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FINITE PRINCIPAL IDEAL RINGS 

BY 

JAMES L. FISHER 

This paper determines the structure of finite rings whose two sided ideals are 
principal as left ideals, and as right ideals. Such rings will be called principal 
ideal rings. Although finite rings have been studied extensively [1], [5], [12], 
[14] and the tools necessary for describing finite principal ideal rings have been 
available for thirty years, these structure theorems (which are essentially given 
in a more general setting in [4]) seem to have been overlooked. In particular, 
let or be an endomorphism of a ring V. Define V[[x; a]] to be a ring of (skew) 
power series with indeterminate x, coefficients from V and which satisfies 
xv = or(v)x. If S is any ring, denote the Jacobson radical of S by J(S). 
Furthermore a u-ring V is defined (after [3]) to be a complete discrete com
mutative valuation domain whose maximal ideal is generated by the prime 
integer p (where p is the characteristic of V/J(V)). This paper proves that a 
finite principal ideal ring R is the direct sum J R I © R 2 ® * • ' ®Rk®N where 
Rt, i = 1 , . . . , k are complete nt x nt matrix rings (nt positive integers) over rings 
of the form V[[x; cr]]l(p-ex€, xs) where V is a u-ring with V/J(V) a finite 
field, or an automorphism of V, e a unit in V[[x ; cr]], p[s/^] is the characteristic 
of Ri and s is the index of nilpotency of J(Ri), and, in addition, N is a nilpotent 
principal ideal ring (whose structure is described in [5] and [11]). The rings 
V[[x;a]]/(p-sx€,xs) are exactly the completely primary rings with 1 whose 
two sided ideals are principal as left ideals and this gives a more detailed 
description of the finite chain rings of [2]. Furthermore the rings V[[x; or]]/(p-
sx€) are (local) principal right and principal left ideal domains, so that in the 
spirit of [7], every finite principal ideal ring with identity is the homomorphic 
image of a direct sum of matrix rings over principal ideal domains. 

Direct sum decomposition. Following [9], a primary ring is defined to be a 
left artinian ring R with identity such that R/J(R) is simple. If in addition 
R/J(R) is a division ring then R is called completely primary. The following 
theorem is from [10, pp. 64, 36] and is a variation of one from [9]. 

THEOREM 1. Let R be a primary ring in which J(R) is a principal left ideal. 
Then R is equal to (S)m the ring of all nXn matrices over S where S is a 
completely primary principal left ideal ring. 
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There are numerous decomposition theorems for principal ideal rings with 
identity. We give a variation of a theorem found in Jacobson [9. page 75] which 
does not require the ring R to have an identity. Thus a left ideal J of R is 
principal if there exists eel such that I = {mc + rc\m is an integer, reR}. 
Denote I by Re. The analagous definition holds for principal right ideal. 

THEOREM 2. Let R be a finite principal ideal ring. Then R is an ideal direct 
sum Ri@ • • • ®Rk ®N where Rt i = l,..., k are primary principal ideal rings 
and N is a nilpotent principal ideal ring. 

Proof. Let JRX be a minimal non-nilpotent ideal of R. By hypothesis R±~ Rc 
and since Ri is a two sided ideal cR ç Re. Thus RcRc ç Rc2 which is non 
nilpotent so that Rc2 = Rc, and by induction Rc1 = Rc. Thus for reR, rc — 
mc2 4- sc2 for some integer m and s e R. Hence r-{r-{mc + se)) + (mc + se) and 
R = t(c) + Rc as left ideals where £{c) = {xeR\xc = 0}. Define A(c) = 
{(m, s):m is an integer, seR, and mc + sc = 0}. The sets £\{cl), i = 1, 2, 3 , . . . 
form an ascending chain which must terminate, say A(cn) = A(cn+J)> J a n v 

positive integer. If ae €(cn)D Rcn, then a = mcn + scn so that 0 = acn = 
mc2n + sc2n and (m, s)e€1(c

2n) = €t(c
n). Thus a = 0, and since ^(c) is in €(cn) 

and Rcn = Rc, we have JR = / ( c ) © R c as left ideals. Again by hypothesis, 
R1 = c1R and by an argument similar to that above, R = r(ci)(&c1R as right 
ideals where r(ci) = {seR:c1s = 0}. To show that £(c) is two sided, it is 
sufficient to show €(c) = r(ci). First note that Rc2 = Rc implies JCC2 = 0 if and 
only if xc = 0. Thus for be€(c), b = r1 + c1r2 with rier{cx) and 0 = £>c = 
rxc

Jrc1r2c. Hence rxce r(ci)fl CijR, so that 0 = riC = Cir2c and Cir2 = 0. This 
implies ber{ci), and ^(c) is two sided. This gives the decomposition JR = 
Rr® - - - ®Rk ®N where Rt are two sided minimal non nilpotent ideals; and 
N is nilpotent. By lifting the identity of RJJiRi) to an idempotent e of Rh we 
have c = se + jc where seR and x is in J(Rt). Since xeJ(Ri), x = x1c where 
XieJ(Ri). Thus formally c = (1 — x1)~

1se, and since xx is nilpotent, c is in Re. 
Thus Re = Rc = ei? and e is the identity for JRj. Thus JRf is a primary principal 
ideal ring. 

As in [11], the nilpotent ring N of theorem 2 can be decomposed further 
into a direct sum of n nilpotent rings of orders p?' where ph i = 1 , . . , n are 
distinct prime integers, at positive integers. In fact N is a finite nilpotent 
principal ideal ring iff N is a direct sum of n nilpotent principal ideal rings of 
orders pf1 where pt, i — 1 , . . . , n are distinct prime integers. 

Indecomposable finite principal ideal rings. Because of the first two 
theorems we need only investigate the structure of finite completely primary 
principal ideal rings. The following theorem is an analogue of [0, prop. 8.8], 
and shows that for finite completely primary rings it is sufficient to insist that 
J(R) is principal as a left ideal. 
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THEOREM 3. Let R be a finite completely primary ring. R is a principal ideal 
ring iff the dimension of J(R)/J(R)2 as a left R/J(R) space is at most one. 

Proof. It is clear that if R is a finite completely primary principal ideal ring, 
then dimR/j(R) J(R)/J(R)2 is at most one. To show the implication in the other 
direction, choose xeJ(R) such that x£J(R)2. Since the dimension of 
J(R)/J(R)2 is one, Rx + J(R)2 = J(R). Hence Rx = J(R) if Rx^J(R)2. Let 
reRx + J(RY so that r=rtx+ £k 11; "kj with nkj e J(R). However nkj = rkix + 
mkj, mkjeJ(R)2. Thus r = rxx+Yk Ylj (rkjX + mkj)eRx + J(R)i+1, and r is in 
Rx + J(RY for all positive integers t. Since J(R) is nilpotent, we have reRx 
and JRx = J(R). Since J(R)/J(R)2 is finite, dim J(R)/J(R)2 as a left R/J(R) space 
equals dim J(R)/J(R)2 as a right R/J(R) space. Hence J(R) = xR. 

THEOREM 4. Let R be a finite completely primary ring. Then R contains a 
coefficient ring V of characteristic equal to the characteristic of R and with 
V/J(V) equal to R/J(R). Furthermore Vis a homomorphic image of a v-ring V. 

This result is proven in many places ([1], [4], [12]) and is essentially derived 
from [3]. 

U Central V-V bimodules. Let V be a ring with U a subring of V. A U 
central V-V bimodule M is a left and right V-module satisfying v(mw) = 
(vm)w for all meM, v,weV, and mu = um for all ueU. Since a finite 
completely primary ring R contains a coefficient ring which is a homomorphic 
image of a u-ring V and since V contains a sub u-ring U generated by the 
identity, then the radical J(R) is a U central 'V-V bimodule. Hence knowing 
the structure of U central V-V bimodules will enable us to determine the 
structure of J(R). This section determines the structure of U central V-V 
bimodules, U ç V, U and V v-rings, such that F= VIJ(V) is a finite dimen
sional Galois extension of K= U/J(U). This is a variation of results of [6] and 
[8]. 

The following lemma is an easy variation of a result of Cohen [3, page 68]. 
In the version stated below, we do not need the hypothesis that R is 
noetherian. 

LEMMA 5. Let R and S be commutative local rings with R<= S and R complete. 
If S • J(R) = J(S) and S/J(S) is a finite algebraic extension of R/J(R) then S is 
complete and S = Rai + - • - + Rak where au ..., ak is any lifting of a basis 
a i , . . . , àk of S/J(S) over R/J(R). 

Denote the field of quotients of a commutative domain S by Q(S). 

LEMMA 6. If âu ..., âk is a basis for F over K and al9..., ak is a set of 
elements of V mapping onto au ..., ak under the natural map then au ... ,ak is 
both a basis for V over U and O(V) over Q(U). 
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Proof. Lemma 5 guarantees V= Ua,i + - • • + Uak. We must now show inde
pendence over U. Let <f> be the (multiplicative) valuation determined by 17. 
Suppose 0 = Uidi + • • • + ukak, M* e 17, i - 1 , . . . , fc, not all ut zero. Define n = 
max{</>(Wj):wi^0}. T h ^ Q = 0 • n~x - n~1Uidi + - • - + n~1ukak and n^UteU, 
with at least one n - 1 ^ not in J(U). Hence 0 = n_1Wi ai + - • - ^ - n - 1 ^ ak is a 
nontrivial relation in F, which is a contradiction. Thus all w* are zero. 

Since Q(V) = {v/pa:veV, a is a non-negative integer} we have v/pa = 
(wi/pa)ai + - • - + (uk/p

OL)ak so that Q(V) = Q(C/)a1 + - • -Q(U)ak. A linear de
pendency of the af in O(V) over Q((7) would imply a linear dependency in V 
over [/. Therefore {au . . . , ak} is indeed a basis for Q(V) over 0(17). 

LEMMA 7. If Fis a Galois extension of K then there is an isomorphism between 
the group of automorphisms of V fixing U and the group of automorphisms of F 
fixing K. If a is an automorphism of V then an isomorphism is given by a —» cr 
where â(v) = <J{V). 

Proof. Since F is Galois over K, F is the splitting field of a separable 
irreducible polynomial f(x) e K[x]. Suppose f(x) = (x-â1) • - - {x- âk) in F[x]. 
We may suppose that âl9...,âk forms a normal basis for F over K. Choose 
f(x)e U[x] which maps onto f(x). By Hensel's lemma au • • •, ak can be raised 
to { a i , . . . , ak) contained in V such that f(x) splits in V[x] to /(*) = 
(jc-ai) • • • (x — ak). By lemma 6, {au . . . , ak] is a basis for V over [7 and 
O(V) over Q(L7). This implies that 0 (V) = 0(U)f l i+ • • • +Q{U)ak is the 
splitting field of the separable irreducible polynomial f(x) in Q(U)[x], which 
proves that Q(V) is a Galois extension of Q(U). If a is an automorphism of 
Q(V) over 0(17) then o^a*) = a^a) where TT is a permutation of l , . . . , f c . 
Hence <r(V)= V and any automorphism of O(V) over Q(C7) restricts to an 
automorphism of V over U. Note that the map cr-* à where â(v) = cr(v) is a 
homomorphism of the Galois group of V over U into the Galois group of F 
over K Since a induces a permutation of au . . . , ak, à will induce the same 
permutation on âl9..., âk. Hence a^l implies c r ^ l and cr->â is an 
isomorphism. To see that the isomorphism is onto we note that the Galois 
group G of V over U has order k as does the Galois group of F over K. 

THEOREM 8. Let V and U be v-rings with V^U and V/J(V) a finite Galois 
extension of U/J(U). Let M be a U central V-V bimodule. Let a1,... ,crk be the 
automorphisms of V over U. Then M is equal to Mi© • • • ©Mk where mv = 
o-i(v)m for all meMh Mt U central V-V bimodules. 

Proof. Since F=V/J(V) is Galois over K=U/J(U), there is a separable 
irreducible polynomial f(x)eU[x] which in V[x] splits into f(x) = 
(x-ai) - • • (x-ak) with aly... ,ak SL normal basis for V over U and further
more V = C7(ai). Define /i(*) = rL*i (jc-a7). Since V is local and ai-a^IiV) 
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for iV/ we have /j(Oj)é J(V). Therefore (/[(a*))"1 exists in V and the polyno
mial - l+Z( / i ( a i ) ) - 1 / i (^ ) is of degree at most k - 1 but has k roots in 
V c Q(V). Thus the polynomial is identically zero, yielding 1 = £ (fiiad)'1 fi(x) 
in V[x]. We may now note that multiplication on the right of M by ax is a V 
linear transformation T on M as a left V module. Since /(ai) = 0 and since 
f(x)e U[x], we also have /(T) = 0. Because of the identity in V[x] we have 
I = Z(/«(oi))"1/i(T) so that M = Z(/ i(a i))"7 i(T)M = M1 + - • - + Mk where M, = 
(fi(a>i)) 1fi(T)M. To show that this sum is direct suppose for example that 
meM1n(M2 + - • - + Mk). Since m e Mi we have ( T - a i I ) m = 0, and since 
m eM2 + • • • + Mk we have ( T - a2I) • • * ( T - afcI)m = 0. This implies that m = 
Im = Y,(fi(a>i))~1fi(T)m = 0 and the sum is direct. Now for every meMt we 
have since /(T) = 0, ( T - ail)m = 0. Therefore Tm = atm. But Tm = mai. Since 
aj is a root of /(x), as is au there is an automorphism cr* of V over U which 
maps ai onto a*. Therefore mai = c7i(ai)m and mv = m(£jf tya'i) = £;- Ujina[ = 
X u,(cTi(ai))Jra = aïG]/ w,ai)m = cr^t^m, and the theorem is proven. 

Structure theorem. Knowing the structure of U central V-V bimodules 
enables us to prove 

THEOREM 9. Let R be a finite completely primary principal ideal ring. Then R 
is isomorphic to V[[x; a]]/(p-ex€, xs) where e is a unit of V[[x; or]], p[s/^] is the 
characteristic of R, s is the index of nilpotency of J(R), and V is a v-ring with 
V/J(V) isomorphic to R/J(R). 

Proof. Since JR is a finite completely primary principal ideal ring, theorem 3 
shows dimR/j(R) (J(i^)//(R)2)< 1. Let V be the homomorphic image of V in R 
(theorem 4). By theorem 8, J(R)= Vmi©- • • ®Vmt with miV = (Ti(v)mh o-t 

automorphisms of V (not necessarily distinct). Exactly one of the mt (call it m) 
has a nonzero image in J(R)/J(R)2. It is clear that R is exactly the ring 
generated by V and m. The map from V[[x;o-]] to R (where mv = a(v)m) 
induced by x —» m and V —» V is well defined since relations in V[[JC ; cr]] map 
to relations in R. Since pR is an ideal of JR, pR = J(R)€ so that p = êm€, ê a 
unit in R. Lift s to a unit e in V[[x ; cr]] (which is possible since V[[x ; cr]] is 
complete). I claim V[[x;a]]/(p-ex€,xs) is isomorphic to R, where s is the 
index of nilpotency of J(R) and p[s/^] is the characteristic. This will be proven if 
a relation r = v0 + v±m + • • • + vkm

k, v0e V, vt e V, in R is a result of p — Em€ 

and ms. If v0fÉpR then r is a unit and hence cannot be a relation. Thus 
Vo = pvô, v'o^V. But p = ëml so that v0= ëmlv'0. By this process, we may 
assume r is of the form x>tm

l' + • • • + V i ^ s _ 1 with vt a unit in V and vk, 
k = f + l , . . . , s - l units or 0 in V. Thus (vt + • • • + D s - i m ^ ^ m 1 is a relation 
which implies mx is a relation. This contradicts f < s so that the map in indeed 
an isomorphism. 
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It can be noted that if the characteristic of JR is not p then a€ is the identity 
automorphism. The central element p = ëx* so that Ixfv = a€(v)ëx€ = vex€. 
Hence x€^ 0 (i.e. p^O) implies <r€ = 1. 

As a result of theorem 9, we now can show 

THEOREM 10. A finite completely primary principal ideal ring R is a homomor-
phic image of a principal left and principal right ideal domain S. Furthermore all 
left and right ideals of S are two sided. 

Proof. By theorem 9, R is a homomorphic image of S = 
V[[x; cr]]l(p-sx€) where s is a unit of V[[x; a]]. I claim that S is a principal 
right and principal left ideal domain. Since p = ex€, we can write s = 2J=,i0 ViX1 

where v^ is a unit of V. Thus 5 = (U=i0 ViXl~l°)xl° where £r=i0 vtx
l~l0 is a unit of 

S. Thus Ss = Sxl° and the right ideals are exactly of the form Sx\ i = 1, 2. 
Since cr is an automorphism, the left ideals are also of that form. S is clearly a 
domain. 

The theorems stated in the introduction now follow by application of 
theorem 2, theorem 1, theorem 9, and theorem 10. There are obvious 
generalizations to local principal left ideal rings which have large centers (in the 
sense that R/J(R) is finite dimensional over the image of the center of R). 
These might be of interest in view of the fact that semiprime rings satisfying a 
polynomial identity do have such centers [13]. However, the added generality 
is overshadowed by the more cumbersome hypotheses (see [4]). 
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