_{2i-1}) \). By Theorem 1 there exists a subgroup \(H \) of \(G \) having properties (1) to (6).

\[|G : H| = \prod_{i=1}^{n} \frac{|G_{2i-1}:G_{2i-2}|}{|H_{2i-1}:H_{2i-2}|} \times \prod_{i=1}^{n} \frac{|G_{2i}:G_{2i-1}|}{|H_{2i}:H_{2i-1}|} = \prod_{i=1}^{n} \frac{|G_{2i}:G_{2i-1}|}{|H_{2i}:H_{2i-1}|} \text{ by (4)}, \]

which divides \(\prod_{i=1}^{n} |G_{2i}:G_{2i-1}| \) and so is a \(\pi' \)-number. Since for \(0 \leq i \leq n-1 \), \(G_{2i+1}/G_{2i} \) is a \(\pi \)-group, \(\theta_i \subseteq \pi \) for all \(i \). In particular \(\theta_0 \subseteq \pi \). \(H \) is a \(\theta_0 \)-group by (6) and so a \(\pi \)-group. Hence it is a Hall \(\pi \)-subgroup of \(G \).

If the Hall \(\pi \)-subgroups of the factors of \(G \) are soluble, \(G_{2i-1}/G_{2i-2} \), and hence by (4) \(H_{2i-1}/H_{2i-2} \) is soluble for \(1 \leq i \leq n \).
Since, by (3), \(H_{2i}/H_{2i-1} \) is nilpotent for \(1 \leq i \leq n \), \(H \) is soluble.\

COROLLARY. The theorem holds if \(1 = G_0 < G_2 < \ldots < G_{2n} = G \) is a composition series.

Proof. If \(A \) is a direct product of isomorphic copies of \(B \), then \(A \) has a single conjugacy class of Hall \(\pi \)-subgroups if and only if \(B \) has. Since each chief factor of \(G \) is a direct product of isomorphic copies of some composition factor, the assumptions on the composition factors carry over to the chief factors.

THEOREM 3 ([1], Theorem 3.9.1). If \(G \) is \(\pi \)-partible then it contains a Hall \(\pi \)-subgroup. If for some \(\pi_1 \subseteq \pi \), \(G \) is \(\pi_1 \)-decomposable and (\(\pi-\pi_1 \))-separable then it contains a \(\pi_1 \)-soluble Hall \(\pi \)-subgroup.

Proof. Let \(1 = G_0 < G_2 < G_4 < \ldots < G_{2n} = G \) be a chief series for \(G \). If \(\rho \) is the set of prime divisors for some chief factor then by the \(\pi \)-partibility of \(G \),

(i) \(\rho \subseteq \pi \), or

(ii) \(\rho \subseteq \pi' \), or

(iii) \(\rho \cap \pi = \{p\} \) for some prime \(p \).

In case (i) the factor is a \(\pi \)-group and so has a unique Hall \(\pi \)-subgroup (namely itself). In case (ii) the factor is a \(\pi' \)-group and so has a unique Hall \(\pi \)-subgroup (namely the trivial subgroup). In case (iii) the factor has a single conjugacy class of Hall \(\pi \)-subgroups (namely the Sylow \(p \)-groups). Hence by Theorem 2, there exists a Hall \(\pi \)-subgroup \(H \) of \(G \) satisfying (1) to (6) of Theorem 1.

Suppose that \(G \) is \(\pi_1 \)-decomposable and (\(\pi-\pi_1 \))-separable. If \(\rho \) is the set of prime divisors of \(|G_{2i}/G_{2i-2}| \), \(\rho \subseteq \pi'_1 \) or \(\rho \cap \pi_1 = \{p\} \) by \(\pi_1 \)-decomposability. If \(\rho \cap \pi_1 = \{p\} \) then by (\(\pi-\pi_1 \))-separability, \(\rho \cap (\pi-\pi_1) = \emptyset \) that is \(\rho \cap \pi = \rho \cap \pi_1 \). Let \(\tau \) be the set of prime divisors of \(|H_{2i-1}/H_{2i-2}| \). Then by (4), \(\tau \subseteq \rho \) and by (6), \(\tau \subseteq \theta_0 = \pi \). Hence \(\tau \subseteq \rho \cap \pi \). Thus either \(\tau \subseteq \rho \subseteq \pi' \) or

* In fact by (5) and (6), each \(H_{2i}/H_{2i-1} \) is trivial.
Finally for $1 \leq i \leq n$, H_{2i-1}/H_{2i-1} is, by (5), a π'-group.* Hence H is π_1-soluble.

References

School of Mathematics,
Macquarie University,
North Ryde, NSW.

* In fact, since H is a π-group, H_{2i}/H_{2i-1} is trivial.