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1. Introduction

In [2], John Cossey and Sheila Oates Macdonald give a basis for the
set of laws of PSL(2,5) — the simple group of order 60 — and with one
extreme exception the laws of their basis involve at most two variables.
They raise the problem of finding a basis in which all of the laws involve
only a small number of variables, and remark that they have shown that
five variables will suffice. Here we give a basis consisting entirely of two-
variable laws.

In notation and terminology we follow [2].

We use a set of two-variable laws including (1)—(6) of [2], and the
fact proved there that this set will be a basis for the laws of PSL(2, 5) so
long as PSL(2,5) is the only non-abelian simple group in the variety 8
that the set defines. Consequently we prove

THEOREM. The only non-abelian simple group in B is PSL(2,5).

The method used to establish the structure of the simple group is based
upon an idea introduced in [1]. If {w,}7_; is a set of words of the free group F,
we shall say that a group G satisfies the disjunction w, v wy,v ---vw, if
for every homomorphism ¢ : F — G, w;¢ = 1 for at least one value of 7.
From a disjunction we may construct words which are laws of every group
satisfying the disjunction, and, what is more important, which allow us to
recover the disjunction in certain groups — for example non-abelian simple
groups — having these words as laws.?

For example, in PSL(2,5) every element has order 1, 2, 3 or 5: therefore
PSL (2, 5) satisfies the disjunctions

(7} 23v 219, and

{(8") x5 v as,

1 Research supported by a Science Research Council Research Studentship.
2 A particular case is that of the chief centralizer law and its application in [4] of L. G.
Kovacs and M. F. Newman, which in fact suggested the more general idea.
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giving rise to the two-variable laws

(7) [, (*1°)"], and

(8) [, (=5)].

Now if G is a non-abelian simple group, no non-identity element of G
can commute with a complete set of conjugates of any other non-identity
element. Thus if G satisfies (7) and (8), any element of G is of order dividing
3 or 10, and again of order dividing 5 or 6. Consequently we retrieve in G

the fact that every element has order 1, 2, 3 or 5.
The other disjunctions we use are

(9) [2%, 9*] v (xy)®v (wy™)%, and
(107) [2%, 9] v (2y)? v (@g?)? v (wy®)? v (zy*)®,

which are easily checked to be satisfied by PSL(2,5). Essentially they
express the fact that two non-commuting elements of order 5 generate the
whole group. From these disjunctions we construct the sets of laws under
(9) and (10) below. The choice of the conjugating words u,, u,, #; and #, is
determined by the need to restrict to two-variable laws, but as a consequence
the recovery of the corresponding disjunctions is more difficult. (See
Lemma 1.)

2. The basis

% is the variety defined by the following set of two-variable laws.

(1) x30

(2) {($1Oy10)6[x10, y10]2}5

(3) {((x6y12)5 (x6y18)5)3[x6, yﬁ]ﬁ}ﬁ
(4) [2®, y2]®

(5) {[xﬁ le x—G s y-lO] [le R xﬁ] }10
(6) {[yloxﬁy—lo, .'17_6] [ylo’ xﬁ]Z}G
(7) [a3, (&'%)"]

(8) [#°, (2%)"]

(9) The set of words

(25, 98, (wy)®, (wy~)%"]

with u,, u,, taken from the set {1, , y}.
(10) The set of words

[2%, 4%, (wy)™s, (2y?)™, (my®)™s, (wy?)™]

with u,, u,, us, u, from {1, z, y}.
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3. Proof of the theorem

We have included as (1)—(6) the laws (1) — (6) of [2], and so we have
all the results of § 3 of that paper. Thus

(i) p-groups in B are elementary abelian, and

(it) an element of ovder p which belongs to the normalizer of a g-subgroup
of a group in B belongs to its centralizer if p and q take the values
5and 2, 5 and 3, or 3 and 5.

We let G be a non-abelian simple group in B. Then as remarked above,
(7) and (8) give

(i) every element of G has order 1, 2, 3 or 5.
(i) and (iii) put us in a familiar situation where we can deduce

(iv) the Sylow (i.e. maximal) p-subgroups of G are the centralizers of each
of their non-identity elements,

(v) each Sylow subgroup has trivial intersection with any distinct conju-
gate, and

(vi) two elements of a Sylow p-subgroup P of G are conjugate in G if and
only if they are conjugate in the normalizer N o(P).

If P is a non-trivial Sylow p-subgroup we see from (iv) that Ng(P)/P
acts fixed point freely on P by conjugation, and from (ii) that it is a g-group,
where ¢ = 3, 2 or 2 according as p = 2, 3 or 5. By a well-known theorem of
Frobenius, any subgroup of N¢(P)/P of order ¢2 is cyclic: and using (i) we
have

(vii) [Ng(P) : P] divides 3, 2 or 2 according as p = 2, 3 or 5.
We are now able to make our deductions from (9) and (10).
LEmMA 1. G satisfies (9') and (10°).

Proor. Suppose otherwise that, say, (9) is not satisfied for z = 4
and y = b. Let ¢, = [a8, b%], ¢; = (ab)® and ¢, = (ab™)3, so that ¢, ¢, and
¢, are all non-trivial. Let H = {a, b), the group generated by a and b.

From (9) we have the relations [c¢,, ¢¥1, c32] =1 for u, = 1, a or b,
¢ = 1, 2, Suppose that [¢,, ¢j1] = ¢ 7 1 for some choice of #,, and let P be
the centralizer of ¢ in G. Since cj2 € P for u, = 1, a or b, it follows by (iv)
and (v) that H < Ng(P). Thus ¢, = [a®, b¢] = 1 by (vii), which is a contra-
diction. Consequently [cy, ¢1] = 1 for #; = 1, a or b, and arguing in the
same way again we deduce that ¢, = 1, a final contradiction.

In a similar way we can prove that (10’) is satisfied.

LeEMMA 2. Any two non-commuting elements of G of order 5 generate a
subgroup isomorphic to PSL(2, 5).
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ProoF. Suppose that [a®, 48] 52 1. Then from (10’) we have (ad’)2 =1
forj =1, 2,3 or 4, and putting = «, y = 47 in (9’) gives (46~7)3 = 1 and so
(07a)® = 1. Thusif H = <a, b), H is also generated by ¢ = ab’andd = b~a
with relations ¢? = d3 = (cd)® = 1. Since these are defining relations for
PSL(2,5), H is isomorphic to a factor group of PSL(2, 5), and so actually
to PSL(2, 5); which proves the lemma.

G contains elements of order 5, for otherwise it would have exponent 6,
But a group of exponent 6 is soluble: its finitely generated subgroups are
finite and consequently soluble of bounded derived length by the results of
[3]. Since G is simple it contains elements of order 5 which do not commute
and so

(viii) G contains a subgroup H isomorphic to PSL(2,5).

Let a and b be elements of order 5 which are in distinct Sylow 5-sub-
groups of G. Then (a, > >~ PSL(2,5) by Lemma 2 and so a is conjugate to
b or to b2, Thus G contains at most two conjugacy classes of elements
of order 5. Applying (vi) and (vii) we obtain

(ix) the Sylow 5-subgroups of G have order 5.

If 2 and b are elements of G of order 2 which are in distinct Sylow 2-
subgroups of G, then {a, b> cannot be a four-group by (iv). Thus by (iii)
{a, b> must have twice odd order and @ and b are conjugate. Consequently G
contains only one conjugacy class of elements of order 2 and so by (vi) and
(vii) a Sylow 2-subgroup of G has order not greater than 4. Therefore by (viii)

(x) the Sylow 2-subgroups of G have order 4.

Now let a be any element of G of order 5. Then there is some element &
of H of order 5 such that [a, 5] # 1, and so K = {4, b) ~ PSL(2,5) by
Lemma 2. Ny(b> = Ng(b> = Ng(b> by (vii) and (ix). By (x), H and K
contain complete Sylow 2-subgroups of G and each of these intersects
Ny{b> = Ng<b>. Thus H and K contain the same elements of order 2 and,
since they are generated by these elements, we have H = K and so a € H.
Thus H contains every element of G of order 5. Since G is generated by
these elements we have G = H and the proof of the theorem is complete.
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