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1. Introduction. Prym varieties are abelian varieties that come from unramified
double covers of curves.

Let π : Y −→ X be an unramified cover of degree 2 of a smooth algebraic
irreducible projective curve defined over �q with q = pe, where p is an odd prime
number. Let σ be the non-trivial involution of this cover and σ ∗ the induced involution
on the Jacobian JY of Y . The Prym variety Pπ (we will often drop the subscript π

when it is clear from the context) associated to π is defined as

Pπ = Im(σ ∗ − id).

It is also the connected component of the kernel of π∗ : JY −→ JX , which contains the
origin of JY . It is an abelian subvariety of JY such that JY is isogenous to JX × Pπ .
If X has genus g + 1 ≥ 2, then Y has genus 2g + 1 by the Riemann–Hurwitz formula,
and Pπ has dimension g.

Prym varieties form a special class of principally polarized abelian varieties. Let us
denote byAg the moduli space of principally polarized abelian varieties of dimension g,
by Jg the Jacobian locus in Ag, by Pg the subset of Ag corresponding to Prym varieties,
and by Pg its closure. Then Pg is an irreducible subvariety of Ag of dimension 3g (for
g ≥ 5) containing Jg; for g ≤ 5 one has Pg = Ag (see [3]).

We are interested in the maximum and minimum number of rational points on
Prym varieties over finite fields. In [8], Perret proved that if X has genus g + 1, π :
Y −→ X is a double unramified cover over �q, and N(X) and N(Y ) are the respective
numbers of rational points on X and Y , then the number of rational points #P(�q) on
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the associated Prym variety P satisfies

#P(�q) ≤
(

q + 1 + N(Y ) − N(X)
g

)g
, (1)

and

#P(�q) ≥
(√

q + 1√
q − 1

) N(Y )−N(X)
2
√

q −2δ

(q − 1)g, (2)

where δ = 0 if N(Y )−N(X)
2
√

q + g is an even integer, and δ = 1 otherwise (here we have
corrected the value of δ given in [8]).

The aim of this paper is to give new upper and lower bounds on the number of
rational points on Prym varieties over finite fields.

In Section 2, we recall some methods (from [1, 2]) to estimate the number of
rational points on an abelian variety if we know its trace. We also explain how to
derive the Perret bounds (1) and (2) in this setting.

In Section 3, we study the trace of a Prym variety. We prove that the trace −τ (P)
of a Prym variety P defined over �q satisfies the following bound dependent of N(X)
(see Proposition 6):

τ (P)2 ≤ g(q2 − 1) − g(N(X) − q − 1)2

g + 1
− 2g(N(X) − q − 1) + 4g2q.

Then we prove the following new bounds on #P(�q) (see Corollary 8):

m(−N(X)) ≤ #P(�q) ≤ M(N(X)),

where

M(τ ) =
(

q + 1 + τ

g

)g

,

and

m(τ ) = (q + 1 + τ − 2(r(τ ) − s(τ ))
√

q)(q + 1 + 2
√

q)r(τ )(q + 1 − 2
√

q)s(τ ),

with r(τ ) = [
g+[ τ

2
√

q ]

2 ] and s(τ ) = [
g−1−[ τ

2
√

q ]

2 ].
Furthermore, if |τ (P)| ≥ q − g (for instance, this condition is satisfied when g ≥

q), then we get the following bound on the trace depending only on g and q (see
Proposition 9):

|τ (P)| ≤ g
2g + 1

(
q − g +

√
(q − g)2 + (2g + 1)(4gq + q2 + 6q + 1)

)
.

Finally, for g ≥ q, we prove the following new bounds on #P(�q) (see
Theorem 11):

(q + 1 − 2
√

q)g ≤ m (−ψ) ≤ #P(�q) ≤ M (ψ) ≤ (q + 1 + 2
√

q)g,

where

ψ = g
2g + 1

(
q − g +

√
(q − g)2 + (2g + 1)(4gq + q2 + 6q + 1)

)
.
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The last section is devoted to the study of Prym surfaces. The main result of this
section is that any product E1 × E2 of elliptic curves defined over �q is isomorphic
(with the product polarization) to a Prym variety except if one of the conditions below
is satisfied:
� q = 7, E1 and E2 have full 2-torsion over �q, #E1(�q) �= #E2(�q) and #E1(�q) or

#E1(�q) is equal to 8,
� q = 5, E1 and E2 have full 2-torsion over �q,
� q = 3, E1 or E2 has full 2-torsion over �q.
This enable us (Corollary 17) to find exact formulas for the maximum and the minimum
number of points on Prym surfaces.

2. Bounding the number of rational points on an abelian variety depending on its
trace. Let A be an abelian variety of dimension g defined over a finite field �q. The Weil
polynomial fA(t) of A is the characteristic polynomial of its Frobenius endomorphism. It
is a monic polynomial with integer coefficients and the set of its roots (with multiplicity)
consists of couples of conjugated complex numbers of modulus

√
q.

Let ω1, . . . , ωg, ω1, . . . , ωg be the roots of fA(t). For 1 ≤ i ≤ g, we set xi = −(ωi +
ωi). We say that A is of type [x1, . . . , xg]. The trace of A is defined to be the trace of
its Frobenius endomorphism. We denote by τ (A) the opposite of the trace of A, more
explicitly

τ (A) = −
g∑

i=1

(ωi + ωi) =
g∑

i=1

xi.

This is an integer, and since |xi| ≤ 2
√

q, i = 1, . . . , g, we have |τ (A)| ≤ 2g
√

q.
In the case where the abelian variety is the Jacobian JX of a smooth projective

absolutely irreducible curve X defined over �q, its trace can be easily expressed in terms
of the number N(X) of rational points on X . Indeed, we have

τ (JX ) = N(X) − (q + 1), (3)

which follows from the fact that the numerator of the zeta function of X is the reciprocal
polynomial of the Weil polynomial fJC (t).

Now let P be a Prym variety and π : Y −→ X be an unramified double cover that
gives rise to P. The map π∗ × (σ ∗ − id) : JY −→ JX × P has finite kernel and sends
the �n-torsion points of JY in to those of JX × P, for any prime number � distinct from
the characteristic of �q. Then, taking the tensor product of the Tate modules with ��,
we get an isomorphism of ��-vector spaces

T�(JY ) ⊗��
��−→T�(JX × P) ⊗��

�� = T�(JX ) ⊗��
�� × T�(P) ⊗��

��,

which commutes with the action of the Frobenius. Therefore, we have

fJY (t) = fJX (t)fP(t).

It follows that

τ (JY ) = τ (JX ) + τ (P),
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and using (3), we get

τ (P) = N(Y ) − N(X). (4)

Let us come back to general abelian varieties. With the same notations as before,
we can write

fA(t) =
g∏

i=1

(t − ωi)(t − ωi) =
g∏

i=1

(t2 + xit + q).

It is well known that the number of rational points on A is

#A(�q) = fA(1) =
g∏

i=1

(q + 1 + xi). (5)

Since |xi| ≤ 2
√

q, one deduces from (5) the classical Weil bounds

(q + 1 − 2
√

q)g ≤ #A(�q) ≤ (q + 1 + 2
√

q)g. (6)

Now, for τ ∈ [−2g
√

q; 2g
√

q], define

M(τ ) =
(

q + 1 + τ

g

)g

, (7)

and

m(τ ) = (q + 1 + τ − 2(r(τ ) − s(τ ))
√

q)(q + 1 + 2
√

q)r(τ )(q + 1 − 2
√

q)s(τ ), (8)

where r(τ ) = [
g+[ τ

2
√

q ]

2 ] and s(τ ) = [
g−1−[ τ

2
√

q ]

2 ] (for a real number x, we denote by [x] its
integer part).

We have the following estimation of #A(�q) (see [1, 2]):

THEOREM 1. If A is an abelian variety defined over �q of dimension g, we have

m(τ (A)) ≤ #A(�q) ≤ M(τ (A)).

Notice that in the case of Prym varieties, the upper bound of Theorem 1 together
with (4) gives the Perret upper bound (1). The lower bound (2) comes from the fact
(proved by Perret in the case of Prym varieties) that for any abelian variety, we have

#A(�q) ≥
(√

q + 1√
q − 1

) τ (A)
2
√

q −2δ

(q − 1)g,

where δ = 0 if τ (A)
2
√

q + g is an even integer and δ = 1 otherwise. The lower bound (2) is
always less precise than the lower bound from Theorem 1 (for more details, see [2]).

In the next section, we shall use Theorem 1 without knowing the value of τ (A) (but
having an estimation). In order to do so, we need some basic results on the functions M
and m defined by (7) and (8). These results are summarized in the following proposition:

PROPOSITION 2. The functions M and m are continuous and increasing on the interval
[−2g

√
q; 2g

√
q].
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Proof. The function M is obviously continuous, and it is increasing because for
τ ∈ [−2g

√
q; 2g

√
q], we have q + 1 + τ/g ≥ q + 1 − 2

√
q > 0.

Now, we focus on m. First, notice that the functions r and s are piecewise
constant, and therefore m is piecewise an affine function with leading coefficient
(q + 1 + 2

√
q)r(τ )(q + 1 − 2

√
q)s(τ ) > 0. Hence, the fact that m is increasing will follow

from its continuity.
We now prove that m is continuous. Let k ∈ {−g, . . . , g − 2} be an integer which

has the same parity as g, and α ∈ [0; 2[. As [α] ∈ {0, 1} and g + k and g − k are non-
negative even integers, we have

r(2
√

q(k + α)) =
[

g + k + [α]
2

]
= g + k

2
+

[
[α]
2

]
= g + k

2
,

and

s(2
√

q(k + α)) =
[

g − 1 − k − [α]
2

]
= g − k

2
+

[−1 − [α]
2

]
= g − k

2
− 1.

In particular, the functions r and s are constant on any interval of the form [2k
√

q; 2(k +
2)

√
q[, where k ∈ {−g, . . . , g − 2} has the same parity as g, and thus m is continuous

(in fact affine) on these intervals.
It remains to check that

lim
α→2
α<2

m(2
√

q(k + α)) = m(2
√

q(k + 2)).

The previous computations show us that

r(2
√

q(k + α)) − s(2
√

q(k + α)) = k + 1,

and thus the first factor in the expression of m is

q + 1 + 2
√

q(k + α) − 2(r(2
√

q(k + α)) − s(2
√

q(k + α)))
√

q = q + 1 + 2
√

q(α − 1).

We deduce that

m(2
√

q(k + α)) = (q + 1 + 2
√

q(α − 1))(q + 1 + 2
√

q)
g+k

2 (q + 1 − 2
√

q)
g−k

2 −1,

and as

m(2
√

q(k + 2)) = (q + 1 − 2
√

q)(q + 1 + 2
√

q)
g+k

2 +1(q + 1 − 2
√

q)
g−k

2 −2,

we have

m(2
√

q(k + α)) = (q + 1 + 2
√

q(α − 1))

(q + 1 + 2
√

q)
m(2

√
q(k + 2)),

and the result follows. �
Notice that we have

m(−2g
√

q) = (q + 1 − 2
√

q)g and M(2g
√

q) = (q + 1 + 2
√

q)g,

in particular, the bounds of Theorem 1 are at least as precise as the Weil bounds (6)
(but require more information on A).
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3. On the trace of Prym varieties. As before, let A be an abelian variety defined
over �q of dimension g, fA(t) be its Weil polynomial, ω1, . . . , ωg, ω1, . . . , ωg be the
complex roots of fA(t), xi = −(ωi + ωi), 1 ≤ i ≤ g, and

τ (A) = −
g∑

i=1

(ωi + ωi) =
g∑

i=1

xi,

be the opposite of the trace of A. For k ≥ 1, we also define τk(A) to be the opposite of
the trace of A ×�q �qk , that is,

τk(A) = −
g∑

i=1

(ωk
i + ωk

i ).

Hence, we have τ1(A) = τ (A).
We recall the following classical upper bound for τ2(A) (see [6]), which is a direct

consequence of the Cauchy–Schwartz inequality:

τ2(A) = −
g∑

i=1

x2
i + 2gq ≤ −1

g

( g∑
i=1

xi

)2
+ 2gq = −τ (A)2

g
+ 2gq. (9)

Now let P be a Prym variety and π : Y −→ X be an unramified double cover that
gives rise to P. We denote by Nk(X) and Nk(Y ) the respective numbers of rational
points on X and Y over �qk for k ≥ 1. The results from Section 2 tell us that

Nk(X) = qk + 1 + τk(JX ),

and

Nk(Y ) = qk + 1 + τk(JX ) + τk(P) = Nk(X) + τk(P).

REMARK 3. As π is unramified and of degree 2, the number of rational points on
Y must be even (it is twice the number of splitting rational points on X). Of course, this
holds for any finite extension of the base field, and therefore, for k ≥ 1, the numbers
Nk(Y ) are even, or in other words (recall that q is supposed to be odd), we have

τk(P) ≡ τk(JX ) mod 2.

Now, we give estimations of τ (P) that are independent from Y . We start by the
following lemma:

LEMMA 4. With the notations above, we have

0 ≤ N(Y ) ≤ 2N(X) ≤ N2(Y ).

Proof. The first inequality is obvious. For the second one, we use the fact that the
image of a rational point is a rational point, and the number of points in the preimage
of a point is at most 2. For the third one, if we denote by Bd(Y ) the number of points
on Y of degree d, we have

N2(Y ) = B1(Y ) + 2B2(Y ).
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The set X(�q) can be partitioned into two subsets: the rational points which are split
and those which are inert in the cover Y −→ X . Denote respectively their cardinality
by s and i, we have B1(Y ) ≥ 2s and B2(Y ) ≥ i. Hence, N2(Y ) ≥ 2s + 2i = 2N(X). �

The two first inequalities of Lemma 4 give us immediately the following result,
which is stated in [8]:

PROPOSITION 5 (Perret). We have

|τ (P)| ≤ N(X).

Notice that the bound of Proposition 5 is sharp when X has few points (in
particular, if X has no rational points, then we get the exact value of τ ).

The third inequality of Lemma 4 gives us the following proposition:

PROPOSITION 6. We have

τ (P)2 ≤ g(q2 − 1) − g(N(X) − q − 1)2

g + 1
− 2g(N(X) − q − 1) + 4g2q.

Proof. We have

2(q + 1 + τ (JX )) = 2N1(X) ≤ N2(Y )

= q2 + 1 + τ2(JX ) + τ2(P)

≤ q2 + 1 − τ (JX )2/(g + 1) + 2(g + 1)q − τ (P)2/g + 2gq,

where the last inequality comes from (9). Rearranging the terms, we find

τ (P)2

g
≤ q2 − 1 − τ (JX )2

g + 1
− 2τ (JX ) + 4gq,

and using the fact that τ (JX ) = N(X) − q − 1, the result follows once we notice that
the second term in the previous inequality is necessarily non-negative. �

REMARK 7. The third inequality of Lemma 4 is sharp when X has many points.
Indeed, we have

2N(X) ≤ N2(Y ) ≤ 2N2(X).

The last inequality is just the second inequality of Lemma 4 applied after a quadratic
extension of the base field, and according to (9), a curve with many points over �q must
have few points over �q2 .

Now, recall that we have defined

M(τ ) =
(

q + 1 + τ

g

)g

,

and

m(τ ) = (q + 1 + τ − 2(r(τ ) − s(τ ))
√

q)(q + 1 + 2
√

q)r(τ )(q + 1 − 2
√

q)s(τ ),
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where r(τ ) = [
g+[ τ

2
√

q ]

2 ] and s(τ ) = [
g−1−[ τ

2
√

q ]

2 ]. Theorem 1 and Proposition 2 give us the
following result:

COROLLARY 8. We have

m(−N(X)) ≤ #P(�q) ≤ M(N(X)),

and

m (−ϕ(N(X))) ≤ #P(�q) ≤ M (ϕ(N(X))) ,

where

ϕ(N(X)) = (
g(q2 − 1) − g(N(X) − q − 1)2/(g + 1) − 2g(N(X) − q − 1) + 4g2q

)1/2
.

By combining Propositions 5 and 6, we can eliminate the variable N(X):

PROPOSITION 9. If |τ (P)| ≥ q − g (for instance, this condition is satisfied when g ≥
q), then we have

|τ (P)| ≤ g
2g + 1

(
q − g +

√
(q − g)2 + (2g + 1)(4gq + q2 + 6q + 1)

)
.

Proof. The last inequality in the proof of Proposition 6 can be rewritten as

τ (JX )2

g + 1
+ 2τ (JX ) + τ (P)2/g − q2 − 4gq + 1 ≤ 0. (10)

Considering the left hand side of (10) as a polynomial equation in τ (JX ) and computing
the roots, we find

τ (JX ) ≤ −(g + 1) +
√

(g + 1)(q2 + g + 4gq − τ (P)2/g).

But Proposition 5 tells us that τ (JX ) ≥ |τ (P)| − (q + 1), and therefore, we have

|τ (P)| + g − q ≤
√

(g + 1)(q2 + g + 4gq − τ (P)2/g). (11)

Under the assumptions of the proposition, the left hand side of (11) is non-negative,
so we can square everything. We get

(|τ (P)| + g − q)2 ≤ (g + 1)
(

q2 + g + 4gq − τ (P)2

g

)
,

so that

τ (P)2 + 2(g − q)|τ (P)| + g2 − 2gq + q2 ≤ gq2 + g2 + 4g2q

− τ (P)2 + q2 + g + 4gq − τ (P)2/g.

Hence

−(2g + 1)τ (P)2 − 2g(g − q)|τ (P)| + g2(4gq + q2 + 6q + 1) ≥ 0. (12)
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Considering the left hand side of (12) as a polynomial equation in |τ (P)| and computing
the roots, we get the result. �

The bound of Proposition 9 is sharper than the Weil bound |τ (P)| ≤ 2g
√

q if

2g
√

q ≥
(

q − g +
√

(q − g)2 + (2g + 1)(4gq + q2 + 6q + 1)
)

g/(2g + 1), (13)

and since the right hand side of (13) is the greatest root of the polynomial in |τ (P)|
defined by the left hand side of (12), and the smallest root must be smaller than 2g

√
q,

the inequality (13) is equivalent to

0 ≤ (2g + 1)(2g
√

q)2 + 2g(g − q)2g
√

q − g2(4gq + q2 + 6q + 1),

which is equivalent to

0 ≤ (2g + 1)4q + 4(g − q)
√

q − 4gq − q2 − 6q − 1,

and which is finally equivalent to

g ≥ (q2 + 4q
√

q + 2q + 1)/(4q + 4
√

q) = (q
√

q + 3q − √
q + 1)/(4

√
q).

Notice that this last condition is satisfied when g ≥ q.

REMARK 10. According to the results of Ihara [6], the number of rational points of
a (smooth, projective, absolutely irreducible) curve of genus (g + 1) over �q is at most

1
2

(
2q − g + 1 +

√
(8q + 1)(g + 1)2 + (4q2 − 4q)(g + 1)

)
, (14)

so using Proposition 5, we get another bound for |τ (P)|. However, it is easy to check
that the quantity (14) is always (for any q and g) greater than the right hand side of the
inequality of Proposition 9.

As in Corollary 8, we can derive some bounds on #P(�q) depending only on g and
q.

THEOREM 11. If g ≥ q, we have

(q + 1 − 2
√

q)g ≤ m (−ψ) ≤ #P(�q) ≤ M (ψ) ≤ (q + 1 + 2
√

q)g,

where

ψ = g
2g + 1

(
q − g +

√
(q − g)2 + (2g + 1)(4gq + q2 + 6q + 1)

)
.

4. Prym varieties of dimension 2. In this section, we focus on Prym surfaces.
According to the Weil Theorem, any principally polarized abelian surface A defined
over �q is either a Jacobian, or the restriction of scalars of a polarized elliptic curve
over �q2 , or a product of two polarized elliptic curves. In the two first cases, it is known
that A is a Prym variety; it follows easily from the Legendre construction described
below (for the second case, see [4]). We shall deal with the third case and give an explicit
description of the set of products of two elliptic curves which are isomorphic (with the
polarization) to a Prym variety.
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We start by recalling the Legendre construction, more details can be found in [7, 4].
Let X be an hyperelliptic curve of genus g, let p : X −→ �1 be an associated double
cover and {z1, . . . , z2g+2} be the set of branch points. Then all unramified double covers
π : Y −→ X over �̄q arise as follows:

(1) Separate the branch points into two nonempty groups of even cardinality:
{1, 2, . . . , 2g + 2} = I1 ∪ I2, #I1 = 2h + 2, #I2 = 2k + 2, I1 ∩ I2 = ∅ (hence h +
k + 1 = g).

(2) Consider the degree 2 maps p1 : X1 −→ �1 and p2 : X2 −→ �1 with respective
sets of branch points {zi}i∈I1 and {zi}i∈I2 .

(3) Let Y be the normalization of X ×�1 X1.
Then we have such a diagram

Y

X X1 X2

�1

π π2
π1

p1 p2p

In this situation, the Prym variety Pπ associated to the cover π : Y −→ X is
isomorphic to the product of the Jacobians of X1 and X2,

Pπ � JX1 × JX2 .

The isomorphism is given by π∗
1 + π∗

2 : JX1 × JX2 −→ Pπ , see [4].
Moreover, if I1 and I2 are chosen to be stable under the action of Gal(�̄q/�q) then

all the curves and maps involved in this construction will be defined over �q.
In particular, we have the following result.

PROPOSITION 12 (Legendre construction). Let X1 and X2 be two hyperelliptic (or
elliptic) curves. The product JX1 × JX2 of polarized abelian varieties is isomorphic to the
Prym variety of a double cover of an hyperelliptic curve if and only if there exist two
degree 2 maps p1 : X1 −→ �1 and p2 : X2 −→ �1 with disjoint sets of ramified points.

Proposition 12 has the following direct consequence:

COROLLARY 13. A Jacobian of dimension 2 is isomorphic to a Prym variety.

Proof. A Jacobian of dimension 2 is the Jacobian of a (necessarily hyperelliptic)
genus 2 curve C and the associated double cover p : C −→ �1 is ramified at exactly 6
points. Since #�1(�q2 ) = q2 + 1 ≥ 32 + 1 = 10, there exist unramified points z1, z2 ∈
�1(�q2 ) such that the set {z1, z2} is invariant under the action of Gal(�̄q/�q). Now we
consider a double cover p1 : C1 −→ �1 which is ramified at z1 and z2 (note that C1 is
a genus zero curve) and we apply Proposition 12. �

In order to apply Proposition 12 to the product of two elliptic curves, we shall use
the following Lemma:

LEMMA 14. Let A = {a0, a1, a2, a3} and B = {b0, b1, b2, b3} be two subsets of �1(�̄q)
with four elements. Suppose that a0, b0 ∈ �1(�q) and that A and B are invariant under
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the action of Gal(�̄q/�q), then there exists an automorphism ϕ of �1 defined over �q such
that ϕ(A) ∩ B = ∅, except possibly if q = 5, 7 and A and B are contained in �1(�q), or if
q = 3 and A or B is contained in �1(�q).

Proof. We start by recalling that by the Fundamental Theorem of Projective
Geometry: for any two subsets {x1, x2, x3} and {z1, z2, z3} of �1(�̄q) with three elements,
there exists a unique automorphism ϕ ∈ Aut�̄q

(�1) such that ϕ(xi) = zi, i = 1, 2, 3. In
particular, we have

#Aut�q (�1) = (q + 1)q(q − 1) = q3 − q,

because for {x1, x2, x3} ⊆ �1(�q) we have (q + 1) possible choices for the image of x1,
q for the image of x2 and (q − 1) for the image of x3, and the obtained automorphisms
commute with the Frobenius since they do at x1, x2, x3, thus they are defined over �q.
Now, let

S = {
ϕ ∈ Aut�q (�1), ϕ(A) ∩ B �= ∅}

.

We would like to prove that under the conditions of the lemma, the quantity

� = #Aut�q (�1) − #S = q3 − q − #S,

is positive. In order to do so, we consider the sets

TU,V = {
ϕ ∈ Aut�q (�1), ϕ(U) ⊆ V

}
,

where U ⊆ A and V ⊆ B. We also denote by P(i, j) the assertion

#A ∩ �1(�q) = i and #B ∩ �1(�q) = j.

Notice thatP(i, j) can be true only if i, j ∈ {1, 2, 4}. Moreover, if the lemma is true under
P(i, j), then it is true as well underP(j, i) (switch A and B and exchange automorphisms
by their inverse).

If P(4, 4) is satisfied, we have

S =
3⋃

i=0

T{ai},B,

so using the Inclusion-Exclusion Principle, we deduce that

#S =
3∑

i=0

#T{ai},B −
∑

0≤i<j≤3

#T{ai,aj},B +
∑

0≤i<j<k≤3

#T{ai,aj,ak},B − #TA,B

≤
3∑

i=0

#T{ai},B −
∑

0≤i<j≤3

#T{ai,aj},B +
∑

0≤i<j<k≤3

#T{ai,aj,ak},B.

For {i, j, k} ⊆ {0, 1, 2, 3}, we have #T{ai},B = 4q(q − 1), #T{ai,aj},B = 2
(4

2

)
(q − 1) =

12(q − 1) and #T{ai,aj,ak},B = 3!
(4

3

) = 24, thus

#S ≤ 16q(q − 1) − 12(q − 1)
(

4
2

)
+ 24

(
4
3

)
= 16q2 − 88q + 168,
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hence

� ≥ q3 − 16q2 + 87q − 168 = (q − 7)(q2 − 9q + 24).

Using the same trick, we check that � is:
� equal to (q − 1)(q − 3)(q − 4) under P(2, 4),
� equal to q(q − 1)(q − 3) under P(1, 4),
� greater than or equal to q3 − 4q2 + 3q + 4 under P(2, 2),
� equal to q(q − 1)2 under P(1, 2),
� greater than or equal to q3 − q2 − 3 under P(1, 1).

We deduce that � is positive under P(4, 4) for q > 7 (since the polynomial t2 −
9t + 24 has no real root), under P(2, 4) or P(1, 4) for q > 4 and under P(2, 2), P(1, 2)
or P(1, 1) for any q (since the roots of the polynomials t3 − 4t2 + 3t + 4 and t3 − t2 − 3
are smaller than 2). This concludes the proof. �

Now, we can solve the problem of deciding which product of elliptic curves is
isomorphic to a Prym variety:

PROPOSITION 15. Let E1 and E2 be two elliptic curves defined over �q. Then E1 × E2

is isomorphic (with the polarization) to a Prym variety if and only if the conditions below
are not satisfied:
� q = 7, E1 and E2 have full 2-torsion over �q, #E1(�q) �= #E2(�q) and #E1(�q) or

#E1(�q) is equal to 8,
� q = 5, E1 and E2 have full 2-torsion over �q,
� q = 3, E1 or E2 has full 2-torsion over �q.

Proof. According to [4], the Prym varieties associated to double covers of non-
hyperelliptic curves are always polarized Jacobians. Therefore, E1 × E2 is a Prym
variety if and only if the conditions of Proposition 12 are satisfied.

For i = 1, 2, let y2 = fi(x) be a Weierstrass equation for Ei, pi be the associated
degree 2 map and Ai the set of ramified points. In this case, the 2-torsion points of Ei

correspond to the elements of Ai \ {∞}.
If q > 7 or if q = 5, 7 and E1 or E2 has not full 2-torsion over �q or if q = 3 and

E1 and E2 have not full 2-torsion over �q, then Lemma 14 ensures that there exists
ϕ ∈ Aut�q (�1) such that ϕ(A1) ∩ A2 = ∅. The maps ϕ ◦ p1 and p2 satisfy the conditions
of Proposition 12.

For q = 3, 5, if one of the exceptional conditions of Proposition 15 holds, it is clear
that the conditions of Proposition 12 cannot be satisfied, since �1(�q) does not have
enough elements.

Finally, suppose that q = 7 and A1 ∪ A2 ⊆ �1(�7). We shall use the fact (easy
to check) that the data of the set of ramified points of a (necessarily separable)
degree 2 map p : X −→ �1 over �7 determines the curve X up to quadratic twist.
The proof of Lemma 14 (the part where P(4, 4) is assumed) shows that the conclusion
of the lemma holds under our assumptions if and only if #TA1,A2 > 0, i.e. there exists
an automorphism ϕ ∈ Aut�7 (�1) such that ϕ(A1) = A2. Taking in account the Weil
bounds, an elliptic curve with full 2-torsion over �7 must have 4, 8 or 12 rational
points. For k = 4, 8, 12, let Rk be the set of elliptic curves with full 2-torsion over �7

and with k rational points. We check (using Magma) that the action of Aut�7 (�1) on
the set of 4 elements subsets of �1(�7) has exactly two orbits, which must correspond
to R8 and R4 ∪ R12 (the quadratics twists of curves in R4 lie in R12 and conversely).
We deduce that the conditions of Proposition 12 are satisfied if and only if E1 and E2
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are both in R8 or E1 and E2 are both in R4 ∪ R12. This gives the conditions in the first
point of the proposition and concludes the proof. �

COROLLARY 16. Let E1 and E2 be two elliptic curves defined over �q. Then E1 × E2

is isogenous to a Prym variety.

Proof. If q > 7, by Proposition 15, the result is obvious. Otherwise, according to
Rück’s work [9], for i = 1, 2, there exists an elliptic curve E′

i which is isogenous to Ei,
and such that E′

i(�q) has a cyclic group structure. Applying Proposition 15 to E′
1 and

E′
2, we get the result. �

For any power of an odd prime q and any integer g ≥ 1, we define the quantities

Prq(g) = max
π

#Pπ (�q) and prq(g) = min
π

#Pπ (�q),

where π runs over the set of unramified double covers of genus (g + 1) curves defined
over �q.

Notice that Theorem 11 gives us bounds on Prq(g) and prq(g) when g ≥ q.
The proof of Corollary 13 can be easily adapted to prove that Prym varieties of

dimension 1 are elliptic curves. Therefore, the value of Prq(1) and prq(1) can be derived
directly from the Deuring–Waterhouse theorem [5, 13]. Recall that we have set q = pe

where p is an odd prime number and m = [2
√

q]. Then we have Prq(1) = q + 1 + m
(respectively prq(1) = q + 1 − m) if e = 1, e is even or p � |m and Prq(1) = q + m (resp.
prq(1) = q + 2 − m) otherwise.

The same idea works for abelian surfaces. Indeed, according to the classic results
[10, 11, 12] (some detailed explanations can also be found in [2]), an abelian surface
over �q which has a maximum number of rational points is of type: [m, m] if e = 1, or

e even or p � |m; [m + −1+√
5

2 , m + −1−√
5

2 ] if e �= 1, e odd, p|m and the fractional part

{2√
q} ≥

√
5−1
2 ; and [m − 1, m − 1] otherwise.

In the same way, an abelian surface over �q, which has a minimum number of

rational points is of type: [−m,−m] if e = 1, or e even or p � |m; [−m − −1+√
5

2 ,−m −
−1−√

5
2 ] if e �= 1, e odd, p|m and {2√

q} ≥
√

5−1
2 ; [−m + 1 + √

2,−m + 1 − √
2] if e �= 1,

e odd, p|m and
√

2 − 1 ≤ {2√
q} <

√
5−1
2 ; and [−m + 1,−m + 1] otherwise.

Taking into account the results from this section, we get the value of Prq(2) and
prq(2):

COROLLARY 17. Let q = pe where p is an odd prime number and m = [2
√

q].

(1) Prq(2) is equal to:
• (q + 1 + m)2 if e = 1, or e even or p � |m;
• (q + 1 + m − 1+√

5
2 )(q + 1 + m − 1−√

5
2 ) if e �= 1, e odd, p|m and {2√

q} ≥√
5−1
2 ;

• (q + m)2 otherwise.
(2) prq(2) is equal to:

• (q + 1 − m)2 if e = 1 or e even, or p � |m;
•

(
q + 1 − m + 1+√

5
2

) (
q + 1 − m + 1−√

5
2

)
if e �= 1, e odd, p|m and {2√

q} ≥
√

5−1
2 ;
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• (q + 2 − m − √
2)(q + 2 − m + √

2) if e �= 1, e odd, p|m and√
2 − 1 ≤ {2√

q} <
√

5−1
2 ;

• (q + 2 − m)2 otherwise.

REMARK 18. We can define Nk(P) = qk + 1 + τk(P): these are the “virtual numbers
of rational point” of P. If q ≤ 9, then q + 1 − 2m = −2 and Proposition 15 asserts that
there exist Prym surfaces of type [−m,−m]. This gives us examples of Prym varieties
with N1(P) < 0. In particular, the bounds announced in [1] and proved in [2] concerning
the number of rational points on abelian varieties with non-negative virtual numbers
of rational points do not apply.
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