A CLASS OF RIGHT-ORDERABLE GROUPS

R. T. BOTTO MURA AND A. H. RHEMTULLA

1. Introduction. A group G is called right-orderable (or an RO-group) if there exists an order relation \preceq on G such that $a \preceq b$ implies $ac \preceq bc$ for all a, b, c in G. This is equivalent to the existence of a subsemigroup P of G such that $P \cap P^{-1} = \{e\}$ and $P \cup P^{-1} = G$. Given the order relation \preceq, P can be taken to be the set of positive elements and conversely, given P, define $a \preceq b$ if and only if $ba^{-1} \in P$. A group G together with a given right-order relation on G is called right-ordered. A subgroup C of a right-ordered group G is called convex if for every g in G and x in C, $e \preceq g \preceq C$ implies $g \in G$. The set of all convex subgroups of G is ordered by inclusion and closed with respect to unions and intersections. However there is not much more one can say in general regarding this set. We shall call a right-order P on G a C-right-order if the set of convex subgroups form a system with torsion-free abelian factors. P. Conrad [2] has looked at a number of equivalent conditions for a group G to be C-right-ordered. Our main concern here is to investigate the properties of an RO-group G in which every right-order is a C-right-order. We call such a group a C_1-group. In Lemma 3.1 we show that a right-order P is a C-right-order if and only if it satisfies the property:

(*) For all x, y in P there exist u, v in $\text{sgr}(x, y)$ (the semigroup generated by x and y) such that $ux \geq vy$.

Thus in particular an RO-group G is a C_1-group if it satisfies the property:

(**) For all x, y in G there exist u, v in $\text{sgr}(x, y)$ such that $ux = vy$.

We call G a C_2-group if it satisfies (**). Finally we denote by C_2 the largest subgroup closed subclass of C_1. Then $RO \supseteq C_1 \supseteq C_2 \supseteq RO \cap C_3$, and all these inclusions are proper (Corollary 3.3, Theorem 3.5).

In Section 2 we note a few properties of C_3-groups. In particular we show that locally solvable C_3-groups are locally nilpotent-by-finite (Theorem 2.6). This is not true of C_2-groups (Theorem 3.5), however orderable locally solvable C_2-groups are locally nilpotent and finitely generated orderable solvable C_1-groups are nilpotent (Theorem 3.6).

2. C_3-groups. We start by observing that the class C_3 is subgroup-closed and closed under periodic extensions; moreover a group G is in C_3 if every two-generator subgroup of G is in C_3. B. H. Neumann has shown that G is in C_3 if every two-generator subgroup of G is nilpotent.

Received July 26, 1976. This research was partially supported by a grant from the National Research Council of Canada.

648
Lemma 2.1. Let H be a subgroup in the centre of a group G. If G/H is in C_3, then G is in C_3.

Proof. Let $x, y \in G$. Then there exist $u, v \in \text{sgr}(x, y)$ such that $ux = v y$ for some $z \in H$. Thus $vyux = u x v y$, $uv \in \text{sgr}(x, y)$.

Corollary 2.2. If every two-generator subgroup of G is nilpotent-by-periodic, then G is in C_3.

Lemma 2.3. A direct product of C_3-groups is in C_3.

Proof. It is clearly enough to show that if H_1, H_2 are C_3-groups, then so is $G = H_1 \times H_2$. Take any $x = x_1 x_2, y = y_1 y_2$ in G with $x_1, y_1 \in H_1$. Since $H_1 \subset C_3$, there exist $a = a_1 a_2, b = b_1 b_2$ in $\text{sgr}(x, y)$ such that $a_1 x_1 = b_1 y_1$. Also, since $H_2 \subset C_3$, there exist $(a_2 x_2)^m h_2, (a_2 x_2)^n k_2$ in $\text{sgr}(ax, by)$, with m, n positive integers, h_2, k_2 in H_2, such that $h_2 a_2 x_2 = k_2 b_2 y_2$. Then $(a_1 x_1)^m h_2 a x (a_1 x_1)^n k_2 b y = (a_1 x_1)^m k_2 b y (a_1 x_1)^n h_2 a x$, and of course $(a_1 x_1)^m h_2 a x, (a_1 x_1)^n k_2 b y, a, b$ are all in $\text{sgr}(x, y)$.

Lemma 2.4. A polycyclic C_3-group is nilpotent-by-finite.

Proof. Let G be a counterexample with $l(G)$ minimum where $l(G)$ is the number of infinite factors in any series of G with cyclic factors. Replacing G with a suitable normal subgroup of finite index if necessary, we may assume that it is nilpotent-by-abelian and torsion-free. Let N be the Fitting subgroup of G. By the minimality of G, N is abelian (because G/N' nilpotent-by-finite implies G nilpotent-by-finite), G/N is infinite cyclic, and the centre of G is trivial (see Lemma 2.1).

Let $G = \langle N, t \rangle$, write N additively and regard it as a module over the integral group ring $\mathbb{Z} \langle t \rangle$. Let A be an indecomposable submodule of N. Then A can be identified with an additive subgroup of the complex numbers on which the action of t is that of multiplication by an algebraic integer τ whose minimal polynomial over the rationals has degree equal to $l(A)$. If all the roots of this polynomial have absolute value one, then by a theorem of Kronecker, τ is an nth root of unity for some integer n. But then t^n centralizes A, and $G_1 = \langle N, t^n \rangle$ has a non-trivial centre, so that G_1 and hence G is nilpotent-by-finite. Thus $|\tau| \neq 1$, and replacing t with a suitable power of t, if necessary, we may assume that $|\tau| < \frac{1}{3}$.

Choose any non-zero $a \in A$. By hypothesis there exist $u, v \in \text{sgr}(at, ta)$ such that $uat = vta$. Then we have:

$$t^{i+1}(ar^i + \ldots + ar^1 + ar) = t^{i+1}(ar^i + \ldots + ar^1 + a),$$

where $ar = t^{-i}at, 1 \leq \alpha_i \leq \ldots \leq \alpha_r, 1 \leq \beta_1 \leq \ldots \leq \beta_i, i \leq a_i \leq i + 1$ and $i \leq \beta_i \leq i + 1$ for all i. But

$$|\tau^i + \ldots + \tau^1 + \tau| \leq (|\tau|^a + \ldots + |\tau|)$$

$$+ |\tau| < \sum_{n=1}^{\infty} \left(\frac{1}{4} \right)^n + \frac{1}{4} + \frac{7}{12},$$

where \ast.
while
\[|r^{\alpha_1} + \ldots + r^{\alpha_l} + 1| \geq 1 - (|r|^{\alpha_1} + \ldots + |r|^{\alpha_l}) > 1 - \sum_{n=1}^{\infty} \left(\frac{1}{4}\right)^n = \frac{2}{3}. \]
and we reach a contradiction.

Lemma 2.5. If \(G = \langle A, t \rangle \) is a \(C_r \)-group and \(A = \langle a_1, \ldots, a_k \rangle^G \) is abelian, then \(A \) is finitely generated and \(G \) is nilpotent-by-finite.

Proof. The existence of \(u_t, v_t \) in \(\text{sgr} \langle a_t, ta_t \rangle \) such that \(u_t a_t v_t = v_t a_t \) shows that \(\langle a_t \rangle^G = \langle a_t, a_t^{-1}, \ldots, a_t^{-r} \rangle \) for some integer \(r_t \). The rest follows from Lemma 2.4.

Theorem 2.6. If \(G \) is a locally solvable \(C_2 \)-group, then \(G \) is locally nilpotent-by-finite.

Proof. Assume, by way of induction, that the result holds for finitely generated groups of solvability length less than \(r \), and let \(G \) be a finitely generated group of solvability length \(r \). If \(A \) is the last non-trivial term in the derived series of \(G \), then \(A \) is abelian and \(G/A \) is nilpotent-by-finite. Replacing \(G \) by a suitable subgroup of finite index if necessary, we may assume that \(G/A \) is nilpotent. Then \(A = S^G \), where \(S = \langle a_1, \ldots, a_k \rangle \) for some \(a_1, \ldots, a_k \) in \(A \).

Also there exists a series \(A = G_0 \triangleleft G_1 \triangleleft \ldots \triangleleft G_n = G \) such that, for all \(i \), \(G_i \triangleleft G \) and \(G_i = \langle G_{i-1}, t_i \rangle \) for suitable \(t_i \) in \(G \). Repeated application of Lemma 2.5 shows that \(S^G_{G_i} \) is finitely generated for all \(i = 1, \ldots, m \). Thus \(G \) is polycyclic and the result follows from Lemma 2.4.

3. \(C_1 \) and \(C_2 \)-groups.

Lemma 3.1. Let \(P \) be a right-order on a group \(G \). Then the following are equivalent.

(i) \(P \) satisfies condition (*)

(ii) For every \(x, y \) in \(P \setminus \{e\} \), \(x^n y > x \) for some \(n > 0 \).

(iii) If \(C \) and \(D \) are convex subgroups of \(G \) under \(P \) and \(D \) covers \(C \), then \(C \) is normal in \(D \) and \(D/C \) is isomorphic to a subgroup of the additive group of the reals.

(iv) For all \(y \) in \(P \setminus \{e\} \) the set \(\{ x \in G \mid x <^y y \} \) is a convex subgroup of \(G \), where \(\mid x \mid = x \) if \(x \in P \) and \(x^{-1} \) otherwise, and \(x <^y y \) means that \(\mid x \mid^n < y \) for all \(n \).

Proof. (i) \(\Rightarrow \) (ii). Suppose that \(x^n y \leq x \) for all \(n > 0 \). By hypothesis there exist \(u, v \) in \(\text{sgr} \langle xy, x \rangle \) such that \(u x v \geq vx \). Since \(v > e, vx > x \). On the other hand \(u x y = x^{\alpha_1} x^{\alpha_2} y \ldots x^{\alpha_r} y \), where \(\alpha_i \geq 1 \) for \(i = 1, \ldots, r \) and \(r \geq 1 \), hence \(u x y \leq x^{\alpha_{r+1}} \ldots x^{\alpha_r} y \leq \ldots \leq x \), a contradiction.

That (ii) \(\Rightarrow \) (i) is trivial. The equivalence of (ii) and (iii) was shown in [2] and the equivalence of (iii) and (iv) in [1]. We mentioned (iii) and (iv) because we will need them in the following.
LEMMA 3.2. Let A and B be RO-groups and G a split extension of A by B. If there exists a right-order P_A on A, invariant under conjugation by elements of B, such that not all the jumps in the chain of convex subgroups of A determined by P_A are centralized by B, then G is not a C_1-group.

Proof. The result is obvious if P_A is not a C-order on A. Let P_B be a right-order on B and define a right-order P on G by letting $g = ab$ ($a \in A$, $b \in B$) belong to P if either $e \neq a \in P_A$ or $a = e$ and $b \in P_B$. That P is indeed a right-order follows from the fact that P_A is B-invariant. We show that it is not a C-order. Let $C \triangleleft D$ be a jump of convex subgroups of A under P_A which is not centralized by B, and choose $e < a \in D \setminus C$, $b \in B$ such that $[a, b] \notin C$.

Case 1. b normalizes D. In this case b normalizes C as well since P_A is C-invariant. Moreover D/C may be identified with a subgroup of the additive group of the reals since P_A is a C-order, and the action of b on D/C is that of multiplication by some real number $\beta > 1$ (replacing b by b^{-1} if necessary). Let $\tilde{a} = Ca$ and choose $\tilde{d} = Cd \in D/C$ such that

$$\tilde{d} \geq \tilde{a}/(\beta - 1) > 0.$$

For instance \tilde{d} can be a suitable multiple of \tilde{a}. We show that the set

$$S = \{x \in G; |x| \ll \tilde{d}\}$$

is not a subgroup and thus P does not satisfy Condition (iv) of Lemma 3.1. The element ab^{-1} belongs to S, for

$$(ab^{-1})^n\tilde{d}^{-1} = aa^b \ldots a^{b^{-1}}d^{-b}\tilde{d}^{-n}$$

and

$$C(aa^b \ldots a^{b^{-1}}d^{-b^n}) = \tilde{a} \left(\sum_{t=0}^{n-1} \beta^t\right) - \tilde{d} \beta^n < 0.$$

The element b also belongs to S, but $a = (ab^{-1})b$ clearly does not.

Case 2. b does not normalize D. Since P_A is B-invariant, either $D^b \supset D$ or $D \supset D^b$. Replacing b by b^{-1} if necessary, assume that $D^b \supset D$. We show that the set

$$T = \{x \in G; |x| \ll a\}$$

is not a subgroup. The element ab^{-1} is in T since

$$(ab^{-1})^n\tilde{a}^{-1} = aa^b \ldots a^{b^{-1}}a^{-b^nb^{-n}} \in P^{-1}.$$

The element b also belong to T; but $a = (ab^{-1})b$ does not. This completes the proof.

COROLLARY 3.3. Subgroups and direct products of C_1-groups need not be in C_1.

Proof. Let Q denote the additive group of the rationals and let t be the automorphism of Q corresponding to multiplication by -2. Then $G = \langle Q, t\rangle$ is in C_1 but not in C_2. That G is not in C_2 can be seen by applying Lemma 3.2 to the subgroup $\langle Q, t^2\rangle$. To see that $G \in C_1$ let P be any right-order on G.

https://doi.org/10.4153/CJM-1977-066-x Published online by Cambridge University Press
Without loss of generality we may assume \(t \in P \). For any \(x \in Q \cap P \), \(x^{-1} t \in P^{-1} \), hence \(x < t \) and \(Q \) is convex under \(P \). This shows that \(P \) is a \(C \)-order.

Next consider the direct product of \(G \) with an infinite cyclic group: \(H = G \times \langle z \rangle \). Every element of \(H \) can be written uniquely in the form \((t^s z)^r \times t^s\), where \(x \in Q \) and \(r \) and \(s \) are integers. Let
\[
R = \{ (t^s z)^r \times t^s \}; \text{ either } s > 0, \text{ or } s = 0 \text{ and } x > 0, \\
\quad \text{or } s = x = 0 \text{ and } r \geq 0 \}.
\]
It is easy to check that \(R \) is a right-order on \(H \) and that
\[
\langle e \rangle \ll \langle (t^s z) \rangle \ll \langle (t^s z), Q \rangle \ll H
\]
is its convex series. But \(\langle (t^s z) \rangle \) is not normal in \(\langle (t^s z), Q \rangle \), hence by Lemma 3.1, \(R \) is not a \(C \)-order.

Remark. There exist also polycyclic groups which are in \(C_1 \) but not in \(C_2 \).

Corollary 3.4. Let \(G \) be a finitely generated, orderable \(C_1 \)-group. Then the system of convex subgroups under any order on \(G \), is central.

Proof. Let \(P \) be any order on \(G \). Since \(G \) is finitely generated, there exists \(J < G \) such that \(J \ll G \) is a convex jump under \(P \). Thus there exists \(A \supseteq J \) such that \(G = \langle A, x \rangle \) and \(G/A \) is infinite cyclic. By Lemma 3.2, \(x \) centralizes every convex jump in \(A \) determined by the restriction of \(P \) to \(A \), and hence every convex jump in \(G \). For any \(a \) in \(A \), \(G = \{ A, xa \} \) so that \(xa \) also centralizes every jump in \(G \) and hence so does \(a \).

Theorem 3.5. There exist finitely generated metabelian \(C_2 \)-groups which are not nilpotent-by-finite, and therefore the class \(C_2 \)-contains the class \(R \cap C_3 \) properly.

Proof. Let \(G = \langle a, t; a^t a^{-4} a^5 = e, [a, a^t] = e \rangle \). Then \(A = \langle a \rangle^2 \) is an abelian group of rank 2 which can be identified with the subgroup of the additive group of the complex numbers generated by the numbers \((2 + i)^n\), \(n \in \mathbb{Z} \) on which \(t \) acts as multiplication by \(2 + i \). Our reason for choosing \(2 + i \) is that none of its powers is real.

Let \(H \) be any subgroup of \(G \) and \(P \) any order on \(H \). If \(H \subseteq A \) or if \(H \cap A = \langle e \rangle \), then \(H \) is abelian and \(P \) is a \(C \)-order. Otherwise \(H = \langle A \cap H, u \rangle \), where \(u = b t^m \) for some \(b \in A, n \geq 1 \), and \(u \) acts on \(A \cap H \) as multiplication by the non-real gaussian integer \(\xi = (2 + i)^n \). Notice that a gaussian integer \(h + ki \) satisfies the equation \(x^2 - 2hx + h^2 + k^2 = 0 \), so that by choosing \(m > 0 \) such that the real part of \(\xi^m \) is negative, we find a power of \(\xi \) which satisfies an equation \(x^2 + rx + s = 0 \) with \(r > 0 \) and \(s > 0 \). Thus for all \(c \in A \cap H, c^u v^m c^{-u} v^{-m} = e \) as well as \(c v^m c^{-u} v^{-2m} = e \), and therefore if \(c \) is in \(P \), either \(v^m \) or \(v^{-2m} \) is in \(P^{-1} \).

We now show that \(A \cap H \) is convex. By changing \(P \) to \(P^{-1} \) if necessary, we may assume that \(u \in P \). Suppose that \(b > u d > e \) for some \(b, d \in A \cap H, j \in \mathbb{Z} \). If \(j \geq 0 \) then \(d^{w-j} > u^{-j} > e \). If \(j \geq 0 \) then \(b d^{-1} > u^j \geq e \). Thus as-
sume that \(c > u^j \) for some \(c \in A \cap H, \ j \geq 0 \). Notice that \(c > u^j \) implies \(cu^j > u^{2j} \) and \(c \ u^{ij} = c \ u^j > u^{2j} \), thus if \(j \neq 0 \), replacing \(c \) by another suitable element of \(A \cap H \), we may assume \(j \geq 2m \). Thus we have \(c > u^i > e \) and hence \(cu^{-i} > e \) and \(u^i c u^{-i} > e \) for \(i = 0, 1, \ldots, 2m \). In particular \(c, c^{-m} \) and \(c^u c^{-2m} \) are all in \(P \). This is not possible, therefore \(j = 0 \) and \(A \cap H \) is convex. This implies that \(P \) is a \(C \)-order and hence that \(G \) is a \(C_3 \)-group.

It is easy to check that \(G \) is not nilpotent-by-finite and therefore by Theorem 2.6 it is not a \(C_3 \)-group.

Theorem 3.6. Let \(G \) be a finitely generated solvable order able \(C_1 \)-group. Then \(G \) is nilpotent.

Proof. Let \(G \) be a counterexample of smallest solvability length, and \(P \) any order on \(G \). By Corollary 3.4, the system of convex subgroups of \(G \) is central. Moreover, as \(G \) is finitely generated, it has a descending central series

\[
G = G_0 > G_1 > \ldots G_n > G_{n+1} > \ldots
\]

from \(G \) to \(G_n = \cap_{i=0}^{\infty} G_n \), where \(G_n > G_{n+1} \) is a convex jump under \(P \). If \(G_n = G_n \) for some \(n \), then \(G \) is nilpotent and we have the required contradiction. If \(G_n \neq \langle e \rangle \), observe that \(G/G_n \) satisfies the hypotheses of the theorem since any quotient of a \(C_1 \)-group is in \(C_1 \) if it is an \(RO \)-group. Thus we may replace \(G \) by \(G/G_n \) and assume \(G_n = \langle e \rangle \), so that \(G \) becomes a residually finitely generated torsion-free nilpotent group and hence residually \(F_p \) for all primes \(p \), where \(F_p \) is the class of finite \(p \)-groups.

Let \(N \) be a maximal normal abelian subgroup of \(G \) containing the last non-trivial subgroup of the derived series of \(G \). By a result of Learner (see [5, Lemma 6.25]), \(G/N \) is also residually \(F_p \) for all primes \(p \), and hence orderable (see [3]). Also \(G/N \in C_1 \), and thus it is nilpotent by our choice of \(G \). We now use the following result to complete the proof.

Lemma 3.7. Let \(G \) be an orderable \(C_1 \)-group. If there exists \(\langle e \rangle \neq A < G, A \) abelian and \(G/A \) finitely generated torsion-free nilpotent, then \(Z(G) \cap A \neq \langle e \rangle \), where \(Z(G) \) is the centre of \(G \).

The above lemma applies with \(A = N \). Thus \(Z(G) \cap N = Z_1 \neq \langle e \rangle \) and \(G/Z_1 \) is again orderable since \(Z_1 \) is an isolated subgroup in the centre of \(G \). Since \(G \) satisfies the maximal condition on normal subgroups, repeated application of Lemma 3.7 shows that \(N \leq Z_k(G) \), the \(k \)-th centre of \(G \), for some finite \(k \). Thus \(G \) is nilpotent.

Proof of Lemma 3.7. Use induction on \(l(G/A) \), the number of factors in any infinite cyclic series of \(G/A \). Suppose \(l(G/A) = 1 \). Then \(G = \langle A, c \rangle \). Take any \(e \neq a \) in \(A \) and let \(A_1 = \langle a \rangle^G \). Let \(P_1 \) be any \(G \)-order on \(A_1 \). Then \(P_1 \) can be extended to a \(G \)-order \(P \) on \(A \) since \(G \) is a metabelian orderable group. By Lemma 3.2, \(c \) centralizes every jump in \(A \) determined by \(P \) and hence every jump in \(A_1 \) determined by \(P_1 \). Thus if \(A_1 \) has finite rank then \(A_1 \cap Z(G) \neq \langle e \rangle \).
\langle e \rangle$, as required. If A_1 has infinite rank, then it is freely generated by the elements a^i, $i \in \mathbb{Z}$. In this case let ξ be any positive transcendental number and let P_1 consist of those elements $(a^{x_1})^{e_1} \ldots (a^{x_n})^{e_n}$ such that $\sum_{i=1}^n r_i \xi^{n_i} \geq 0$. This is an archimedean G-order on A_1 and so $A_1 \leq Z(G)$.

Now suppose that $l(G/A) = n > 1$. Then there exists $H \subset G$ such that $A \leq H$, $G = \langle H, d \rangle$, and $l(G/H) = 1$. Any right-order on H can be extended to a right-order on G. Thus $H \in C_1$ and by the induction hypothesis, $Z(H) \cap A = B \neq \langle e \rangle$. Now $D = \langle A, d \rangle$ is isolated in G and any right-order on D can be extended to a right-order on G since there exists a series from D to G with torsion-free abelian factors. Thus $D \in C_1$ and by the first part of the proof, for any $e \neq b \in B$, $Z(D) \cap \langle b \rangle^D \neq \langle e \rangle$. Thus $Z(G) \cap B \neq \langle e \rangle$ and hence $Z(G) \cap A \neq \langle e \rangle$.

Remark. It follows from Corollary 3.4 and Theorem 3.6 that if G is an orderable C_ω-group, then the system of convex subgroups under any order on G is central and G is locally nilpotent if it is locally solvable. In the latter case every partial right-order can be extended to a total right-order (see [4]). In general a solvable C_ω-group does not have this property as can easily be seen by considering the group $\langle a, b; b^{-1}ab = a^{-1} \rangle$.

References

*University of Alberta,
Edmonton, Alberta*