A Simple Linkage for Describing Equal Areas.

By E. M. Horsburgh.

(Read 13th June 1913. Received ©2nd June 1913).
If H (Fig. 1) be the middle point of a straight bar QP and if a straight bar OH of length one-half of QP be pin-jointed to QP at H , a simple linkage is formed, which may be called a T-linkage.

Fig. 1.
This, with an additional fixed bar guiding P or Q in a straight line through O, forms a well-known ellipsograph, or an equally well-known parallel motion. Let the T-linkage be placed in the plane of the paper and let O be taken as pole, so that the linkage is free to turn about O in the plane of the paper. Then if P describe any closed curve not enclosing O, Q will describe a corresponding curve of equal area: For if the coordinates of P and Q be (r, θ) and (ρ, α) respectively, and if a be the length of OH , the equations of the transformation are

$$
\text { (i) } r^{2}+\rho^{2}=4 a^{2}, \quad \text { (ii) } a=\frac{\pi}{2}+0 \text {. }
$$

Accordingly if P describe the curve $f(r, \theta)=0, \mathrm{Q}$ will describe the curve $f\left(\sqrt{4} a^{2}-\rho^{2}, \alpha-\frac{\pi}{2}\right)=0$. Multiplying (i) by $\frac{1}{2} d \theta$ and integrating on the supposition that P describes a closed curve such that PQ returns to its original position without making a circuit about O, then $\frac{1}{2} \int r^{2} d \theta+\frac{1}{2} \int \rho^{2} \delta \alpha=0$ taken round the curve, so that
if A_{1} and A_{2} be the areas described by P and Q respectively, $\mathrm{A}_{1}=-\mathrm{A}_{2}$.

The equations of the transformed curves are most frequently complicated, but sometimes simple degenerate cases occur. Thus the family of straight lines $\theta=c$ transforms into the family of straight lines $\alpha=\frac{\pi}{2}+c$, and the family of concentric circles $r=k$ into the family of concentric circles $\rho=\sqrt{4 a^{2}-k^{2}}$, and thus the orthogonal network composed of the lines $\theta=c$ and the circles $r=k$ transforms into an equal area orthogonal network. (Figs. 2 and 3).

Fig. 2.
This suggested an application to some of the equal-area worldmaps since the linkage deduces from any figure an infinite number of others all of equal area. Figs. 4, 5, 6, are representations of well-known equal-area world-maps, the first two by Lambert, the last by Colignon. Figs. 7, 8, 9, show equal-area maps deduced by the linkage and corrected with regard to the reversed
orientation which arises from the fact that P and Q describe figures in opposite senses.

Fig. 3.
If the points P and Q describe arcs of curves instead of closed contours, then

$$
\frac{1}{2} \int_{\theta_{1}}^{\theta_{2}} r^{2} d \theta+\frac{1}{2} \int_{a_{1}}^{a_{2}} \rho^{2} \delta a=2 a^{2}\left(\theta_{2}-\theta_{1}\right)
$$

where θ_{1}, α_{1} correspond to the initial, and θ_{2}, α_{2} to the final positions of the tracing points. Thus the sum of the areas of the two sectors described by \mathbf{P} and Q about the origin is equal to the area of the sector of a circle of radius $P Q$ which contains the angle $\theta_{2}-\theta_{1}$. If the linkage make a complete revolution about the pole $O, P Q$ turns through an angle 2π, and the sum of the areas of the sectors traced by P and Q is equal to the area of a circle of radius PQ .

When one tracing point describes a curve passing through the pole an indeterminate condition arises, and a contour described twice by one tracing point may correspond to one described once by the other.

By taking a tracing point at any position S in $P Q$, an area can be drawn which is any required fraction of a given area A. If $\mathrm{QS}=c$ and $\mathrm{SP}=c^{\prime}$, we have by a particular case of Holditch's Theorem that the area described by S is $\mathrm{A}\left(c-c^{\prime}\right) /\left(c+c^{\prime}\right)$ when PQ rocks back to its original position.

Fig. 4.

Fig. 5.
A

Fig. 8.

Fig. 9.

If (r, θ) and (ρ, α) be corresponding points on a curve and its transformed curve, and ϕ and Φ the angles between the radius vector and the tangent, then

$$
\tan \phi=\frac{r d \theta}{d r}, \quad \tan \Phi=\frac{\rho d \alpha}{d \rho} .
$$

Hence, since $r d r+\rho d \rho=0$ and $d \alpha=d \theta$

$$
\frac{\tan \phi}{\tan \Phi}=-\frac{r^{2}}{\rho^{2}} .
$$

If ϕ^{\prime} and $\boldsymbol{\Phi}^{\prime}$ be the angles for another corresponding pair of curves through these points, then

$$
\frac{\tan \phi^{\prime}}{\tan \Phi^{\prime}}=-\frac{r^{2}}{\rho^{2}}=\frac{\tan \phi}{\tan \Phi},
$$

which gives the law of intersection for the transformed network.

