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Abstract

Building on Seidel and Solomon’s fundamental work [Symplectic cohomology and q-
intersection numbers, Geom. Funct. Anal. 22 (2012), 443–477], we define the notion
of a g-equivariant Lagrangian brane in an exact symplectic manifold M , where g ⊂
SH1(M) is a sub-Lie algebra of the symplectic cohomology of M . When M is a
(symplectic) mirror to an (algebraic) homogeneous space G/P , homological mirror
symmetry predicts that there is an embedding of g in SH1(M). This allows us to
study a mirror theory to classical constructions of Borel, Weil and Bott. We give
explicit computations recovering all finite-dimensional irreducible representations of sl2
as representations on the Floer cohomology of an sl2-equivariant Lagrangian brane and
discuss generalizations to arbitrary finite-dimensional semisimple Lie algebras.

1. Introduction

In this paper, we are concerned with ‘hidden’ symmetries on the Floer cohomology of Lagrangian
submanifolds on a symplectic manifold X resulting from an algebraic Lie group action on the
mirror dual variety X∨. Our work builds on and extends the work of Seidel and Solomon [SS12]
who studied dilating C∗-actions on X∨ and interpreted these actions as symmetries on the Floer
cohomology in the mirror dual X.

The abstract story could be described more generally whenever X∨ has an action of a
semisimple Lie algebra g; however, for concreteness, we will work in the setting of projective
homogeneous spaces X∨ = G/P , where G is a semisimple Lie group (over C) and P is a parabolic
subgroup. Mirror symmetry has been studied extensively in this setting. The space X∨ is always
a Fano variety. The expected A-model mirror dual to X∨ is a Landau–Ginzburg model (LG
model) W : R → C, where R is an affine variety and W is a holomorphic function called the
superpotential.

In the case where G = SLn(C), a mirror dual LG model of X∨ was first proposed in [EHX97]
and [Giv97] as a superpotential W : (C∗)N → C. However, even in [EHX97], it was noticed that
there was a ‘disease’ with this LG model in general. For example, in the case of X∨ = Gr(2, 4)
(Grassmannian of 2-planes in C4), one did not have the expected isomorphism

Jac(W ) ' QH∗(X∨)

as the proposed superpotential W : (C∗)3
→ C has only four critical points as opposed to

six (= rkQH∗(X∨)). Eguchi–Hori–Xiong suggested that to cure this disease, one has to
partially compactify (C∗)3. This partial compactification problem in general and the problem of
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constructing an LG model dual to X∨ = G/P for G of any type were solved by Rietsch [Rie08]
and the expected isomorphism of the Jacobian ring of W and QH∗(X∨) was obtained through
an understanding of quantum cohomology established in an unpublished work of Dale Peterson.
Rietsch constructed an LG model:

W : R→ C

on an open (projected) Richardson variety R sitting inside the Langlands dual homogeneous
variety GL/PL. This open Richardson variety is obtained as the projection from GL/BL to
GL/PL of the intersection of two opposite Schubert cells; it is smooth and irreducible, and its
complement is an anticanonical divisor [KLS14, Lemma 5.4].

In the case under consideration, one direction of Kontsevich’s homological mirror symmetry
conjecture [Kon95] (see [Kon98] for the extension to Fano varieties) states that

DbCoh(G/P )
?' DπF(R,W ), (1)

where the left-hand side stands for the derived category of coherent sheaves on the homogeneous
variety X∨ = G/P and the right-hand side stands for the split-closed derived Fukaya category of
the holomorphic fibration W . Strictly speaking, a rigorous definition of the latter has only been
given in the case where W has isolated non-degenerate critical points [Sei08b]. This condition is
equivalent to the condition that small quantum cohomology of G/P be generically semisimple.
It is known that this is the case for full flag varieties G/B [Kos96] and Grassmannians [Gep91,
ST97]. However, a counter-example in the general case can also be found in [CMP10].

In fact, Rietsch’s construction is symmetric. Namely, the Landau–Ginzburg mirror to the
homogeneous variety X = GL/PL is an open Richardson variety R∨ sitting inside X∨ = G/P
together with a superpotential W∨ : R∨ → C. Therefore, the expected mirror symmetry
relationship can be summarized as follows (cf. [Aur07]):

R ↔ R∨,
(R,W ) ↔ G/P,

GL/PL ↔ (R∨,W∨),

where each side of the double arrows can be considered either as an A-model or as a B-model.
On the more classical side of the story, let us recall that if λ is a dominant integral

weight for the adjoint action of a maximal torus T on G, Bott–Borel–Weil theory constructs
an equivariant vector bundle Vλ over G/P such that the space of sections H0(Vλ) is isomorphic
to the irreducible highest-weight representation of G with highest weight λ [Bot57]. For example,
in the case of SL2(C), a dominant weight is specified simply by a non-negative integer n > 0.
Correspondingly, we have the line bundles O(n) → CP 1 = SL2(C)/B, where B is the Borel
subgroup of upper-triangular matrices in SL2(C). The representations H0(O(n)) geometrically
realize all the irreducible representations Symn(C2)∗ of SL2(C).

If one only wishes to understand the representations of the Lie algebra g = Lie G,
then an alternative is to study the restrictions of the vector bundles Vλ to R∨ ⊂ G/P . By
linearizing the G-action, one obtains that the spaces of sections, H0(R∨, Vλ), form infinite-
dimensional representations of g, which contain, as a subspace, the finite-dimensional irreducible
representation of g given by those sections that extend to G/P . (In the case where G is
simply connected, this is all one needs in order to build all the finite-dimensional irreducible
representations of G.) Note that Vλ for different λ may become isomorphic as holomorphic vector
bundles upon restriction to R∨. However, they still would be distinguished by their equivariant
structures. Under mirror symmetry, the process of restriction to R∨ corresponds to forgetting
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the superpotential on R, meaning that we consider wrapped Floer theory in R as developed in
[AbSe10].

In this paper, we will study the mirror theory to Bott–Borel–Weil theory for R∨ that we
translate to the symplectic sideR as inspired by the conjecture (1). One of our main contributions
is the definition of a g-equivariant Lagrangian, where g ⊂ SH1(R) is a sub-Lie algebra of the
symplectic cohomology of R (see Definition 3.10).

To elaborate on this, recall that by the Hochschild–Kostant–Rosenberg theorem, one has
that

HH∗+•(G/P ) ' H∗(Λ•(TG/P )),

where TG/P is the tangent sheaf to G/P . Now, the linearization of the action of G on G/P yields
a map:

g → Vect(G/P ),

which is a Lie algebra embedding since we assume that g is simple (this holds more generally
whenever G acts effectively on G/P ).

Therefore, g sits inside HH1(G/P ) as a sub-Lie algebra. Since Hochschild cohomology is a
derived invariant, the homological mirror symmetry conjecture (1) predicts that

g ⊂ SH1(R)

as a sub-Lie algebra. In § 4, we verify this prediction in the case of G = SLn(C) and R = (C∗)n
by an explicit calculation.

The theory that we develop in § 3 allows us to define the notion of a g-equivariant Lagrangian
brane in R when g ⊂ SH1(R). The data of an equivariant structure on a Lagrangian L consists
of a K-linear map cL : g → CW 0(L,L) satisfying certain properties (see Definition 3.10). For
a g-equivariant Lagrangian brane L ⊂ R, we use the closed–open string map to construct a
representation:

ρ : g → HW ∗(L,L),

where the latter is the wrapped Floer cohomology of L. More generally, one can construct
representations of g on the wrapped Floer cohomology of a pair of g-equivariant Lagrangians
(K,L).

A key feature of the theory is that the representations obtained in this way on HW ∗(K,L)
depend crucially on the perturbation datum used to define various chain level operations (cf.
[Sei14]) and the choice of equivariant structures cL and cK . In fact, the dependences on the choice
of perturbations and the equivariant structures are interrelated. In the case of g = sl2,R = C∗,
we exploit this dependence in two ways.

(1) In § 6.1, we fix a perturbation scheme and consider two copies of the Lagrangian L =
R+ ⊂ C∗, one of which is equipped with a trivial equivariant structure cL = 0 and the other is
equipped with a non-trivial equivariant structure cL. We then construct all the finite-dimensional
irreducible representations of sl2(C) on a subspace of HW ∗(L,L).

(2) In § 6.1, we take two geometrically distinct Lagrangians that are isomorphic to L in
the wrapped Fukaya category. One is the standard L = R+ ⊂ C∗ and the other is L(n), which
is obtained from L by applying n times a right-handed Dehn twist to L (see Figure 1), and
equip both of them with the trivial equivariant cocycles. This amounts to picking different
perturbations in computing HW ∗(L,L) and, by varying n, we again construct all the finite-
dimensional irreducible representations of sl2(C) on a subspace of HW ∗(L,L).
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Figure 1. The Lagrangian L(3); the vector space generated by the four intersection points gives
the four-dimensional irreducible representation of sl2.

Another interesting aspect of our theory is that the representations on HW ∗(K,L) come

equipped with ‘canonical bases’ arising from intersections of Lagrangian submanifolds K and L.

This is an additional piece of data which is not apparent in Borel–Weil–Bott theory. In

representation theory, there are several bases that are called ‘canonical’: Lusztig’s canonical

bases [Lus90, Lus91] and closely related Kashiwara’s crystal bases in quantum groups [Kas91],

MV cycles of Mirković and Vilonen [MV07] etc. We will explore the relationship between our

bases to these in a future work. The relevance of canonical bases to homological mirror symmetry

has also been noticed in the work of Gross–Hacking–Keel and Goncharov and Shen [GS15].

2. Geometric preliminaries

We begin by recalling the definition of (finite-type, complete) Liouville manifolds. Let (M cpt,

ω = dα) be a Liouville domain, that is, a 2n-dimensional compact exact symplectic manifold with

boundary such that the Liouville vector field dual to α points strictly outwards along ∂M cpt.

The form α|∂Mcpt is then a contact form. Let R denote the Reeb vector field. We require that all

Reeb orbits are non-degenerate. This holds for a generic choice of α. Let M be a 2n-dimensional

(non-compact) symplectic manifold, obtained from the compact domain by gluing the positive

symplectization of the contact boundary:

M = M cpt ∪∂M [1,∞)× ∂M,

where, by abuse of notation, we write ∂M for ∂M cpt.

The Liouville form λ on the conical end is given by λ = rα|∂M , where r is the coordinate in

[1,∞). We will call (M,dλ) constructed as above a Liouville manifold.

On a Liouville manifold, we will consider exact properly embedded Lagrangian submanifolds

L such that λ vanishes on L∩ (∂M × [1,∞)). In the case where L is non-compact (by deforming

L by a Hamiltonian isotopy if necessary), one can ensure that L is of the form

L = Lcpt ∪∂L ∂L× [1,∞),

where Lcpt ⊂M cpt and ∂L is shorthand for the Legendrian submanifold ∂Lcpt in ∂M .

In this paper, we will concern ourselves with two types of invariants of M . The first one is

called symplectic cohomology of M . This is a ‘closed string invariant’ and is a type of Hamiltonian

Floer cohomology for a certain class of Hamiltonian functions on M . The second one is the

(wrapped) Fukaya category of M , which is an ‘open string invariant’. It involves the (wrapped)

Floer chain complex associated with Lagrangians in M .
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To fix an integer grading for the invariants that we will study, we impose the following
topological restrictions on M and the submanifolds L: we will assume that 2c1(M) = 0 and
we will fix a trivialization of the (ΛnCT

∗M)⊗2; to define a grading for invariants involving L, we
assume that the relative first Chern class c1(M,L) ∈H2(M,L) vanishes; to define the (wrapped)
Fukaya category over Z (rather than Z2), we assume that all the Lagrangians that we consider
are spin, and we fix an orientation and a spin structure on L.

We will henceforth assume that all these topological conditions are satisfied. All our chain
complexes will be defined over an arbitrary ring K, though the one that we have in mind is
principally C.

2.1 Open and closed invariants of Liouville manifolds
In this section we recall the definition of symplectic cohomology denoted by SH∗(M), and wrapped
Fukaya category denoted by W(M). Our exposition is by no means complete. Rather, we take a
minimalistic approach to set up the notation and refer to the literature for more. We recommend
the recent paper [Sei14] for an up-to-date and detailed account of the material summarized here.

2.1.1 Symplectic cohomology. On Liouville manifolds we consider Hamiltonian functions
H ∈ C∞(M,R) which have linear growth outside of some compact subset of M :

H(r, y) = mr + c

for some constants m > 0 and c. We denote the space of such functions by H(m) ⊂ C∞(M,R).
The Hamiltonian vector field (defined by the equation −ιXH

ω = dH) of such a function
satisfies

XH = mR,

where R is the Reeb vector field. Hence, as m increases, 1-periodic orbits of XH correspond to
longer and longer Reeb orbits, where R is viewed as a vector field defined on the entire conical
end via the product structure. We require that m is not equal to the period of any Reeb orbit
so that there are no 1-periodic orbits of H outside of a compact subset of M . (Note that by our
genericity assumptions, the Reeb vector field has a discrete period spectrum.)

We are now ready to recall the definition of symplectic cohomology. We choose H ∈ H(m)
using a time-dependent perturbation h : S1×M → R, a smooth non-negative function such that
|h| and |λ(Xh)| are uniformly bounded. Furthermore, we choose h generically so that 1-periodic
orbits of the Hamiltonian vector field XHt of the function Ht = H+ht are non-degenerate, where
we write ht = h(t, ·). The Ht perturbed action functional on the free loop space LM is given by

AH(x) = −
∫
x∗λ+

∫
Ht(x(t)) dt.

The critical points of this functional are 1-periodic orbits of XHt . These give the generators of
the symplectic chain complex SC∗(m) over K. More precisely,

SC∗(m) =
⊕

x∈Crit(AH)

|ox|K,

where |ox|K is the rank-one K-module associated with the (real) orientation line (determinant
line) bundle (see [Abo10, Definition C.3] and [Sei08b, § 12e]).

The differential on SC∗(m) can be defined formally via the solutions to the negative gradient
flow equation of the functional AH . To be precise, one uses the theory of J-holomorphic curves
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á la Floer. To ensure well-behaved holomorphic curve theory, we will use compatible almost
complex structures J on M which are of contact type outside of a compact subset. This means
that

λ ◦ J = dr.

It is well known that the space of such J is contractible. The contact-type condition ensures
that J-holomorphic curves do not escape to infinity by an application of the maximum principle
[Sei08a, p. 10]. Now, choose an S1-dependent family of compatible almost complex structures Jt
on M such that outside of a compact subset of M , Jt = J0 for all t ∈ S1, and J0 is of contact
type at the conical end.

With this notation in place, the differential d : SC∗(m) → SC∗+1(m) is obtained by counting
finite-energy solutions to the Floer equation:

u : R× S1
→ M

∂su+ Jt(∂tu−XHt) = 0.

The finite-energy condition ensures that the limits lims→±∞ u(s, ·) converge to 1-periodic orbits
x± of XHt .

We denote the cohomology of this chain complex by SH∗(m), which is independent of Ht

and Jt up to canonical isomorphism. It is a finite-dimensional Z-graded K-module. Now, there
are continuation maps

κm
′

m : SC∗(m) → SC∗(m′) for m′ > m,

which are defined via an interpolation equation using (Hs
t , J

s
t ) depending on s ∈ R interpolating

between the perturbation datum used for defining each group such that ∂sH
s
t 6 0 (see [Sei08a,

p. 9] or [Sei14, p. 10] for a recent account). The continuation maps are defined up to canonical
isomorphism and they form a direct system; hence, one can define a chain complex via the
homotopy direct limit:

SC∗(M) := hocolim
m

SC∗(m).

To obtain an explicit chain complex, one can adapt the model defined in [AbSe10]. Symplectic
cohomology, SH∗(M), is the cohomology of this chain complex. Observe that as the colimit used
in this construction is directed, one has (cf. [Wei94, Theorem 2.6.15])

SH∗(M) ' lim−→
m

H∗(SC∗(m)).

Symplectic cohomology is an algebra over the homology operad of framed little disks. We list
here some operations which will be relevant for us:
• (product) ∪ : SCi(M)⊗ SCj(M) → SCi+j(M);
• (Gerstenhaber bracket) [ , ] : SCi(M)⊗ SCj(M) → SCi+j−1(M);
• (Batalin–Vilkovisky operator) ∆ : SCi(M) → SCi−1(M).

These operations descend to SH∗(M). On the cohomology level, the product is associative
and graded commutative; the latter means that

x ∪ y = (−1)|x||y|y ∪ x.

The Gerstenhaber bracket on SH∗(M) satisfies [x, y] = (−1)|x||y|[y, x] and the graded Jacobi
identity

(−1)|x||z|[[x, y], z]] + (−1)|y||x|[[y, z], x]] + (−1)|z||y|[[z, x], y]] = 0.

In particular, note that (SH1(M), [, ]) is an (honest) Lie algebra.
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On SH∗(M), these three operations are related via the identity1

[x, y] = ∆(x ∪ y)−∆(x) ∪ y − (−1)|x|x ∪∆(y)

and the following Poisson (derivation) property holds:

[x, y ∪ z] = [x, y] ∪ z + (−1)(|x|−1)|y|y ∪ [x, z].

We also note that there is a unital ring homomorphism:

H∗(M) → SH∗(M)

coming from the inclusion of constant orbits in M cpt and ∆ vanishes on the image of this
inclusion.

2.1.2 Wrapped Fukaya category. Symplectic cohomology has an open string analogue which
is known as wrapped Floer cohomology. The general construction of wrapped Fukaya category,
W(M), can be found in [AbSe10]. Here, we simply set up the notation. We first recall the
definition of wrapped Floer cohomology of two exact Lagrangians K and L. These Lagrangians
need not be compact; however, if non-compact they are required to be conical at infinity as
explained at the beginning of this section.

Choose a time-dependent Hamiltonian HK,L,t : M → R, where the time parameter t is now in
[0, 1]. As in the closed case, we require that HK,L,t ∈ H(m), that is, outside of a compact subset in
M , it is time independent and grows linearly with some slope m. The generators of a (partially)
wrapped Floer complex CF ∗(K,L,m) are given by time-1 flow lines of the Hamiltonian HK,L.
Concretely, these are chords x : [0, 1] → M such that

x(0) ∈ K, x(1) ∈ L and dx/dt = XHK,L,t
(x).

We additionally require that these chords are non-degenerate (1 is not an eigenvalue of the
linearization of the time-1 flow of XHK,L,t

). This can be achieved by a generic (compactly
supported) time-dependent perturbation of HK,L. The non-degeneracy ensures that CF ∗(K,
L,m) is a finitely generated K-vector space. Taking orientations into account, we write this
complex as

CF ∗(K,L,m) =
⊕
x

|ox|K,

where as before |ox|K is the rank-one K-module associated with the orientation line (determinant
line) bundle (see [Sei08b, § 12e]).

The Floer differential is obtained by counts of isolated (modulo R translation) finite-energy
maps u : R× [0, 1] → M that solve the Floer equation:

∂su+ Jt(∂tu−XHK,L,t
) = 0

satisfying the boundary conditions u(·, 0) ∈ K and u(·, 1) ∈ L. Here, Jt is as before, a time-
dependent, ω-compatible complex structure on M which is of contact type outside of a compact
subset.

As in the closed case, one constructs canonical continuation maps:

CF ∗(K,L,m) → CF ∗(K,L,m′) for m′ > m

1 We follow the sign conventions from [Sei14]. This differs from the sign conventions in Getzler [Get94].
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and defines the wrapped Floer chain complex via the homotopy direct limit [AbSe10]:

CW ∗(K,L) := hocolim
m

CF ∗(K,L,m).

The cohomology of this complex is called the wrapped Floer cohomology of the pair (K,L).
Given a set of exact Lagrangians L0, . . . , Ld in M , one constructs the A∞ structure maps:

µd : CW ∗(Ld−1, Ld)⊗, . . . ,⊗CW ∗(L0, L1) → CW ∗(L0, Ld)[2− d]

by counting parametrized moduli spaces of solutions to a family of equations analogous to Floer’s
equation defined on domains D = {z ∈ C : |z| 6 1} with d+1 boundary punctures. The wrapped
Fukaya categoryW(M) has as objects exact Lagrangians inM (with conical ends if non-compact)
and the A∞ structure maps are given by (µd)d>1 as alluded to above. We warn the reader
that the detailed construction of these maps so as to obtain an A∞ category requires special
attention for the compatibility and consistency of perturbations used. These are well documented
in the literature to which we refer the interested reader: see [AbSe10] for the first rigorous
construction of wrapped Fukaya category, [Abo10] for another construction and [Aur14] for a
friendlier discussion. Of course, all of these references build on the foundational work in [Sei08b,
§ 9].

3. Closed–open string maps

We now recall the closed–open string map [Sei02]

CO : SH∗(M) → HH∗(W(M)).

This is a map of (unital) Gerstenhaber algebras. The general setup for defining these maps is
as in [Sei14, § 4]. Roughly speaking, one considers domains D = {z ∈ C : |z| 6 1} with i + 1
boundary punctures of which i are considered as inputs (and are ordered) and one interior
puncture which is considered as an input. The interior puncture additionally is equipped with
a distinguished tangent direction. One then counts isolated solutions (up to reparametrization
of the domain) of the corresponding Floer equation such that the interior inputs are labelled
with elements of SC∗(M) (the tangent direction fixes the parametrization of the orbit) and the
boundary inputs/outputs are labelled with cochains from wrapped Floer complexes associated
with objects inW(M). The Floer equation in question is obtained by deforming the holomorphic
map equation in the same way as in the definition of SH∗(M) near the interior punctures and
otherwise one uses the deformations as in the definition of W(M). (Note that the conformal
structure on the domain is allowed to vary.)

Properly setting up these chain level maps in a consistent manner combines two sets of
perturbations corresponding to closed and open invariants. To spell this out a little bit, note
that one sets up the chain complex SC∗(M) by picking a class of perturbations (Ht, Jt) for
defining the chain complex SC∗(m) for each slope m and additional data (Hs

t , J
s
t ) is chosen

in order to define the continuation maps SC∗(m) → SC∗(m + 1) [Sei08a, Rit13]. On the other
hand, to set up the wrapped Fukaya category,W(M), one chooses a perturbation datum for each
d-tuple of objects (L1, . . . , Ld) and again additional data is fixed to construct continuation maps.
The choices of perturbations are done in an inductive manner in order to ensure consistency (see
[AbSe10] and [Sei08b, § 9]). The consistency is required, for example, to ensure that A∞ relations
hold. The chain level operations defined by closed–open string maps combine these two types
of choices of perturbations. As a result, one has to verify the consistency of the two sets of
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perturbations. This technicality is addressed in a similar spirit to the arguments of [Sei08b, § 9].
However, in the case where the complex structure on the domain depends on a non-compact
parameter space (which is the case for almost all the operations in this paper), the relevant
compactification of the domains (‘real blow-up’ of the Deligne–Mumford compactification from
[KSV95]) goes slightly beyond the case discussed in [Sei08b, § 9]. The way to extend this theory
to this more general case is discussed in [SS12] and explained in more depth in [Sei14, § 5], to
which we refer the curious reader (see also [Rit15]).

In what follows, we fix a consistent perturbation datum, which we denote by P, for all chain
level maps and prove statements for this fixed perturbation P (note that there is a huge amount
of data suppressed in this notation). The chain level maps always depend on the perturbation.
The dependence on perturbation often goes away when one considers the induced maps at the
cohomological level. However, this is not always the case (crucially not so in Corollary 3.5 below)
and we emphasize the dependence on P with a subscript in such cases.

At the chain level the CO map consists of an infinitude of K-linear maps Φi indexed by the
number of boundary inputs. These belong to the larger family of maps:

Φi
j : SC∗(M)⊗j → homK(W(M)⊗i,W(M)),

where we have j interior punctures as inputs and Φi
1 = Φi. (One could also think of Φi

0 as µi, in
which case the domain is a copy of K at each level of the Z-grading, though we will not use this
notation.)

Let us now restrict the target to a subcategory consisting of two Lagrangians K,L. If we
examine the chain level map restricted to SC1(M), we notice the following components, which
will be relevant for our discussion:

Φ0
1 : SC1(M) → CW 1(K,K)⊕ CW 1(L,L),

Φ1
1 : SC1(M) → homK(CW ∗(K,L), CW ∗(K,L)),

Φ2
1 : SC1(M) → homK(CW ∗(L,L)⊗K CW

∗(K,L), CW ∗−1(K,L))

⊕ homK(CW ∗(K,L)⊗K CW
∗(K,K), CW ∗−1(K,L)),

Φ0
2 : SC1(M)⊗K SC

1(M) → CW 0(K,L).

Let us emphasize again that in general the chain level maps Φi
j depend on the particular

perturbations used. This dependence on perturbations plays a crucial role in this paper.
The first one of these maps is the simplest. It is a chain map, i.e.

Φ0
1d = µ1Φ0

1.

For us, the most important component of the closed–open map is

Φ1
1 : SC1(M) → homK(CW ∗(K,L), CW ∗(K,L)).

In favorable cases, we will use this map to define a representation of a sub-Lie algebra g of
SH1(M) on HW ∗(K,L). To set this up, suppose that we are given a Lie algebra embedding:
l : g → SH1(M).

SC1(M)

��
g ↪

l
//

l̃
66

SH1(M)
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We then choose a lift l̃ : g → SC1(M) of l. We prefer to do this in a pedestrian way: we
choose an additive basis {[gα]}α of g over K, where we reserve the notation gα for a choice of a
cochain in SC1(M) representing [gα] ∈ SH1(M).

Next, we study the following questions in the order given via obstruction theoretical
arguments:

(1) when does Φ1
1 ◦ l̃ induce a K-linear map:

g → EndK(HW ∗(K,L));

(2) assuming that (1) holds, when does Φ1
1 ◦ l̃ induce a map of Lie algebras:

g → EndK(HW ∗(K,L))

(note that EndK(HW ∗(K,L)) is naturally a Lie algebra using the commutator of
endomorphisms);

(3) assuming that (1) and (2) hold, how does the Lie algebra representation of g on HW ∗(K,L)
depend on the perturbation data used to define Φ1

1 and the lift l̃ of Lie algebra embedding
l : g → SH1(M)?

It turns out that already the first question is not well posed in general. One needs to correct
the map Φ1

1 ◦ l̃ by some additional terms. These modifications are due to Seidel and Solomon
[SS12], which we proceed to discuss now. Once (1) (or rather a modification of it) is established,
we will then answer the questions (2) and (3).

By considering the possible degenerations of the index-one moduli space of disks with one
interior input, one boundary input and one boundary output where the tangent line points
towards the output boundary point, we obtain the following proposition.

Proposition 3.1. For all x ∈ CW ∗(K,L) and a ∈ SC∗(M), we have

(Φ1
1d(a))(x) + (−1)|a|Φ1

1(a)(µ1(x)) + µ1(Φ1
1(a)(x)) = µ2(Φ0

1(a), x))−(−1)|x||a|µ2(x,Φ0
1(a)).

Proof. See [SS12, p. 7]. The stable compactification of the moduli space of disks with one interior
point and two boundary points is homeomorphic to a closed interval. The boundary points of this
moduli space give the term on the right-hand side. The other terms involve the differentials d and
µ1 and come from the Gromov–Floer compactification of stable maps. The signs are computed
as in [SS12, § 8]. 2

Therefore, in order to induce a K-linear map SH1(M) → EndK(HW ∗(K,L)), we need to
compensate for the term

µ2(x,Φ0
1(a))− (−1)|x|µ2(Φ0

1(a), x)

for all x ∈ CW ∗(K,L) and a ∈ SC1(M).

Remark 3.2. Note that if K = L and Φ0
1(a) is a central element for the product, µ2, on

HW ∗(L,L) for all a, then we have

(Φ1
1d(a))(x) + (−1)|a|Φ1

1(a)(µ1(x)) + µ1(Φ1
1(a)(x)) = 0

for all x ∈ CW ∗(L,L) and a ∈ SC∗(M).
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In view of Proposition 3.1, we have the following preliminary definition (cf. [SS12,
Definition 4.2]).

Definition 3.3. Let g be a non-zero sub-Lie algebra of SH1(M). Choose an additive basis
{[gα]}α of g over K, where we reserve the notation gα for a choice of a cochain in SC1(M)
representing [gα] ∈ SH1(M).

A Lagrangian L ⊂M is g-invariant if for all gα, one has

Φ0
1(gα) = µ1(cα) for some cα ∈ CW 0(L,L).

We note that if g̃α = gα + dhα is another lift of [gα] to SC1(M), then

Φ0
1(g̃α) = µ1(cα + Φ0

1(hα))

as Φ0
1 is a chain map. Hence, the notion of being g-invariant for a Lagrangian L does not depend

on the choice of lifts gα, nor does it depend on the choice of basis [gα]. Thus, we have the following
lemma.

Lemma 3.4. The obstructions to the existence of cα are the classes [Φ0
1(gα)] ∈HW 1(L,L). These

classes do not depend on the perturbation data P and the lift l̃ of the embedding l : g → SH1(M).

If these classes vanish for all gα, then we can define a K-linear map

cL : g → CW 0(L,L) (2)

by cL(gα) = cα. The map cL depends on the choice of lifts gα. On the other hand, we consider
cL and c′L equivalent if the image of cL − c′L : g → CW 0(L,L) consists of coboundaries for the
Floer differential. Then the equivalence class of choices for cL does not depend on the lifts gα,
and is an affine space over HomK(g, HW 0(L,L)).

We then have the following corollary.

Corollary 3.5. Let K and L be g-invariant Lagrangians in M . Pick a choice of basis [gα] of g
and lifts gα to obtain maps cL, cK as in the previous paragraph. Then the map

ρ(gα)(x) = Φ1
1(gα)(x)− µ2(cL(gα), x) + µ2(x, cK(gα))

induces a well-defined K-linear map; in particular, it is independent of gα,

ρ : g → EndK(HW ∗(K,L)).

Proof. First, one has to check that if µ1(x) = 0, then µ1(ρP(gα)(x)) = 0. Second, one has to
check that changing gα to gα + dhα or x → x+µ1y does not change the class [ρP(gα)(x))] ∈
HW ∗(K,L). All of these are direct consequences of the discussion preceding Lemma 3.4 and
Proposition 3.1. 2

We want to emphasize that to define ρ we had to first fix perturbation data P and then choose
cochain-level maps cK and cL as above. For any two choices of P the corresponding affine spaces
of choices of cK and cL are canonically identified in a non-trivial way. In particular, the map ρ
depends on the choice of perturbation data P. We often work with a fixed choice of perturbation
and we write ρP whenever we want to emphasize the dependence on the perturbation P, though
note that this notation still suppresses the corresponding additional choices of cK and cL.
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The dependence on P can be controlled, since the closed–open map induces a well-defined
map (independent of P) SH∗(M) → HH∗(W(M)) [Sei02].

Namely, let P and P ′ be two different perturbation data for open and closed invariants.
Restricting our attention to the wrapped Fukaya category W(M), i.e. open invariants, general
theory gives chain homotopy equivalences between CW ∗P(K,L) and CW ∗P ′(K,L) for any two
Lagrangians K,L, via continuation maps induced by interpolation between the perturbation
data P and P ′. One can analyze how the representation ρ changes in a compatible way (see for
example Proposition 6.10). In the following proposition, to avoid extra notational complexity, we
suppress these chain homotopy equivalences and use CW ∗(K,L) to denote either CW ∗P(K,L)
or CW ∗P ′(K,L) by assuming that P and P ′ are extensions of a fixed choice of perturbation data
used to define W(M).

Proposition 3.6. Assume that P and P ′ are extensions of a fixed choice of perturbation data
used to define the wrapped Fukaya category W(M).

Then there exist K-linear maps

(sK)P,P ′ : g → CW 0(K,K),

(sL)P,P ′ : g → CW 0(L,L)

such that

ρP ′(gα)(x) = ρP(gα)(x) + µ2
P(sL(gα), x) + µ2

P(x, sK(gα)).

Proof. Recall that the closed–open map CO : SH∗(M) → HH∗(W(M)) is given at the chain
level by the sum of the maps:

Φi
1 : SC∗(M) → CC∗(W(M),W(M)).

Let us restrict our attention to the piece

Φ1
1 : SC1(M) → hom(CW ∗(K,L), CW ∗(K,L)).

Changing the perturbation data will modify this by a Hochschild coboundary of a cochain in
CC0(W(M)). Denote this cochain by (α0, α1, . . .), where αi ∈ homK((CW ∗)⊗i, CW ∗−i). Recall
that the differential on the Hochschild cochains is given by δ(α∗) = [α∗, µ∗], where [·, ·] is the
Gerstenhaber bracket on Hochschild cochains. For the coboundary of such a chain to modify
the component of Φ1

1 that we restricted our attention to, it must be that α0 = (sK , sL) ∈
CW 0(K,K)⊕ CW 0(L,L), in which case we would get

(Φ1
1)P ′ = (Φ1

1)P + µ2(sL, ·) + µ2(·, sK)± µ1α1(·)± α1µ1(·).

Hence, passing to cohomology, HW ∗(K,L), we obtain the stated result. 2

Summary
Given an embedding l : g → SH1(M) and Lagrangians K,L ⊂M which are g-invariant, we fix
a perturbation datum P. We can then choose cK and cL and define a K-linear map ρP : g →

EndK(HW ∗(K,L)). However, this map depends on P and the choices of cK and cL. On the other
hand, the overall dependence can be absorbed into the choice of the pair cK and cL, which up
to equivalence is an affine space over HomK(g, HW 0(K,K)⊕HW 0(L,L)).
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3.1 Upgrading ρP to a Lie algebra homomorphism
Our next task is to upgrade ρP to a Lie algebra homomorphism. This will put some conditions
on the choice of cL for all L. To work out what this condition is, we will need to spell out various
compatibility relations satisfied by the components of the closed–open string map and the A∞
operations in the wrapped Fukaya category. We remark that the relations that we discuss in
this paper are a subset of the relations of the open–closed homotopy algebra (OCHA) that was
studied in [KS06].

In pseudo-holomorphic curve theory, the general strategy for obtaining relations among
various counts is to consider index-one moduli spaces of disks with fixed number of boundary and
interior punctures labelled by inputs/outputs and study their degenerations. Note that interior
punctures should also be labelled with a tangent direction to fix the parametrization of the orbit.

The next proposition and the idea of its proof were shown to us by Nick Sheridan.

Proposition 3.7. For all a, b ∈ SC∗(M) and x ∈ CW ∗(K,L), we have

Φ1
1([a, b])(x) + (−1)|a|(Φ1

1(a) ◦ Φ1
1(b))(x) + (−1)(|a|+1)|b|(Φ1

1(b) ◦ Φ1
1(a))(x)

+ (−1)|a|+|b|Φ1
2(a, b)(µ1x) + µ1(Φ1

2(a, b)(x)) + Φ1
2(da, b)(x) + (−1)|a|Φ1

2(a, db)(x)

+ Φ2
1(a)(Φ0

1(b), x)− (−1)|b||x|Φ2
1(a)(x,Φ0

1(b)) + (−1)|a||b|Φ2
1(b)(Φ0

1(a), x)

− (−1)|a|(|b|+|x|)Φ2
1(b)(x,Φ0

1(a))− µ2(Φ0
2(a, b), x) + (−1)|x|(|a|+|b|)µ2(x,Φ0

2(a, b)) = 0.

Proof. Let us first recall how the bracket

[ , ] : SCi(M)⊗ SCj(M) → SCi+j−1(M)

is defined geometrically following [Sei14, § 4]. Namely, one considers the moduli space of spheres
with three marked points equipped with tangent directions. It is easy to see that the moduli space
of all such configurations can be identified with (S1)3, the marked points can be uniformized to
fixed locations and the choice of tangent direction at each marked point gives an S1. Now, one
chooses a one-dimensional homology class in H1((S1)3) which rotates the tangent directions
by 2π at two marked points (inputs) clockwise and anticlockwise for the remaining point
(output). The bracket is then defined by counting parametrized moduli spaces of solutions to
a pseudo-holomorphic map equation M with labelled inputs and output where the parameter
varies along an S1 family of three-punctured spheres such that tangent directions vary along the
one-dimensional homology class that we have described.

Now, consider the degenerations of an index-one moduli space of disks with two interior
inputs, one boundary input and one boundary output where tangent directions are constrained
to point towards the output boundary point. This moduli space is a smooth one-dimensional
manifold with boundary. The various configurations that arise at its boundary correspond to the
terms in the statement of the proposition.

The terms which involve µ1 and d come from strip and cylinder breaking in the Gromov–Floer
compactification of stable maps. The terms that do not involve the differentials µ1 or d come
from a codimension-one boundary of the moduli space of stable disks with two boundary and
two interior points as dictated by Kimura–Stasheff–Voronov compactification [KSV95]. As an
example, it is worth spelling out the occurrence of the first term. This results from the boundary
contribution arising from the two interior marked points colliding, leading to a bubbling off of
a three-punctured holomorphic sphere. As the two points collide their tangent vectors become
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parallel. This means that the tangent directions in the sphere bubble are in a configuration that
lies in the one-dimensional homology class in (S1)3 that is used to define the bracket geometrically
as explained above. Furthermore, there is an S1-worth of directions in which the two marked
points come together, parametrized by their relative phase, and this S1-family covers the entire
homology class. As this three-punctured sphere has inputs labelled by a and b, and it outputs
[a, b] which is then fed into the remaining component contributing to Φ1

1, the overall contribution
of this boundary component is Φ1

1([a, b])(x).
The other terms can be understood by similar bubbling considerations. Finally, the intricate

computation of signs follows from the discussion in [SS12, § 8]. 2

We will also need the following proposition.

Proposition 3.8. For all a ∈ SC∗(M) and x1 ∈ CW ∗(L0, L1), x2 ∈ CW ∗(L1, L2), we have

µ1(Φ2
1(a)(x2, x1))− Φ2

1(da)(x2, x1)− (−1)|a|Φ2
1(a)(µ1(x2), x1)

− (−1)|a|+|x2|Φ2
1(a)(x2, µ

1(x1)) + µ3(Φ0
1(a), x2, x1)− (−1)|a||x2|µ3(x2,Φ

0
1(a), x1)

+ (−1)(|x2|+|x1|)|a|µ3(x2, x1,Φ
0
1(a))− Φ1

1(a)(µ2(x2, x1))

+µ2(Φ1
1(a)(x2), x1) + (−1)(|a|+1)|x2|µ2(x2,Φ

1
1(a)(x1)) = 0.

Proof. The proof is very similar to the proof of the previous proposition. One considers the
moduli space of stable disks with one interior point and three boundary points, two of which are
considered as inputs and one as output. See [SS12, p. 8]. 2

Finally, by considering the moduli space of index-one stable disks with two interior marked
points and one boundary point, we obtain the following proposition.

Proposition 3.9. For all a, b ∈ SC∗(M), we have

Φ0
1([a, b])− Φ1

1(a)(Φ0
1(b))− (−1)|a||b|Φ1

1(b)(Φ0
1(a))

+ Φ0
2(da, b) + (−1)|b|Φ0

2(a, db) + µ1(Φ0
2(a, b)) = 0.

Now, as before, consider cocycles gα, gβ ∈ SC1(M) and x ∈ CW ∗(K,L) for g-invariant
Lagrangians with cL, cK . Recall that this means that Φ0

1(gα) = µ1(cL(gα)) or µ1(cK(gα)) and
Φ0

1(gβ) = µ1(cL(β)) or µ1(cK(gβ)).
We are now ready to compute

ρP([gα, gβ])(x)− ρP(gα) ◦ ρP(gβ)(x) + ρP(gβ) ◦ ρP(gα)(x)

= Φ1
1([gα, gβ])(x)− Φ1

1(gα) ◦ Φ1
1(gβ)(x) + Φ1

1(gβ) ◦ Φ1
1(gα)(x)

+ Φ1
1(gα)(µ2(cL(gβ), x))− µ2(cL(gβ),Φ1

1(gα)(x))

−Φ1
1(gβ)(µ2(cL(gα), x)) + µ2(cL(gα),Φ1

1(gβ)(x))

−Φ1
1(gα)(µ2(x, cK(gβ))) + µ2(Φ1

1(gα)(x), cK(gβ))

+ Φ1
1(gβ)(µ2(x, cK(gα)))− µ2(Φ1

1(gβ)(x), cK(gα))

−µ2(cL([gα, gβ]), x) + µ2(x, cK([gα, gβ]))

−µ2(cL(gα), µ2(cL(gβ), x)) + µ2(cL(gα), µ2(x, cK(gβ))) + µ2(µ2(cL(gβ), x), cK(gα))

−µ2(µ2(x, cK(gβ)), cK(gα)) + µ2(cL(gβ), µ2(cL(gα), x))− µ2(cL(gβ), µ2(x, cK(gα)))

−µ2(µ2(cL(gα), x), cK(gβ)) + µ2(µ2(x, cK(gα)), cK(gβ))
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apply Proposition 3.7 to get

= −Φ2
1(gα)(Φ0

1(gβ), x) + (−1)|x|Φ2
1(gα)(x,Φ0

1(gβ)) + Φ2
1(gβ)(Φ0

1(gα), x)

− (−1)|x|Φ2
1(gβ)(x,Φ0

1(gα)) + µ2(Φ0
2(gα, gβ), x)− µ2(x,Φ0

2(gα, gβ))

+ Φ1
1(gα)(µ2(cL(gβ), x))− µ2(cL(gβ),Φ1

1(gα)(x))

−Φ1
1(gβ)(µ2(cL(gα), x)) + µ2(cL(gα),Φ1

1(gβ)(x))

−Φ1
1(gα)(µ2(x, cK(gβ))) + µ2(Φ1

1(gα)(x), cK(gβ))

+ Φ1
1(gβ)(µ2(x, cK(gα)))− µ2(Φ1

1(gβ)(x), cK(gα))

−µ2(cL([gα, gβ]), x) + µ2(x, cK([gα, gβ]))

−µ2(cL(gα), µ2(cL(gβ), x)) + µ2(cL(gα), µ2(x, cK(gβ))) + µ2(µ2(cL(gβ), x), cK(gα))

−µ2(µ2(x, cK(gβ)), cK(gα)) + µ2(cL(gβ), µ2(cL(gα), x))− µ2(cL(gβ), µ2(x, cK(gα)))

−µ2(µ2(cL(gα), x), cK(gβ)) + µ2(µ2(x, cK(gα)), cK(gβ)) + coboundary

use g-invariance of K and L and reorganize terms to obtain

= −Φ2
1(gα)(µ1(cL(gβ)), x) + Φ1

1(gα)(µ2(cL(gβ), x))− µ2(cL(gβ),Φ1
1(gα)(x))

+ Φ2
1(gβ)(µ1(cL(gα)), x)− Φ1

1(gβ)(µ2(cL(gα), x)) + µ2(cL(gα),Φ1
1(gβ)(x))

+ (−1)|x|Φ2
1(gα)(x, µ1(cK(gβ)))− Φ1

1(gα)(µ2(x, cK(gβ))) + µ2(Φ1
1(gα)(x), cK(gβ))

− (−1)|x|Φ2
1(gβ)(x, µ1(cK(gα))) + Φ1

1(gβ)(µ2(x, cK(gα)))− µ2(Φ1
1(gβ)(x), cK(gα))

−µ2(cL([gα, gβ]), x) + µ2(x, cK([gα, gβ])) + µ2(Φ0
2(gα, gβ), x)− µ2(x,Φ0

2(gα, gβ))

−µ2(cL(gα), µ2(cL(gβ), x)) + µ2(cL(gα), µ2(x, cK(gβ))) + µ2(µ2(cL(gβ), x), cK(gα))

−µ2(µ2(x, cK(gβ)), cK(gα)) + µ2(cL(gβ), µ2(cL(gα), x))− µ2(cL(gβ), µ2(x, cK(gα)))

−µ2(µ2(cL(gα), x), cK(gβ)) + µ2(µ2(x, cK(gα)), cK(gβ)) + coboundary

use Proposition 3.8 to get

= µ2(Φ1
1(gα)(cL(gβ)), x) + µ3(µ1(cL(gα)), cL(gβ), x)

−µ3(cL(gβ), µ1(cL(gα)), x) + (−1)|x|µ3(cL(gβ), x, µ1(cK(gα)))

−µ2(Φ1
1(gβ)(cL(gα)), x)− µ3(µ1(cL(gβ)), cL(gα), x)

+µ3(cL(gα), µ1(cL(gβ)), x)− (−1)|x|µ3(cL(gα), x, µ1(cK(gβ)))

−µ2(x,Φ1
1(gα)(cK(gβ)))− µ3(µ1(cL(gα)), x, cK(gβ))

+ (−1)|x|µ3(x, µ1(cK(gα)), cK(gβ))− (−1)|x|µ3(x, cK(gβ), µ1(cK(gα)))

+µ2(x,Φ1
1(gβ)(cK(gα))) + µ3(µ1(cL(gβ)), x, cK(gα))

− (−1)|x|(µ3(x, µ1(cK(gβ)), cK(gα))) + (−1)|x|µ3(x, cK(gα), µ1(cK(gβ)))

−µ2(cL([gα, gβ]), x) + µ2(x, cK([gα, gβ])) + µ2(Φ0
2(gα, gβ), x)− µ2(x,Φ0

2(gα, gβ))

−µ2(cL(gα), µ2(cL(gβ), x)) + µ2(cL(gα), µ2(x, cK(gβ))) + µ2(µ2(cL(gβ), x), cK(gα))

−µ2(µ2(x, cK(gβ)), cK(gα)) + µ2(cL(gβ), µ2(cL(gα), x))− µ2(cL(gβ), µ2(x, cK(gα)))

−µ2(µ2(cL(gα), x), cK(gβ)) + µ2(µ2(x, cK(gα)), cK(gβ)) + coboundary

= µ2(Φ1
1(gα)(cL(gβ)), x)− µ2(Φ1

1(gβ)(cL(gα)), x)− µ2(x,Φ1
1(gα)(cK(gβ)))

+µ2(x,Φ1
1(gβ)(cK(gα)))− µ2(µ2(cL(gα), cL(gβ)), x)

+µ2(µ2(cL(gβ), cL(gα)), x) + µ2(x, µ2(cK(gα), cK(gβ)))

−µ2(x, µ2(cK(gβ), cK(gα)))− µ2(cL([gα, gβ]), x)

+µ2(x, cK([gα, gβ]))− µ2(Φ0
2(gα, gβ), x) + µ2(x,Φ0

2(gα, gβ)) + coboundary, (3)
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where in the last equality we repeatedly used the A∞ relation:

µ1(µ3(x3, x2, x1)) + µ3(µ1(x3), x2, x1) + (−1)|x3|µ3(x3, µ
1(x2), x1)

+ (−1)|x3|+|x2|µ3(x3, x2, µ
1(x1)) = µ2(x3, µ

2(x2, x1))− µ2(µ2(x3, x2), x1).

To understand the last expression that we obtained, we pause to derive another related formula.
We deduce from Proposition 3.9 that

Φ0
1([gα, gβ])− Φ1

1(gα)(Φ0
1(gβ)) + Φ1

1(gβ)(Φ0
1(gα)) + µ1(Φ0

2(gα, gβ)) = 0.

Using g-invariance of L, we obtain

µ1cL([gα, gβ])− Φ1
1(gα)(µ1(cL(gβ))) + Φ1

1(gβ)(µ1(cL(gα))) + µ1(Φ0
2(gα, gβ)) = 0.

We can now apply Proposition 3.1 to deduce that

µ1cL([gα, gβ])− µ1Φ1
1(gα)(cL(gβ)) + µ1Φ1

1(gβ)(cL(gα))

+µ1(µ2(cL(gα), cL(gβ)))− µ1(µ2(cL(gβ), cL(gα))) + µ1(Φ0
2(gα, gβ)) = 0,

where we also used the Leibniz rule.
In view of this last equality, we make the definition that is most central to this paper.

Definition 3.10. Let g be a non-zero sub-Lie algebra of SH1(M). Choose an additive basis
{[gα]}α of g over K, where we reserve the notation gα for a choice of a cochain in SC1(M)
representing [gα] ∈ SH1(M). Let (L, cL) be a g-invariant Lagrangian, i.e., for all gα,

Φ0
1(gα) = µ1(cL(gα)).

We say that (L, cL) is g-equivariant if for all gα, gβ, the cocycle

cL([gα, gβ])− Φ1
1(gα)(cL(gβ)) + Φ1

1(gβ)(cL(gα)) + µ2(cL(gα), cL(gβ))

−µ2(cL(gβ), cL(gα)) + Φ0
2(gα, gβ)

is a coboundary.

Now, for K and L, g-equivariant Lagrangians, we can continue our previous computation
from formula (3) and conclude from the Leibniz rule that

ρP([gα, gβ])(x)− ρP(gα) ◦ ρP(gβ)(x) + ρP(gβ) ◦ ρP(gα)(x)

= coboundary.

Since this is of importance, we record it as the following theorem.

Theorem 3.11. Let K,L be g-equivariant Lagrangians in the sense of Definition 3.10; then

ρP : g → EndK(HW ∗(K,L))

is a Lie algebra homomorphism.

If one assumes the somewhat unnatural condition that Φ0
1(gα) is identically zero (for example

this holds if CW 1(L,L) vanishes), then it follows that L can be made invariant by picking an
arbitrary cocycle cL(gα) for each gα. In this case, each term that appears in the definition of
g-equivariance is individually a cocycle. Therefore, checking g-equivariance for a pair (L, cL) is
significantly simpler; each term can be computed at the level of cohomology. In fact, in this case,
it makes sense to impose a somewhat weaker assumption on the pair (K,L) in order to conclude
that ρP is a Lie algebra homomorphism. Observe that when Φ0

1(gα) is zero for all gα, it follows
from Proposition 3.9 that Φ0

2(gα, gβ) is a cocycle. Now, we can make the following definition.
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Definition 3.12. Let (K, cK), (L, cL) be g-invariant Lagrangians such that Φ0
1(gα) is identically

zero for all gα for both K and L. Then we say that (K,L) is g-equivariant as a pair if for all
gα, gβ ∈ g and x ∈ CW ∗(K,L), the cocycles

cK([gα, gβ])− Φ1
1(gα)(cK(gβ)) + Φ1

1(gβ)(cK(gα)) + µ2(cK(gα), cK(gβ))− µ2(cK(gβ), cK(gα)),

cL([gα, gβ])− Φ1
1(gα)(cL(gβ)) + Φ1

1(gβ)(cL(gα)) + µ2(cL(gα), cL(gβ))− µ2(cL(gβ), cL(gα))

and

µ2(Φ0
2(gα, gβ), x)− µ2(x,Φ0

2(gα, gβ))

are coboundaries.

Note, of course, that the first two conditions can be satisfied by picking cL = cK = 0. It follows
again from formula (3) that ρP is a Lie algebra homomorphism when (K,L) is a g-equivariant
pair.

Remark 3.13. As in the previous situation, suppose that Φ0
1 is identically zero so that cL(gα) is

a cocycle for all gα. In addition, suppose that HW 0(L,L) is commutative with respect to the
µ2-product. Then formula (3) simplifies drastically at the level of cohomology for K = L. In
other words, in this case, for any choice of cL, we get a Lie algebra homomorphism ρP : g →

EndK(HW 0(L,L)).

4. Symplectic cohomology and vector fields

4.1 General observations
In this section we collect some general observations that indicate how natural topological
structures on symplectic cohomology may correspond to structures that are also found in the
representation theory of semisimple Lie algebras, such as the Cartan subalgebra and the root
lattice. The propositions in this subsection are true for an arbitrary Liouville manifold U , and
are useful in that generality, although the connection to representation theory should only be
expected when U is the mirror of a homogeneous space.

Let U be a Liouville manifold. Let h denote the image of the canonical map H1(U) →

SH1(U). Let Λ = H1(U ;Z) denote the integral first homology of U .

Proposition 4.1. The image h is an abelian Lie subalgebra of SH1(U).

Proof. This is an immediate consequence of the fact that the Batalin–Vilkovisky (BV) operator
∆ vanishes on the image of H∗(U) in SH∗(U). For, if a, b ∈ h, we have

[a, b] = ∆(a ∪ b)−∆(a) ∪ b+ a ∪∆(b). (4)

Since a and b are in the image of H1(U), and a ∪ b is in the image of H2(U), all the terms are
zero. 2

For α ∈ Λ = H1(U ;Z), let SC∗(U)α denote the subspace of SC∗(U) spanned by periodic
orbits γ such that [γ] = α.

Proposition 4.2. The decomposition SC∗(U) =
⊕

α∈Λ SC
∗(U)α is a grading by Λ = H1(U ;Z),

such that the differential, product, BV operator and Lie bracket are homogeneous.
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Proof. This is an immediate consequence of the fact that the operations are defined using maps
of punctured Riemann surfaces that are asymptotic to periodic orbits. For instance, a pair of
pants contributing to the coefficient of γ3 in γ1 ∪ γ2 is a homology witnessing the relation
[γ3] = [γ1] + [γ2]. 2

Definition 4.3. Let V be a vector space and let A be an abelian group. A relative grading of
V by A is a decomposition

V =
⊕
β∈I

Vβ, (5)

where the set I indexing the summands is given the structure of an A-torsor. If V carries a relative
grading by A, and we are given two pure elements v1, v2, with vi ∈ Vβi , then the difference β2−β1

is a well-defined element of A called the relative grading difference between v1 and v2.

A natural example of a relative grading is given as follows. Let K and L be connected and
simply connected subspaces of a connected space U . Let P(K,L) denote the space of paths
starting on K and ending on L. If we are given two paths v1, v2 ∈ P(K,L), we may construct a
loop in U , first following v1, then any path on L joining the end point of v1 to the end point of
v2, then following v2 in the reverse direction and then any path on K joining the start point of v2

to the start point of v1. Since K and L were assumed simply connected, the class of this loop in
H1(U ;Z) (and, indeed, its free homotopy class) is well defined. We define an equivalence relation
on P(K,L) by declaring v1 ∼ v2 if the associated class in H1(U ;Z) vanishes. Let I be the set of
equivalence classes. The group H1(U ;Z) acts on I, since we may compose a path from K to L
with a loop based at the start point. This action is free and transitive, so I is a H1(U ;Z)-torsor.
If C ⊂ P(K,L) is a subset (we have in mind the set of Hamiltonian chords from K to L), and
V = K〈C〉 is the vector space with a basis given by C, then V admits a relative grading by
H1(U ;Z).

Proposition 4.4. Let K and L be connected and simply connected Lagrangians in the Liouville
manifold U . The wrapped Floer complex CW ∗(K,L) admits a relative grading by Λ = H1(U ;Z).
The differential preserves this grading, while the map

Φ1
1 : SC∗(U)⊗ CW ∗(K,L) → CW ∗(K,L) (6)

is homogeneous with respect to the absolute grading on SC∗(U) and the relative grading on
CW ∗(K,L). That is, Φ1

1 maps SC∗(U)α ⊗ CW ∗(K,L)β to CW ∗(K,L)α+β.

Proof. As before, this is an immediate consequence of the fact that the operations are defined
by maps of Riemann surfaces. The existence of a strip joining two Hamiltonian chords witnesses
that they live in the same grading component. The map Φ1

1 counts strips with a puncture,
showing that the output path is homologous to the input path plus the asymptotic loop at the
puncture. 2

Now we can spell out the expected relationship to representation theory of semisimple Lie
algebras.

(1) The subalgebra h that is the image of H1(U) → SH1(U) should, as the notation suggests,
correspond to the Cartan subalgebra.

(2) The lattice Λ = H1(U ;Z) should correspond to the root lattice, and the grading of
SH1(U) by Λ to the grading of g by the root lattice. Note that, assuming that H1(U) → SH1(U)
is injective, Λ⊗K ∼= h∗.
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(3) The relative grading of HW ∗(K,L) by Λ for simply connected Lagrangians K and L
should be compared to the fact that any irreducible representation of a semisimple Lie algebra
admits a grading by the weight lattice, which is a relative grading by the root lattice. This is to
say that the difference of any two weights appearing in the same irreducible representation is a
linear combination of roots.

4.2 Vector fields on P1

Let us recall the structure of the symplectic cohomology of C∗ as a Batalin–Vilkovisky algebra.
Let x denote the complex coordinate on C∗, so that dx/x is a holomorphic one-form with simple
poles at zero and infinity. The symplectic form ω is chosen so that C∗ has two cylindrical ends
symplectomorphic to [0,∞)×S1 with ω = d(r dφ), where r is the radial coordinate and φ is the
angular coordinate on S1. The symplectic cohomology SH∗(C∗) is computed using the family of
Hamiltonians which are of the form H = mr+ c on each end. The grading is determined by the
form dx/x. For simplicity, we work over a field K of characteristic zero. (Though, as before, we
could work over arbitrary rings, such as Z or Z2.)

This section is an elaboration of the following theorem. It is a special case of the general
relationship between the symplectic cohomology of T ∗Q, where Q is an oriented spin manifold
(below Q = Tn), and the homology of the free loop space H∗(LQ). With our conventions,
there is an isomorphism of BV algebras SH•(T ∗Q) ∼= Hn−•(LQ), where n = dimRQ. This is a
consequence of work of Abbondandolo and Schwarz, Salamon and Weber, and Viterbo [Abo15,
AS06, AS10, SW06, Vit03]; see also the discussion in Seidel’s lecture notes [Sei].

Theorem 4.5. The symplectic cohomology of C∗ is isomorphic, as a Batalin–Vilkovisky algebra,
to the space of polyvector fields on Gm. That is to say, SHp(C∗) is concentrated in degrees
p = 0, 1, and

SH0(C∗) ∼= H0(Gm,OGm) = K〈zn |n ∈ Z〉, (7)

SH1(C∗) ∼= H0(Gm, TGm) = K〈ξn |n ∈ Z〉, (8)

where z denotes a coordinate on Gm, ξn denotes the vector field zn+1∂z and the Batalin–
Vilkovisky structure on polyvector fields is determined by the nowhere-vanishing one-form
Ω = z−1 dz.

We also use the notation θ = ξ0 = z∂z; thus, ξn = znθ.
In terms of the periodic orbits of the Hamiltonian, we can take a Hamiltonian equal to mr+c

on each end. Because this Hamiltonian does not depend on the angular coordinate φ, the periodic
orbits come in S1 families, given by rotating the starting point, which are indexed by an integer
n counting how many times a periodic orbit winds around the S1 factor in C∗ ∼= R × S1 (this
indexing involves a choice of orientation of S1). After perturbation of this Morse–Bott situation,
each periodic circle breaks into two periodic orbits; one, denoted zn, corresponds to the canonical
element in H0(S1); the other, denoted ξn, corresponds to an orientation class in H1(S1).

This picture matches precisely with the free loop space homology isomorphism SHp(C∗) ∼=
H1−p(LS1). The free loop space LS1 is homotopy equivalent to S1 × Z. The element zn

corresponds to the element in H1(S1 × {n}) giving an orientation, while ξn corresponds to
the canonical element in H0(S1 × {n}).

The structure of a Batalin–Vilkovisky algebra on SH∗(C∗) is defined using pseudo-
holomorphic maps, but it is easier to think in terms of the free loop space. The product operation
is given by composing families of loops at points where their evaluations to the base coincide,
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and the result is that SH∗(C∗) has unit z0, and is generated by z1, z−1 and θ = ξ1, and we
have zazb = za+b, ξn = znθ and θ2 = 0. Thus, SH0(C∗) is the ring of Laurent polynomials, and
SH1(C∗) is a free rank-one module over that ring.

The Batalin–Vilkovisky operator ∆ maps SH1(C∗) to SH0(C∗). In the free loop space
picture, this operator corresponds to rotating the parametrization of the loop. Taking a degree-n
loop with a fixed parametrization, if we rotate the parametrization through a 1/n turn, we obtain
the family of all parametrizations of that loop. Thus, the full rotation results in n times that
family, and thus

∆(ξn) = ∆(znθ) = nzn. (9)

Observe that for negative n the orientation convention is coming into play.
Recall that a Batalin–Vilkovisky algebra (A, ·,∆) has a Lie bracket of degree −1, given by

[a, b] = ∆(a · b)−∆(a) · b− (−1)|a|a ·∆(b). (10)

With this bracket, A[1] is a graded Lie algebra, and in particular A1 is a Lie algebra. Considering
this bracket on SH1(C∗), the formula becomes

[ξn, ξm] = [znθ, zmθ] = ∆(zn+mθ2)−∆(znθ) · zmθ + znθ ·∆(zmθ)

= 0− nzn · zmθ + znθ ·mzm
= (m− n)zn+mθ = (m− n)ξn+m. (11)

In particular, the subspace K〈ξ−1, ξ0, ξ1〉 is closed under the bracket, and is isomorphic to sl2(K).
Indeed, if we define

e = ξ1, h = 2ξ0, f = −ξ−1, (12)

then we have [h, e] = 2e, [h, f ] = −2f and [e, f ] = h.
Now let us consider the mirror of these structures. The mirror of C∗ is the algebraic torus

Gm. On Gm, we consider the cohomology of polyvector fields H∗(Gm,Λ
•TGm) = H0(Gm,OGm)⊕

H0(Gm, TGm). It consists of global functions H0(Gm,OGm) ∼= K[z, z−1] and global vector fields
H0(Gm, TGm) ∼= K[z, z−1] · θ, where

θ = z∂z. (13)

Indeed, the notation is intended to be consistent with the symplectic cohomology picture, as we
shall see. The product is just the algebraic one. We find that θ2 = 0 because this would live in
Λ2TGm .

It remains to consider the Batalin–Vilkovisky operator. Now we must use the Calabi–Yau
structure of Gm, namely the algebraic volume form Ω = dz/z. This defines a contraction operator
from polyvector fields to differential forms ιΩ : H0(Gm,Λ

pTGm) → H0(Gm,Ω
1−p
Gm

), defined for a
function f or a vector field ξ by

ιΩ(f) = fΩ,

ιΩ(ξ) = Ω(ξ).
(14)

On differential forms we have the de Rham differential d, and the Batalin–Vilkovisky operator is
∆ = ι−1

Ω dιΩ. This operation is also called divΩ, the divergence with respect to the volume form
Ω. Note that Ω(θ) = z−1 dz(z∂z) = 1. Now we compute

ιΩ(znθ) = zn, (15)

d(zn) = nzn−1 dz = nznΩ, (16)

ι−1
Ω (nznΩ) = nzn. (17)
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Thus, ∆(znθ) = nzn in the vector field picture as well. Now the same computation as before

shows that the bracket on vector fields is

[znθ, zmθ] = (m− n)zn+mθ. (18)

This is just the differential–geometric Lie bracket on vector fields, as we verify using θ = z∂z:

[zn+1∂z, z
m+1∂z] = zn+1(m+ 1)zm∂z − zm+1(n+ 1)zn∂z = (m− n)zn+m+1∂z. (19)

The sl2 subalgebra we found above now looks like

e = z2∂z, h = 2z∂z, f = −∂z. (20)

Observe that these are precisely the vector fields on Gm that extend to the compactification P1:

e vanishes to second order at zero, h vanishes to first order at zero and infinity, and f vanishes

to second order at infinity, while any other vector field zn+1∂z will have a pole at one of these

points.

4.3 Vector fields on Pr

The prior discussion has a simple generalization to Pr, regarded as a partial flag manifold for

slr+1. We recall the elementary description of vector fields on Pr. Represent Pr as the quotient

of Ar+1\{0} by Gm. The tangent sheaf of Ar+1 is a free sheaf generated by the vector fields

Di = ∂/∂Zi, where Z0, . . . , Zr are coordinates. With respect to the Gm action, the weight of Di

is reciprocal to that of Zi, and so the linear vector fields Eij = ZiDj have weight zero. The Euler

vector field E =
∑r

i=0Eii is tangent to the orbits of the Gm action. To obtain vector fields on

Pr, we restrict to weight-zero (= linear) vector fields, and quotient by the Euler vector field E:

H0(Pr, TPr) = 〈ZiDj | i, j = 0, . . . , r〉/〈Z0D0 + · · ·+ ZrDr〉. (21)

The vector fields Eij = ZiDj span a Lie algebra isomorphic to glr+1, and the Euler vector field

spans the center (= scalar matrices). Thus, the Lie algebra of vector fields on Pr is isomorphic

to slr+1.

Now let U∨ = Pr\{Z0Z1 · · ·Zr = 0} be the complement of the coordinate hyperplanes, and

consider the vector fields on U∨. Since U∨ is isomorphic to an algebraic torus Gr
m, after choosing

coordinates (z1, . . . , zr) and writing ∂i = ∂/∂zi, we may represent vector fields as

H0(U∨, TU∨) = K[z±1
1 , . . . , z±1

r ]⊗ 〈∂1, . . . , ∂r〉. (22)

To see how such vector fields arise from restriction, let us choose affine coordinates zi = Zi/Z0

on Pr\{Z0 = 0}. This is an affine space that contains U∨ as the locus where all zi are non-
vanishing. By testing against a germ of a function on U∨ pulled back to Ar+1\{0}, we compute
this restriction map:
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if i 6= 0 and j 6= 0, ZiDj 7→ zi∂j , (23)

if i = 0 and j 6= 0, Z0Dj 7→ ∂j , (24)

if i 6= 0 and j = 0, ZiD0 7→ −zi
r∑

k=1

zk∂k, (25)

if i = 0 and j = 0, Z0D0 7→ −
r∑

k=1

zk∂k. (26)

The natural Cartan subalgebra h is spanned by the vector fields ZiDi for i = 0, . . . , r (modulo

the relation that their sum is zero), or equivalently by θi = zi∂i for i = 1, . . . , r (which are linearly

independent). Note that this subalgebra h consists precisely of those vector fields that are tangent

to the divisor {Z0Z1 · · ·Zr = 0} that we remove in constructing the mirror.

The mirror Landau–Ginzburg model is U = (C∗)r, with complex coordinates (x1, . . . , xr)

and superpotential W =
∑r

i=1 xi + (
∏r
i=1 xi)

−1. It is possible to homogenize this formula by

considering (C∗)r+1, with coordinates (X0, X1, . . . , Xr) with superpotential W =
∑r

i=0Xi. Then

U is identified with the hypersurface
∏r
i=0Xi = 1, where we set xi = Xi and eliminate X0.

Using the fact that it is isomorphic to the free loop space homology of a torus T r (with

grading k replaced with r − k), the symplectic cohomology SH∗(U) is

SH∗(U) ∼= K[z±1
1 , . . . , z±1

r ]⊗ Λ∗[θ1, . . . , θr] = K[H1(T r;Z)]⊗H∗(T r;K). (27)

Here we have chosen an integral basis (θ1, . . . , θr) of H1(T r;Z), and (z1, . . . , zr) is the dual

integral basis ofH1(T r;Z). The subspace 1⊗H∗(T r;K) is the image of the natural mapH∗(U) →

SH∗(U). In addition to the cohomological grading, there is a grading by H1(T r;Z) ∼= H1(U ;Z)

coming from the left tensor factor, and corresponding to the grading by free homotopy classes of

loops. We use the multi-index notation zn = zn1
1 · · · znr

r . Note that the vector n may be identified

with an element of H1(U ;Z).

Proposition 4.6. The symplectic cohomology SH∗((C∗)r) is isomorphic as a Batalin–

Vilkovisky algebra to the polyvector fields on Gr
m, where the element θi corresponds to

zi∂i, and the BV operator on the latter is the divergence with respect to the volume form

Ω =
∏r
i=1 (dzi/zi), multiplied by (−1)degree+1.

Proof. Since the BV structure is determined by the product and the BV operator, it remains to

match the BV operator with the one on polyvector fields. We can do this using a Morse–Bott

complex for symplectic cohomology, where we obtain a torus of periodic orbits in each homotopy

class n ∈ H1(U ;Z). The generator zn corresponds to the top cycle on this torus, the generators

znθ1, . . . , z
nθr correspond to (r−1)-cycles and a generator such as zn(θi1 ∧· · ·∧ θik) corresponds

to an (r − k)-cycle. The BV operator spins these cycles along the parametrization of the loops,

which acts on the torus by a translation determined by the vector n ∈ H1(U ;Z) ∼= H1(T r;Z).

This spinning is Poincaré dual to contraction with n acting on H∗(T r). Thus, we deduce, for

η ∈ Λ∗(θ1, . . . , θr), that

∆(znη) = zn(ιnη). (28)

Now we compute the BV operator on polyvector fields. Consider a polyvector field

Ξ = zn(zi1∂i1) ∧ · · · ∧ (zik∂ik). (29)
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By reordering the indices, we may assume that ij = j for j = 1, . . . , k. This changes the volume
form Ω by a power of (−1), but does not affect the associated divergence operator. With this
reordering done, we compute the contraction

ιΩΞ = zn
r∏

i=k+1

dzi
zi
. (30)

The differential is

dιΩΞ = zn
k∑
j=1

nj
dzj
zj

r∏
i=k+1

dzi
zi
. (31)

Applying inverse contraction yields

ι−1
Ω dιΩΞ = zn

k∑
j=1

(−1)j−knj
∏

i∈{1,...,k}\{j}

zi∂i. (32)

This matches the symplectic computation of ∆ after multiplication by (−1)k+1. 2

We are particularly interested in degree-one symplectic cohomology:

SH1(U) ∼= K[z±1
1 , . . . , z±1

r ]⊗ 〈θ1, . . . , θr〉. (33)

Corollary 4.7. The Lie algebra SH1(U) is isomorphic to Vect(Gr
m), where θi is identified with

zi∂i, and znθi with zn · zi∂i.
We will sometimes use the notation ξn,i = znθi for either an element of SH1(U) or a vector

field on Gr
m.

By composing the restriction map on vector fields from Pr to Gr
m in equations (23)–(26) with

the isomorphism in Proposition 4.6, we obtain an embedding slr+1(K) → SH1(U). The image
consists of those symplectic cohomology elements that correspond to the vector fields that extend
to Pr. We shall now describe what various structures in slr+1(K) correspond to in symplectic
cohomology. First we observe that, as expected, the Cartan subalgebra h ∼= 1⊗〈θ1, . . . , θr〉 is the
image of H1(U) → SH1(U).

The Lie bracket preserves the grading by H1(T r;Z), which is a lattice in H1(T r;K) ∼= h∗.
In fact, we can identify H1(T r;Z) with the Ar root lattice quite naturally: the latter is
the intersection of the rectangular lattice Zr+1 ⊂ Kr+1 with the subspace where the sum
of the coordinates is zero. On the other hand, the lattice H1(T r;Z) ∼= H1(U ;Z) embeds
into H1((C∗)r+1;Z) since U = {X0X1 · · ·Xr = 1} ⊂ (C∗)r+1. A system of coordinates on
H1((C∗)r+1;Z) is given by integration against the one-forms (2πi)−1X−1

i dXi. The sum of those
one-forms vanishes when restricted to U , and hence evaluates trivially on H1(U ;Z).

With this identification, we see that h sits at zero in H1(T r;Z), just as h sits at zero in the
root lattice, and the other elements of slr+1(K) ⊂ SH1(U) fill out an Ar root system. Explicitly,
the class zi ∈ H1(T r;Z) corresponds to the cycle on U ∼= {(x1, . . . , xr) ∈ (C∗)n} where the ith
coordinate traces a circle and the others are held constant at 1. Embedding this into (C∗)r+1, we
find thatX0 traces a circle in the opposite direction. GiveH1((C∗)r+1;Z)∼= Zr+1 a basis e0, . . . , er
corresponding to integration against the one-forms (2πi)−1X−1

i dXi. Then zi is identified with
the vector ei− e0 in Zr+1. The vector field zi∂j = (zi/zj)θj (i, j 6= 0) corresponds to the element
of the same notation in SH1(U), and its grading is ei − ej . The vector field ∂j = z−1

j θj (j 6= 0)
corresponds to an element with grading e0 − ej . The vector field −zi

∑r
k=1 zk∂k = −zi

∑r
k=1 θk

(i 6= 0) corresponds to an element with grading ei− e0. So, we find that every vector of the form
ea − eb with a, b ∈ {0, . . . , r} appears, and this is precisely the Ar root system.

1093

https://doi.org/10.1112/S0010437X1500771X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1500771X


Y. Lekili and J. Pascaleff

5. Witt algebra representations from SH∗((C∗)r)

Even without considering the equivariant wrapped Fukaya category, the structure of symplectic
cohomology of (C∗)r as a Batalin–Vilkovisky algebra allows us to see a number of representations
of the rth Witt algebra, that is, the Lie algebra Vect(Gr

m) of vector fields on the mirror Gr
m.

The results in § 4 show that SH1((C∗)r) is isomorphic to Vect(Gr
m), and that SH0((C∗)r) is

isomorphic to the Laurent polynomial ring K[z±1
1 , . . . , z±1

r ], which is the ring of functions O(Gr
m).

Much of the structure we will use applies to any Liouville manifold U . Recall that SH∗(U) is
a BV algebra, so the bracket (which is derived from the product and the BV operator ∆) turns
SH∗(U)[1] into a graded Lie algebra, and in particular makes SH0(U) into a Lie module over
SH1(U).

In the case of U = (C∗)r, the Lie module structure is

[znθi, z
m] = ∆(znθiz

m)−∆(znθi)z
m + znθi∆(zm) = ∆(zn+mθi)−∆(znθi)z

m

= (ni +mi)z
n+m − niznzm = miz

n+m. (34)

Since we have matched θi to zi∂i, this is nothing but the natural action of vector fields on
functions. In the case of U = C∗, this simplifies to

[ξi, z
j ] = ∆(ξiz

j)−∆(ξi)z
j + ξi∆(zj) = ∆(ξi+j)−∆(ξi)z

j = (i+ j)zi+j − izizj = jzi+j , (35)

where ξi = ziθ corresponds to zi+1∂z.
It is possible to obtain different actions of SH1(U) on SH0(U) by taking this natural

action, and adding to it a Lie algebra cocycle. Eventually, these cocycles will find their way
into the definition of the cochains cL for equivariant Lagrangian branes, but we begin with an
abstract discussion. If g is a Lie algebra, M a vector space and φ0 : g → End(M) a Lie algebra
representation of g in M , we have a Chevalley–Eilenberg complex C∗(g,End(M)) of g with
coefficients in End(M). If φ1 : g → End(M) is another representation, then the difference defines
a one-cocycle

δφ = φ1 − φ0 ∈ Z1(g,End(M)). (36)

We recall that the cocycle condition for a one-cochain ψ is

ψ([x, y]) = x · ψ(y)− y · ψ(x) (37)

and the action of g on End(M) is the composition of φ0 with the adjoint action.
In our case g = SH1(U) and M = SH0(U), so M is actually an algebra. It is therefore

natural to consider the map L : M → End(M) given by left multiplication. In order for this to
be a map of g-modules, we need for x ∈ g and a, b ∈M ,

L(x · a)(b) = [x, L(a)](b), (38)

(x · a)b = x · (ab)− a(x · b). (39)

That is to say, g acts on M by derivations of the product. This always holds in the case of
SH∗(U), since the BV algebra axioms, as discussed in § 2.1, imply that the Gerstenhaber bracket
and product form an odd Poisson structure. The map L : M → End(M) induces a map on
Chevalley–Eilenberg complexes, and in particular

Z1(g,M) → Z1(g,End(M)). (40)

We are interested in cocycles that have a geometric origin, meaning that they arise from
structures on SH∗(U) that can in principle be computed from the symplectic geometry. For
example, they could be expressible in terms of the BV algebra structure. The most obvious is
the restriction of the BV operator ∆ to SH1(U) mapping to SH0(U).
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Proposition 5.1. Let A• be a BV algebra. Regard A0 as a Lie module over the Lie algebra A1.
Then the BV operator ∆ is a cocycle on A1 with values in A0:

∆ ∈ Z1(A1, A0). (41)

Proof. The cocycle condition reads, for x, y ∈ A1,

∆([x, y]) = [x,∆(y)]− [y,∆(x)]. (42)

The verification of this condition uses the definition of the bracket in terms of ∆ and the fact
that ∆2 = 0. The left-hand side becomes

∆{∆(xy)−∆(x)y + x∆(y)} = −∆(∆(x)y) + ∆(x∆(y)). (43)

The first term on the right-hand side of (42) becomes

∆(x∆(y))−∆(x)∆(y) + x∆2(y) = ∆(x∆(y))−∆(x)∆(y). (44)

The full right-hand side is (44) minus the same expression with x and y swapped. That agrees
with (43) once we use the graded commutativity of A•. 2

In the mirror interpretation, where U∨ is the mirror variety to U , equipped with a volume
form Ω, the condition (42) is the fact that the divergence operator divΩ defines a cocycle on the
Lie algebra of vector fields Vect(U∨) with values in functions O(U∨). The mirror interpretation
suggests many other cocycles as well. For example, any differential form ω ∈ Ωp(U∨) defines a Lie
algebra cochain ω ∈ Cp(Vect(U∨),O(U∨)). In fact, this association defines a chain map of the de
Rham complex of U∨ into the Chevalley–Eilenberg complex of Vect(U∨) with values in O(U∨)
(compare the coordinate-free formula for the exterior differential to the Chevalley–Eilenberg
differential). Thus, closed forms also yield cocycles:

Ωp
closed(U∨) → Zp(Vect(U∨),O(U∨)). (45)

Note that the divergence cocycle is not of this form, since it is a first-order differential operation,
whereas evaluation of a differential form is zeroth order.

In terms of the BV algebra structure, the evaluation df(x) for a vector field x and a function
f corresponds to [x, f ]. Thus, for any degree element f of a BV algebra we obtain a cocycle
[−, f ] (indeed, a coboundary). More interestingly, we can also obtain cocycles from ‘logarithmic
one-forms’ such as f−1 df .

Proposition 5.2. Let A• be a BV algebra and f ∈ A0 an invertible element. Then the operator
f−1[−, f ] : A1

→ A0 is a Lie algebra cocycle.

Proof. We need to show that

f−1[[x, y], f ] = [x, f−1[y, f ]]− [y, f−1[x, f ]]. (46)

First of all, the equation f−1f = 1 and the Poisson property imply that

0 = [x, 1] = [x, f−1]f + f−1[x, f ], (47)

so [x, f−1] = −f−2[x, f ]. Applying the Poisson property to the two terms on the right-hand side
of (46) gives us terms [x, f−1][y, f ]− [y, f−1][x, f ], which cancel out. The remaining terms in the
equation are the cocycle condition for [−, f ], multiplied by f−1. 2
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The variety Gr
m carries invertible functions z1, . . . , zn and the algebraic volume form Ω =∏n

i=1 (dz1/z1). These give a collection of cocycles in H1(Vect(Gr
m),O(Gr

m)):

ξ 7→ dz1

z1
(ξ), . . . , ξ 7→ dzr

zr
(ξ), ξ 7→ divΩ ξ. (48)

These correspond, in H1(SH1((C∗)r), SH0((C∗)r)), to the cocycles

ξ 7→ z−1
1 [ξ, z1], . . . , ξ 7→ z−1

r [ξ, zr], ξ 7→ ∆(ξ). (49)

Remark 5.3. In the case of U = (C∗)r, we expect that the cocycles obtained from the BV operator
and invertible elements are a complete set. We quote the following general result.

Theorem 5.4 [Fuk86, Theorem 2.4.11]. Let M be a smooth oriented manifold, and let ω1, . . . ,
ωk be closed one-forms on M whose cohomology classes form a basis of H1(M ;R). Let div denote
the divergence with respect to a volume form on M . Then H1(Vect(M), C∞(M)) has a basis
consisting of the cohomology classes of the cocycles

ξ 7→ ω1(ξ), . . . , ξ 7→ ωk(ξ), ξ 7→ div ξ. (50)

Our desired result is a version of this for algebraic vector fields and functions on Gr
m, which

is an algebraic version of (C∗)r, which is a complexification of the smooth manifold Tn = (S1)n.

5.1 The case of C∗ and restriction to sl2
We will now specialize Propositions 5.1 and 5.2 to the case where the BV algebra is A• =
SH•(C∗), and see how these cocycles allow us to obtain a number of interesting representations
of SH1(C∗) = Vect(Gm). Recall that ξn = znθ = zn+1∂z. The BV cocycle ∆ gives

∆(ξn) = nzn. (51)

The element z ∈ SH0(C∗) is invertible, and the logarithmic cocycle z−1[−, z] gives

z−1[ξn, z] = zn. (52)

Since cocycles are a linear space, we have for any scalars α and β a cocycle α∆ +βz−1[−, z].
Adding this cocycle to the reference representation φ0 (which is the natural action of SH1(C∗)
on SH0(C∗) by bracket) yields a representation ρα,β of SH1(C∗) on SH0(C∗) given by

ρα,β(ξi)z
j = (j + αi+ β)zi+j . (53)

Observe from this formula that zi 7→ zi+m is an isomorphism between the representations ρα,β
and ρα,β+m. Thus, integral shifts in β do not affect the representation up to isomorphism, though
the fractional part of β is important.

On the mirror side, these representations correspond to those obtained from densities on Gm.
Indeed, the Witt algebra acts on Vα,β, the space of densities of the form

P (z)zβ(dz/z)α, (54)

where P (z) is a Laurent polynomial [KR87]. These representations are reducible for the Witt
algebra if and only if β ∈ Z and α is 0 or 1 [KR87, p. 6]. Every irreducible representation
of the Witt algebra (indeed, of the Virasoro algebra) in which ξ0 acts semisimply with finite-
dimensional eigenspaces is either a subquotient of some Vα,β or a highest-weight or lowest-weight
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representation [Mat92], as originally conjectured by Kac in 1982. The irreducible subquotients
of Vα,β are distinguished within this class by the property that all of the ξ0-eigenspaces have
dimension less than or equal to one [KS85].

The map
K[z, z−1] → Vα,β, zj 7→ zjzβ(dz/z)α (55)

intertwines the representation ρα,β on K[z, z−1] and the natural action on densities by Lie
derivative. Note that α and β are elements of K, so the Lie derivative must be interpreted
in a formal sense.

With some representations of the Witt algebra (∼= SH1(C∗)) in hand, the next step is to
consider the restriction to the finite-dimensional subalgebra sl2 ∼= span{ξ−1, ξ0, ξ1}. We regard
ξ0 as the weighting operator, ξ1 as the raising operator and ξ−1 as the lowering operator. Note
that these conventions may differ from what is found in the literature. In this section we prove
the following theorem.

Theorem 5.5. The representation Vα,β of the Witt algebra, when restricted to the subalgebra
sl2, contains a finite-dimensional sl2 submodule precisely when α is a non-positive half-integer
and α + β is an integer. When these conditions hold, the submodule is unique, and it has
dimension (−2α + 1), meaning that it is isomorphic to the representation of sl2 in degree −2α
homogeneous polynomials in two variables.

Proof. The general problem we are faced with is, given an infinite-dimensional representation of
the Witt algebra, with finite-dimensional weight spaces, to determine whether it contains a
finite-dimensional representation of sl2. For this, a necessary condition is that ξ1 has a non-trivial
kernel, and the same for ξ−1. In the case of the representations ρα,β, the weight spaces are all one
dimensional, with all weights from the set {j + β | j ∈ Z} appearing. The operator ξ1 raises the
weight by 1, and it has a kernel if and only if the quantity j + α + β vanishes (meaning that
the weight is j+β = −α). This yields the necessary condition α+β ∈ Z. Similarly, ξ−1 lowers the
weight by one, and it has a kernel if and only if j − α + β vanishes (meaning that the weight
is j + β = α), yielding the necessary condition −α + β ∈ Z. That α + β and −α + β both be
integral is equivalent to the condition that α and β are half-integral, either both integral or both
strictly half-integral, or, put another way, that 2α and 2β are integral and of the same parity.

Another necessary condition is that the weight space at which ξ1 has a kernel, namely the
space of weight −α, must be at a higher weight than the weight space at which ξ−1 has a kernel,
namely the space of weight α. Thus, we need−α> α, that is, α6 0. These restrict the possibilities
to α ∈ 1

2Z, α 6 0, α + β ∈ Z. Since integral shifts in β do not change the representation up to
isomorphism, we may simply take β = α in every case. With this convention, we are always
looking at densities of the form P (z) dzα.

For each α 6 0, with α ∈ 1
2Z, and choosing β = α, we do indeed obtain a finite-dimensional

representation of sl2. The operator ξ1 has a kernel in the weight space j = −2α, while ξ−1 has a
kernel in the weight space j = 0. The weights of these vectors under ξ0 are j+α, which therefore
run from α 6 0 to −α > 0. Since there is an essentially unique representation of sl2 with these
weights, what we have found is none other than the irreducible representation of sl2 of dimension
(−2α+ 1). 2

Let us consider the mirror interpretation of this. In the standard Borel–Weil picture, the
irreducible representations of sl2 are found in the spaces of global sections of the line bundles
OP1(n) on P1 for n > 0. To connect with the above, set n = −2α. When we restrict the line
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bundles OP1(n) to Gm ⊂ P1, they all become isomorphic to the structure sheaf OGm , but they

retain different infinitesimal sl2-equivariant structures. There is a natural reason why densities

arise when we want to recover these different structures. IfX is a variety andD is an anticanonical

divisor, then the canonical bundleKX is trivial onX\D, and any two vector bundles that differ by

tensoring with the canonical bundle become isomorphic on X\D. The divergence cocycle is what

allows us to recover the different equivariant structures given by tensoring with the anticanonical

bundle, and shifting the action by the divergence cocycle corresponds to multiplying the sections

by the volume form Ω = dz/z.

In the case of P1, the canonical bundle has a square root, which is why we must consider

densities of half-integral weight in order to obtain equivariant structures corresponding to all of

the line bundles on P1. For example, the sections of the line bundle OP1(1) correspond to the

densities of weight −1/2, such as P (z) dz−1/2, where P (z) is a polynomial of degree at most one.

Upon restriction to Gm, P (z) is allowed to be a Laurent polynomial.

6. Action on Lagrangian branes

6.1 Equivariant structures on a single Lagrangian

Let L denote the real positive locus (R+)r contained in (C∗)r. This Lagrangian submanifold

is also known as a cotangent fiber of T ∗T r. We will apply the general theory of equivariant

Lagrangian branes developed in § 3 to this object. We will find that L is SC1((C∗)r)-invariant,

and can be made SC1((C∗)r)-equivariant in several essentially different ways, meaning that it

supports several equivariant structures. When restricting to the case of r = 1, we then recover

representations of sl2 by taking the hom space between two copies of L equipped with different

equivariant structures.
Recall the maps

Φ0
1 : SC∗((C∗)r) → CW ∗(L,L), (56)

Φ1
1 : SC1((C∗)r) → End(CW ∗(L,L)). (57)

Since these maps are somewhat sensitive to the perturbation scheme chosen, we spell out the

assumptions that we need for our computations.

(1) The symplectic chain complex SC∗((C∗)r) is concentrated in degrees zero through n, and

the differential vanishes.

(2) The wrapped Floer complex CW ∗(L,L) is concentrated in degree zero, and hence has

vanishing differential.

(3) The ring structure on CW 0(L,L) is commutative.

(4) The map Φ0
1 : SC0((C∗)r) → CW 0(L,L) is an isomorphism of commutative rings.

Assumption (1) may be achieved by a suitable time-dependent perturbation of a Morse–Bott

model for symplectic cohomology. Assumption (2) is achieved by working with a Hamiltonian

that is suitably convex. In light of assumption (2), the next assumption (3) makes sense,

since the chain complex CW 0(L,L) is isomorphic to its cohomology. Then assumptions (3)

and (4) are computations, which follow from the results of Abouzaid on the wrapped Floer

cohomology of cotangent fibers [Abo12]. Explicitly, HW 0(L,L) is isomorphic to the based

loop-space homology of T r, which is the Laurent polynomial ring K[z±1
1 , . . . , z±1

n ], justifying

assumption (3). Furthermore, SH0((C∗)r) is isomorphic to the same ring, and the map Φ0
1 is

homogeneous with respect to the H1((C∗)r;Z) grading that corresponds to the natural Zr grading
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on the Laurent polynomial ring. Then assumption (4) follows from the fact that a homogeneous
unital homomorphism from the Laurent polynomial ring to itself must be an isomorphism.

As before, we denote by zn the generator SC0((C∗)r) in the homotopy class of loops
representing n ∈H1((C∗)r;Z), and by ξn,i = znθi, i= 1, . . . , r, the generators of SC1((C∗)r) in the
same homotopy class. To avoid confusion, we use a subscript L for the generators of CW 0(L,L),
so that znL denotes the generator corresponding to a Hamiltonian chord. Then assumption (4)
means more precisely that Φ0

1(zn) = znL.

Proposition 6.1. The object L is SC1((C∗)r)-invariant. An arbitrary map cL : SC1((C∗)r) →

CW 0(L,L) satisfies µ1 ◦ cL = Φ0
1.

Proof. We must show that Φ0
1 maps SC1((C∗)r) to coboundaries in CW 1(L,L). This is clear

because the target vector space is zero by assumption (2). The second assertion holds for the
same reason. 2

Proposition 6.2. The map Φ1
1 : SC1((C∗)r) → End(CW 0(L,L)) is a map of Lie algebras. The

isomorphism Φ0
1 : SC0((C∗)r) → CW 0(L,L) intertwines the action of SC1((C∗)r) on SC0((C∗)r)

with Φ1
1.

Proof. Under assumptions (1) and (2), Proposition 3.9 reads

Φ0
1([a, b]) = Φ1

1(a)Φ0
1(b) + (−1)|a||b|Φ1

1(b)Φ0
1(a). (58)

Now we apply this to a = zmθi ∈ SC1((C∗)r) and b = zn ∈ SC0((C∗)r). Since Φ0
1(a) = 0, this

reduces to
Φ0

1([zmθi, z
n]) = Φ1

1(zmθi)Φ
0
1(zn) = Φ1

1(zmθi)(z
n
L). (59)

Since [zmθi, z
n] = niz

m+n, we find that

nzm+n
L = Φ1

1(ξm)(znL). (60)

This shows that SC1((C∗)r) acts through Φ1
1 on the ring CW 0(L,L) just as it acts by bracket

on SC0((C∗)r), with the isomorphism Φ0
1 intertwining them, and the latter action is known to

define a map of Lie algebras. 2

Remark 6.3. The preceding proof relies on having a known form for the closed–open map Φ0
1,

but there is another argument that is more in line with the abstract theory, that relies on
assumptions (2) and (3). Let L denote the full subcategory of the wrapped Fukaya category
having L as its only object. The closed–open map defines a Lie map (actually part of an L∞ map)

Φ1 : SH1((C∗)r) → HH1(L). (61)

The combination of assumptions (2) and (3) implies that HH1(L) is the space of derivations
of the algebra CW 0(L,L), so, in particular, this map actually lands in endomorphisms of CW 0

(L,L), and it is known to be a Lie map.

We can equip the Lagrangian L with various cochains cL making it SC1((C∗)r)-invariant.
We pick some reference cochain c0 (which might as well be zero). The map Φ1

1 is a representation
of SC1((C∗)r) on CW 0(L,L), and if we twist it as in Corollary 3.5, using c0 for both copies of
L, we obtain

ρc0,c0(ξ)(f) = Φ1
1(ξ)(f)− µ2(c0(ξ), f) + µ2(f, c0(ξ)), (62)
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where ξ ∈ SC1((C∗)r) and f ∈ CW 0(L,L). We have chosen to emphasize the dependence on the
cochains c0, c0. Now, by the commutativity assumption (3), the µ2 terms cancel out, and thus

ρc0,c0(ξ)(f) = Φ1
1(ξ)(f) (63)

and the action on CW 0(L,L) is not sensitive to the choice of c0.
To change the action in a non-trivial way, we can modify the choice of cL for one copy of L

but not the other. Take a map γ : SC1((C∗)r) → CW 0(L,L), use cL = c0 + γ for the first copy
of L and retain c0 for the second copy. Then we find that

ρc0+γ,c0(ξ)(f) = ρc0,c0(ξ)(f) + µ2(f, γ(ξ)) = Φ1
1(ξ)(f) + µ2(f, γ(ξ)). (64)

A similar shift happens if we modify the cL for the second copy of L. This is summarized as the
following proposition.

Proposition 6.4. Let c1 and c2 be two maps SC1((C∗)r) → CW 0(L,L). Using c1 for the first
copy of L and c2 for the second copy of L, the linear map ρc1,c2 of SC1((C∗)r) on CW 0(L,L) is
given by

ρc1,c2(ξ)(f) = Φ1
1(ξ)(f) + µ2(c1(ξ)− c2(ξ), f). (65)

The map ρc1,c2 : SC1((C∗)r) → End(CW 0(L,L)) is a Lie map if and only if c1 − c2 is a cocycle
in the Chevalley–Eilenberg complex of SC1((C∗)r) with values in the module CW 0(L,L), where
the latter space is regarded as a module via Φ1

1.

Proof. The expression for ρc1,c2 follows from the discussion preceding the proposition and the
commutativity assumption (3). The second assertion is standard (and we already used it in the
discussion of cocycles on SH1((C∗)r)). 2

Remark 6.5. The fact that the difference c1−c2 should be a Lie algebra cocycle is already evident
in the definition of an equivariant Lagrangian. Under assumptions (1)–(3), the equation that cL
ought to solve is

cL([x, y])− Φ1
1(x)(cL(y)) + Φ1

1(y)(cL(x)) + Φ0
2(x, y) = 0 (66)

and the first three terms on the left-hand side are the Chevalley–Eilenberg differential of cL.
Therefore, the difference of two solutions of this equation is a Chevalley–Eilenberg cocycle.

We can obtain cocycles γL : SC1((C∗)r) → CW 0(L,L) using the results of § 5. Let γ ∈
Z1(SC1((C∗)r), SC0((C∗)r)) be a Lie algebra cocycle; for example, we could take the cocycles
considered before:

γ = α∆ + β1z
−1
1 [−, z1] + · · ·+ βrz

−1
r [−, zr] (67)

and set

γL = Φ0
1 ◦ γ : SC1((C∗)r) → CW 0(L,L). (68)

Now because Φ0
1 is an isomorphism (assumption (4)) that intertwines the actions of SC1((C∗)r)

on SC0((C∗)r) and CW 0(L,L) (Proposition 6.2), it induces an isomorphism between the spaces
of Lie algebra cocycles with values in these two modules. Thus, γL is indeed a cocycle.

For example, in the case of C∗, we have the following proposition.
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Proposition 6.6. Choose c1 and c2 such that

c1 − c2 = γL = Φ0
1 ◦ (α∆ + βz−1[−, z]). (69)

Then the map ρc1,c2 is a Lie algebra representation of SC1(C∗) on CW 0(L,L). This
representation is isomorphic to the representation Vα,β of scalar densities of the form
P (z)zβ(dz/z)α.

Proof. The discussion preceding the proposition makes the first assertion clear. The second is a
consequence of the discussion in § 5 and the fact that Φ0

1 is an isomorphism by assumption (4). 2

We can restrict our whole discussion to the subalgebra sl2 inside SC1(C∗), and we find once
again that, when α is a non-positive half-integer, and α + β is integral, the representation of
sl2 on CW 0(L,L) contains a unique finite-dimensional submodule, which is isomorphic to the
(−2α+ 1)-dimensional irreducible representation of sl2.

We can obtain all representations of sl2 by placing different equivariant structures on
the single Lagrangian L, but one could object that this process is somewhat artificial: the
representations actually arise inside a representation of the Witt algebra in densities, obtained
by choosing a rather artificial cochain cL, and taking the restriction to sl2. In a sense, once
we find the representation of the Witt algebra in Laurent polynomials, the rest is an algebraic
formality. In this section we will see a way in which the finite-dimensional representations of sl2
are more naturally implied by the geometry of C∗ and its Lagrangian submanifolds.

We begin by summarizing the construction. Start with the Lagrangian L (the real positive
locus) considered above. Then, for each n ∈ Z, we construct another Lagrangian L(n) (as in
Figure 1) which is the image of L under the nth power of the Dehn twist about the core circle
S1 ⊂ C∗ (the zero section in T ∗S1). Thus, L= L(0). Now, in contrast to the previous construction,
we equip all Lagrangians with cochains cL(n) ≡ 0. It turns out that, with this choice, and for
n > 0, HW 0(L,L(n)) becomes a representation of SH1(C∗). Next, we look more closely at the
generators of HW 0(L,L(n)), which are either intersection points of L and L(n), or chords from
L to L(n). Let V (n) ⊂ HW 0(L,L(n)) be the subspace spanned by the intersection points (which
is to say, not including the chords of positive length). We show, using geometric arguments,
that V (n) is stable under sl2, and furthermore that its weight spaces (under the action of the
Cartan subalgebra H1(C∗) ⊂ sl2 ⊂ SH1(C∗)) are one dimensional. This determines V (n) as the
irreducible representation of highest weight n. The details follow.

To construct L(n), we use the Dehn twist about the core circle S1 = {|z| = 1} ⊂ C∗. This
is a compactly supported symplectic automorphism of C∗, which is unique up to isotopy, and
we choose a representative τ that is supported in a particular annulus A ⊂ C∗. We regard the
choice of A as decomposing C∗ into several parts: an interior given by A itself, and two ends,
the components of C∗\A. We define L(n) = τnL, and we call it the nth twist of L. Note well
that, on the ends of C∗, L and L(n) coincide, as we will make use of this later. With respect
to the decomposition, we choose a Hamiltonian to define the wrapped complex CW ∗(L,L(n))
that is small (essentially zero) on the interior, and grows on the ends. The wrapped complex
CW ∗(L,L(n)) has generators given by chords of the Hamiltonian flow starting on L and ending
on L(n). Each chord has an action, which is roughly a measure of its length. Since we assume that
the wrapping Hamiltonian is small in the interior, each intersection point between L and L(n)
gives rise to a ‘short’ chord with small action. By an abuse of language we call these generators
in CW ∗(L,L(n)) intersection generators. Also, on the end where L and L(n) coincide, we obtain
chords of various actions, the smallest of which corresponds to an intersection between L and a
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small perturbation of L(n) on that end. We declare these generators to be intersection generators
as well. The other chords, which ‘go all the way around’ C∗, we call proper chord generators.
With an appropriate choice of τ and the wrapping Hamiltonian H, we can ensure the following
assumption in addition to assumptions (1)–(4).

(5) If n > 0, then all generators of CW ∗(L,L(n)) lie in degree zero; hence, the differential
vanishes.

In the case where n < 0, this assumption will not be possible to satisfy, and in the case where
n = 0, it would conflict with assumption (2). When computing CW ∗(L,L), we want to use a
Hamiltonian that creates only one intersection generator, namely the element 1L ∈ CW 0(L,L),
whereas the above prescription would create two degree-zero intersection generators, one in each
end, and hence an odd generator in the interior to compensate, giving the same cohomology.

We also need to use the wrapped complex CW ∗(L(n), L(n)), and for this we use the same
perturbation scheme as for L, in the sense that we take the image of this scheme under the
automorphism τn. With this choice, we obtain the following assumption.

(6) The wrapped complex CW ∗(L(n), L(n)) is concentrated in degree zero, and

(τn)∗ : CW 0(L,L) → CW 0(L(n), L(n)) (70)

is a ring isomorphism.

With this setup in place, we begin our derivation. Fix some n > 0.

Proposition 6.7. Both L and L(n) are SC1(C∗)-invariant, with cochains cL = 0 and cL(n) = 0.

Proof. This is clear by assumptions (2) and (5). 2

The choice cL = 0 makes L equivariant in the sense of Definition 3.10 if only if the term
Φ0

2(gα, gβ) vanishes. This obstruction is potentially different for every object, so we include the
object as a subscript. There is a relationship between Φ0

2,L and Φ0
2,L(n).

Lemma 6.8. The isomorphism (τn)∗ : CW 0(L,L) → CW 0(L(n), L(n)) intertwines the maps
Φ0

2,L and Φ0
2,L(n):

(τn)∗ ◦ Φ0
2,L = Φ0

2,L(n) : SC1(C∗)⊗2
→ CW 0(L(n), L(n)). (71)

Proof. Here we use the fact that the symplectic automorphism τ acts on SC1(C∗) by the identity
map, for the simple reason that it is compactly supported, so does not affect the generators in
the ends, and it acts by identity on the cohomology of the interior. Thus, if we apply the map τn

to the moduli space of curves computing the coefficient of x ∈ CW 0(L,L) in Φ0
2,L(a, b), we obtain

a moduli space that computes the coefficient of (τn)∗(x) ∈ CW 0(L(n), L(n)) in Φ0
2,L(n)(a, b). 2

Proposition 6.9. The pair (L,L(n)) is equivariant as a pair (Definition 3.12). Thus, the map
(Φ1

1)L,L(n) : SC1(C∗) → End(CW 0(L,L(n))) is a map of Lie algebras.

Proof. Taking cL = 0 and cL(n) = 0 in Definition 3.12, we find that all that is required is to show
that

µ2(Φ0
2,L(n)(a, b), x)− µ2(x,Φ0

2,L(a, b)) (72)
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is a coboundary; since the relevant complex has only a single degree this means to show that (72)
is zero. To interpret this expression, note that CW 0(L,L(n)) is a CW 0(L(n), L(n))–CW 0(L,L)
bimodule, and we are comparing the right action of Φ0

2,L to the left action of Φ0
2,L(n). Now we

use the observation that L and L(n) are isomorphic in the wrapped Fukaya category, and in fact
any pure generator (intersection point or chord) x0 ∈ CW 0(L,L(n)) furnishes an isomorphism.
Pick such an x0. We obtain isomorphisms µ2(−, x0) : CW 0(L(n), L(n)) → CW 0(L,L(n)) and
µ2(x0,−) : CW 0(L,L) → CW 0(L,L(n)), and by composition of the latter with the inverse of
the former, an isomorphism CW 0(L,L) → CW 0(L(n), L(n)). We claim that this isomorphism
coincides with (τn)∗. Both maps are ring isomorphisms that preserve the relative H1(C∗;Z)-
grading, so one must only check that both isomorphisms map the generator zL to the generator
zL(n) (each representing a chord that winds once around the cylinder). This is obvious for (τn)∗,
and for the other map it follows from a direct computation of the triangle products µ2(x0, zL)
and µ2(zL(n), x0), which are equal. Thus, for y ∈ CW 0(L,L), we have

µ2((τn)∗y, x) = µ2(x, y). (73)

Applying this with y = Φ0
2,L(a, b), and applying Lemma 6.8, we see that (72) is zero. 2

The preceding proposition justifies our choices of cL = 0 and cL(n) = 0, as, with these choices,
we do indeed obtain a representation ρ = (Φ1

1)L,L(n) of SC1(C∗) on CW 0(L,L(n)). It remains
to determine what representation of SC1(C∗) or of sl2 is obtained in this way. It is challenging
to compute all of the moduli spaces involved in this action, but we can determine some of the
structure geometrically.

Before continuing, it will be useful to consider a more general situation into which our pair
(L,L(n)) falls. Suppose that L0 and L1 are exact Lagrangian submanifolds in a Liouville domain
U , possibly non-compact, which are Lagrangian isotopic, although we do not require that the
isotopy be compactly supported. The pair L has this property, since L(n) is obtained by wrapping
L at both ends. Note that this construction is not related to the map τn considered above. The
following proposition describes the continuation element associated to an isotopy connecting L0

to L1, and also a ‘higher-order’ continuation element describing how the SH1(U) action changes.

Proposition 6.10. The isotopic Lagrangians L0 and L1 are isomorphic in the (non-equivariant)
wrapped Fukaya category of U . Associated to an isotopy L = {Lt}t∈[0,1] taking L0 to L1, there
is an element

κ0,L ∈ CW 0(L0, L1) (74)

such that µ2(κ0,L,−) induces an isomorphism

KL : HW ∗(L0, L0) → HW ∗(L0, L1). (75)

There is a map
κ1,L : SC1(U) → CW 0(L0, L1) (76)

such that if we further assume that the Lagrangian L0 satisfies (Φ0
1)L0 = 0,

KL ◦ (Φ1
1)L0,L0(ξ)− (Φ1

1)L0,L1(ξ) ◦KL + µ2(κ1,L(ξ),−) = terms involving µ1 or d. (77)

If we further assume that L0 is connected and simply connected (implying that L1 is as well),
so that the wrapped Floer groups carry relative H1(U ;Z) gradings, then the element κ0,L is
homogeneous with respect to the relative H1(U ;Z) grading, and the maps KL and κ1,L are
homogeneous with respect to the relative H1(U ;Z) gradings.
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Proof. The element κ0,L and map KL are the standard continuation element and map,
respectively. The element κ0,L is defined by counting disks with a moving boundary condition
determined by the isotopy L. It in fact determines isomorphisms

µ2(κ0,L,−) : HW ∗(L,L0) → HW ∗(L,L1) (78)

for any L, and KL is the case of L = L0. The map KL is also determined by counting strips with
L0 on one side, and a moving boundary condition determined by L on the other.

Because it is defined by counting maps of a disk to U , the element κ0,L is homogeneous
with respect to the relative grading. Indeed, any chord from L0 to L1 that appears in κ0,L is
homotopic via the holomorphic disk to a path γ : [0, 1] → U such that γ(t) ∈ Lt. Post-composing
these paths with the reverse isotopy yields a path γ̄ : [0, 1] → U such that γ̄(t) ∈ L0 for all t.
Via this process, the grading difference between two chords contributing to κ0,L is measured by
a loop in L0. Since L0 is assumed simply connected, the difference must be zero.

The proof of homogeneity of the map KL is similar. We use the fact that the isotopy L
determines a bijection between homotopy classes of paths from L0 to L0 and homotopy classes
of paths from L0 to L1. Each strip contributing to KL then witnesses that the input and output
have gradings that are related by that bijection.

The element κ1,L : SC1(U) → CW 0(L0, L1) is defined by counting disks with one input
and one boundary puncture, and with a moving boundary condition determined by L. The
presence of the moving boundary condition changes the number of degrees of freedom in the
domain, and we consider a one-dimensional parameter space where the interior puncture is
allowed to move along a horizontal line in the domain. This gives κ1,L degree −1 as desired. The
interior puncture is asymptotic to an orbit ξ ∈ SC1(U). To prove the relation (77), we consider
a one-dimensional moduli space of strips with an interior puncture, one boundary condition
constant on L0 and the other determined by L. The space of domains has dimension two in
this case, parametrized by the position of the interior puncture. The degenerations where the
interior puncture collides with one of the boundary punctures give the terms involving KL. The
degeneration where the interior puncture approaches the boundary with the moving boundary
condition yields the term µ2(κ1,L(ξ),−). When the interior puncture approaches the boundary
with the constant L0 condition, we obtain a degeneration combining Φ0

1 ∈ CW 1(L0, L0) with
a disk that resembles µ2 but has a moving boundary condition on one edge. By hypothesis,
we can discard these terms, and all other boundary components, either the differential µ1 on
CW ∗(L0, L0) or CW ∗(L0, L1) or the differential d on SC∗(U).

The last assertion is that κ1,L is homogeneous with respect to the absolute grading on SC1(U)
and the relative grading on CW 0(L0, L1). This means that we regard both gradings as relative,
and claim that κ1,L preserves grading differences. Again, this follows from the topology of the
surfaces used in the definition. 2

Remark 6.11. An important observation connecting the previous proposition to the general
theory is that the element κ1,L can be identified with the cocycle measuring the difference
between the action of SC1(U) on CW 0(L0, L0) and the action on CW 0(L0, L1).

We now consider the action of the Cartan subalgebra H1(C∗) ⊂ SC1(C∗), spanned by the
generator ξ0.

In the case of L and L(n) in C∗, each component of CW 0(L,L(n)) with respect to the relative
H1(C∗;Z)-grading has rank one. As ξ0 is represented by a contractible loop, its action preserves
the H1(C∗;Z)-grading, and so acts diagonally on the basis of chords. The following proposition
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gives information about the eigenvalues of Φ1
1(ξ0). This is a special case of a result due to Nick

Sheridan, although our proof is particular to our special case.

Proposition 6.12. Let λ(x) denote the eigenvalue of Φ1
1(ξ0) on the generator x ∈ CW 0(L,

L(n)). Consider two generators x1, x2, and denote by [x1]− [x2] ∈ H1(C∗;Z) the relative grading
difference between them. We have

λ(x1)− λ(x2) = 〈ξ0, [x1]− [x2]〉, (79)

where the right-hand side denotes the pairing between ξ0, thought of as an element of H1(C∗) ⊂
SH1(C∗), with a class in H1(C∗;Z).2

Proof. First we observe that the statement is true for the representation CW 0(L,L) considered
previously. The generator x = zn satisfies λ(zn) = n, and also the relative grading of zn1 and
zn2 is (n1−n2)[S1] ∈ H1(C∗;Z). Since 〈[ξ0], [S1]〉 = 1, both sides reduce to n1−n2. Also observe
that, for CW 0(L,L), the relative grading by H1(C∗;Z) may be enhanced to an absolute grading,
by declaring the identity element 1 to have grading zero. This absolute grading corresponds to
the homology classes of Reeb chords starting and ending on L.

Now we use the continuation elements defined in Proposition 6.10. Let L be an isotopy
between L0 = L and L1 = L(n), and κ0,L ∈ CW 0(L,L(n)) and κ1,L : SC1(C∗) → CW 0(L,L(n))
be the continuation elements. Since ξ0 is a contractible loop, we find that κ1,L(ξ0) and κ0,L lie in
the same graded component of CW 0(L,L(n)). Since the graded components are one dimensional,
we have a proportionality

κ1,L(ξ0) = εκ0,L (80)

for some ε ∈ K.
Now equation (77) reads

KL ◦ (Φ1
1)L0,L0(ξ)− (Φ1

1)L0,L1(ξ) ◦KL + µ2(εκ0,L,−) = 0. (81)

Insert the element zn ∈ CW 0(L,L) into the equation to obtain

nK(zn)− (Φ1
1)L,L(n)(ξ0)(K(zn)) + εK(zn) = 0. (82)

This shows that (Φ1
1)L,L(n)(ξ0) has eigenvalue n+ ε on K(zn).

To conclude, the difference between the eigenvalues of (Φ1
1)L,L(n)(ξ0) on K(zn1) and K(zn2) is

once again n1−n2. Because the map K preserves the relative H1(C∗;Z)-grading, the expression
〈ξ0, [K(zn1)]− [K(zn2)]〉 also equals n1 − n2. 2

Corollary 6.13. The weight spaces of CW 0(L,L(n)), under the action of Φ1
1(ξ0), are one

dimensional.

Next, we consider the generator ξ1 ∈ SC1(C∗). Geometrically, this generator lies in one end of
C∗. This end also contains some of the chords contributing to CW 0(L,L(n)). Let v+ ∈ CW ∗(L,
L(n)) denote the intersection generator closest to this end, so that all other generators further
into the end are proper chord generators. Symmetrically, considering the action ξ−1 on the
opposite end of C∗, we find an intersection generator v− that is closest to that end.

2 Dangerous bend: the class of ξ0 in H1(C∗) is not zero even though ξ0 is represented in symplectic cohomology
by a contractible loop.
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Proposition 6.14. We have Φ1
1(ξ1)(v+) = 0 and Φ1

1(ξ−1)(v−) = 0.

These statements are consequences of the following more general proposition. To set this up,
we note that on the ends, L and L(n) coincide, and so if we restrict our attention to generators
on a single end, there is a bijection between chords from L to L(n) and chords from L to L at
that end.

In what follows, we will actually use a perturbed copy of L. This L̃ is obtained by pushing
L off of itself by a small amount in the direction of the Hamiltonian flow, as shown at the
top of Figure 2. Thus, L̃ and L intersect in one point, which has degree zero as a morphism
from L̃ to L. Because L̃ is a small push off of L by the wrapping Hamiltonian itself, the Floer
complex CW ∗(L̃, L) is naturally identified with CW ∗(L,L). The chords are essentially the same;
they are just slightly shorter in CW ∗(L̃, L). The continuation element κ0 ∈ CW 0(L̃, L) from
Proposition 6.10 is given by the unique intersection point. This identification is also compatible
with the closed–open string maps such as Φ1

1, so the SC1(C∗) action on CW 0(L̃, L) corresponds
to the action CW ∗(L,L), and both are the action of vector fields on functions in the mirror
interpretation.

The continuation element κ0 also relates CW ∗(L,L(n)) to CW ∗(L̃, L(n)), and the action of
SC1(C∗) on CW ∗(L,L(n)) corresponds to the action on CW ∗(L̃, L(n)).

Having done the perturbation, we will also modify the Hamiltonian slightly, so that there is
a region in the middle of C∗ where no wrapping occurs. This region should contain all of the
intersection points between L̃ and L(n).

Comparing the two pairs (L̃, L) and (L̃, L(n)), we see that the ends of these pictures resemble
each other. Thus, there are some correspondences for certain chords for the pair (L̃, L) with
certain chords for the pair (L̃, L(n)). To spell this out, we denote by ζk the chord that winds k
times around the cylinder, where ζ0 is the intersection point, and ζk lies in the right-hand end
of the figure. For the pair (L̃, L(n)), we have the intersection point v+ that is right-most in the
figure, and further to the right of it we find chords that we denote by v+,k, for k > 0, which
wind k times around the cylinder, and write v+,0 = v+. We can set up a bijection between these
two sets of generators by mapping ζk to v+,k for k > 0. We call this bijection [+. In symmetrical
fashion, we have generators v− = v−,0 and v−,k for k 6 0 of CW 0(L̃, L(n)) in the other end
of C∗, and we can set up a bijection between these and the chords ζk for k 6 0. We call this
bijection [−.3

Proposition 6.15. Suppose that n > 0. For j > 0, k > 0, the action of (Φ1
1)L̃,L(n)(ξj) on the

generators v+,k corresponds to the action of (Φ1
1)L̃,L(ξj) on the generators ζk. That is,

(Φ1
1)L̃,L(n)(ξj)(v+,k) = [+((Φ1

1)L̃,L(ξj)(ζk)) = k · v+,k+j . (83)

Symmetrically, for j < 0, k 6 0, the action of (Φ1
1)L̃,L(n)(ξj) on v−,k corresponds to the action of

(Φ1
1)L,L(ξj) on v−,k:

(Φ1
1)L̃,L(n)(ξj)(v−,k) = [−((Φ1

1)L̃,L(ξj)(ζk)) = k · v−,k+j . (84)

Proof. We first consider the statement for j > 0, k > 0. The key point to be justified is that
the pseudo-holomorphic curves contributing to (Φ1

1)L̃,L(n)(ξj) are contained in the end where ξj ,

3 These bijections should not be regarded as parts of a single correspondence between generators of CW 0(L̃, L)
and CW 0(L̃, L(n)).
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Figure 2. Stretching the neck to compute the action.

v+,k and v+,k+j lie, while the curves contributing to (Φ1
1)L̃,L(ξj) are entirely contained in the

end where ξj , ζk and ζk+j lie. Once this is shown, we know that the counts of maps must match

because the configuration of Lagrangians in these regions is geometrically the same.

To establish this, we will apply a neck-stretching deformation of the problem, and show that

in the limit, the curves are entirely contained in the end. This implies that there is some finite

deformation having this property.

The neck-stretching deformation we use for the pair (L̃, L(n)) involves stretching off the ends

of the manifold, including the generators v+ and v− in their respective ends. This splits the target

C∗ into three copies of C∗, an end U+ containing v+, an end U− containing v− and the interior

U0 containing all the other intersection points, as shown in the bottom half of Figure 2. (This

is only possible if n > 0.) Of course, the neck-stretching process may cause parts of the pseudo-

holomorphic curves contributing to (Φ1
1)L̃,L(ξj)(v+,k) to break off and remain in the interior. The

sort of components that may appear in the interior are either holomorphic planes asymptotic to

Reeb orbits, or holomorphic half-planes with boundary on one of the Lagrangians L or L(n) that

are asymptotic to Reeb chords. Both types of curves do not exist in U0 for topological reasons:

the former because the Reeb orbits are not contractible, the latter because the Lagrangians are

simply connected and the Reeb chords are not contractible. Thus, there is a finite point in the

neck-stretching process where all holomorphic curves are contained in the relevant end.
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The deformation for the pair (L̃, L) is asymmetrical. We stretch along one circle splitting
the cylinder into two parts W0 and W+, so that the generators ζk for k > 0 all end up in W+

in the limit, while the chords ζk for k < 0 end up in W0, as shown in the top half of Figure 2.
Once again, the limit configurations of curves contributing to (Φ1

1)L̃,L(ξj)(ζk) for k > 0 can have
no components in W0 for topological reasons. And, thus, there is a point in the neck-stretching
process where all curves are contained in the relevant end.

Finally, comparing the pictures in U+ and W+, we find that they are the same, showing that
the action of ξj on the v+,k generators is identified with the action on the ζk generators, for k > 0.

In order to analyze the case where j < 0, k 6 0, we could apply a different deformation to
the pair (L̃, L), splitting the cylinder into W ′− and W ′0, so that the generators ζk for k 6 0 end
up in W ′−. The rest of the argument follows mutatis mutandis. Alternatively, we can use the

automorphism of the cylinder that switches the two ends and maps L̃, L and L(n) to themselves.
This brings us back into the previous case. This gives the desired result, once we realize that
this automorphism actually maps ξj to −ξ−j , due to the fact that the definition of ξj requires
an orientation on the core S1 ⊂ C∗, which is reversed by the automorphism. 2

It remains to tie these propositions together. Let V (n) ⊂ CW 0(L,L(n)) denote the space
spanned by the intersection generators, and consider the action of sl2 = 〈ξ−1, ξ0, ξ1〉 on this
space. We regard ξ0 as the grading operator, ξ1 as the raising operator and ξ−1 as the lowering
operator. Proposition 6.14 says that v+ is a highest-weight vector for sl2, implying that the span
of all the weight spaces below this one is stable under sl2. Symmetrically, Proposition 6.14 says
that v− is a lowest-weight vector for sl2, and we conclude that the span of the weight spaces
between v+ and v− is stable under sl2. This span is precisely V (n). Furthermore, because all
the weight spaces are one dimensional, and the total dimension is n + 1, we conclude that the
representation is irreducible. Thus, we have proved the following theorem.

Theorem 6.16. The subspace V (n) ⊂ CW 0(L,L(n)) spanned by the intersection generators is
stable under the action of sl2 via (Φ1

1)L,L(n). It is an irreducible representation of sl2 isomorphic
to the representation in homogeneous polynomials of degree n in two variables.
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