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(B,N)-Pairs; Parabolic, Levi, and Reductive
Subgroups; Centralisers of Semi-Simple

Elements

3.1 (B, N)-Pairs

We review properties of reductive groups related to existence of a (B,N)-pair.
For an abstract group, having a (B,N)-pair is a very strong condition; many of
the theorems we will give for reductive groups follow from this single property.

Definition 3.1.1 We say that two subgroups B and N of a group G form a
(B, N)-pair (also called a Tits system) for G if:

(i) B and N generate G and T := B ∩ N is normal in N.

(ii) The group W := N/T is generated by a set S of involutions such that:

(a) For s ∈ S, w ∈ W we have BsB.BwB ⊂ BwB ∪ BswB.

(b) For s ∈ S, we have sBs � B.

The group W is called the Weyl group of the (B,N)-pair. Note that we write
elements of W – instead of representatives of them in N – in expressions rep-
resenting subsets of G when these expressions do not depend upon the chosen
representative.

We will see in 3.1.3(v) that under the assumptions of 3.1.1 we have S = {w ∈
W − {1} | B ∪ BwB is a group}, thus S is determined by (B,N).

Proposition 3.1.2 If G is a connected reductive group and T ⊂ B is a pair of
a maximal torus and a Borel subgroup, then (B,NG(T)) is a (B,N)-pair for G.

Proof We show first that B ∩ NG(T) = T. By 1.3.1(iii) we have NB(T) =
CB(T) ⊂ CG(T) = T (see 2.3.1(iii)). By definition T is normal in NG(T).
To prove (i) it remains to show that B and NG(T) generate G. Let Φ+ be the
positive subsystem defined by B. By 2.3.1(vi), B contains all the Uα (α ∈ Φ+).
Since sα conjugates Uα to Usα (α) = U−α , the group generated by B and NG(T)
contains T and all the Uα (α ∈ Φ), thus by 2.3.1(v) this group is equal to G.
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40 (B,N)-Pairs; Parabolic and Reductive Subgroups

If Π is the basis defined by the ordering Φ+, (ii) is obtained by taking for S
the {sα | α ∈ Π}.

(ii)(b) reflects that sαUα = U−α is not in B.
It remains to show (ii)(a). Let s = sα , and write B = T

∏
β∈Φ+ Uβ . As s

normalises T, as sUβ = Usα (β) and as sα (β) ∈ Φ+ if β ∈ Φ+ − {α}, we get
BsBwB = BsUαwB. If w−1(α) ∈ Φ+ the right hand side is equal to BswB.
Otherwise we write it as BsUαsswB where this time (sw)−1(α) ∈ Φ+. Let
Bα be the image by φα (see 2.3.1(ii)) of the Borel subgroup of SL2 of upper
triangular matrices. If c � 0 we have in SL2:

(
a b
c d

)
=

(−1/c −a
0 −c

) (
0 1
−1 0

) (
1 d/c
0 1

)

which taking images shows that sUαs ⊂ Im φα = Bα ∪ BαsUα , whence
BsUαsswB ⊂ BsUαswB ∪ BswB where the first term in the right-hand side
is BwB since (sw)−1(α) ∈ Φ+. �

Theorem 3.1.3 If G has a (B,N)-pair, then

(i) G =
∐

w∈W BwB (Bruhat decomposition).
(ii) (W,S) is a Coxeter group.

(iii) Condition (ii)(a) of 3.1.1 can be refined to

BsB.BwB =
⎧⎪⎨⎪
⎩

BswB if l(sw) = l(w) + 1,

BswB ∪ BwB otherwise.

(iv) For any t ∈ N(w) (see 2.1.2(ii)), we have BtB ⊂ Bw−1BwB.
(v) S = {w ∈ W − {1} | B ∪ BwB is a group}.

(vi) We have NG(B) = B.

Proof Let us show (i). As B and N generate G, we have G = ∪i(BNB)i. Since
BNB = BWB we will get G = BWB if we show that BWBWB = BWB. For this
it is enough to show that BwBWB ⊂ BWB for w ∈ W; writing w = s1 . . . sn with
si ∈ S, since BwB ⊂ Bs1B . . . BsnB it is enough to show BsBWB ⊂ BWB for
s ∈ S; but this results from 3.1.1(ii)(a). It remains to show that BwB � Bw′B if
w � w′. We show this by induction on inf(l(w), l(w′)), where l is the length with
respect to S; assume for instance that l(w) ≤ l(w′). The start of the induction is
l(w) = 0 and the result comes from w′ � B. Otherwise, taking s ∈ S such that
l(sw) < l(w), by induction BswB is equal neither to Bw′B nor to Bsw′B thus
BswB ∩ BsB.Bw′B = ∅; as BswB ⊂ BsB.BwB it follows that BwB � Bw′B.

For (ii), we use 2.2.9 with Ds = {w ∈ W | BsBwB = BswB} (note that if
w � Ds then BsBwB = BswB

∐
BwB). Clearly Ds � 1.
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3.1 (B,N)-Pairs 41

If w, sw ∈ Ds, then from BsBwB = BswB and BsBswB = BwB we get
BsBsBwB = BwB which is a contradiction since multiplying on the right by
BwB the equality BsBsB = BsB

∐
B (since sBs � B by 3.1.1(ii)(b)), we get

BsBsBwB = BswB
∐

BwB.
It remains to show for (ii) that w ∈ Ds,ws′ � Ds implies ws′ = sw. The as-

sumption ws′ � Ds implies BsBws′B = Bsws′B
∐

Bws′B; in particular BsBws′

meets Bws′B; multiplying on the right by s′B it follows that BsBwB meets
Bws′Bs′B ⊂ (BwB

∐
Bws′B) (this last inclusion follows from 3.1.1(ii)(a) re-

versed, which is obtained by taking inverses). Thus BswB = BsBwB (since
w ∈ Ds) is equal to Bws′B, or to BwB. The latter cannot happen since w � sw,
thus sw = ws′ as was to be shown. We have also shown (iii) by the property of
Ds given in the last sentence of 2.2.9.

Let us show (iv). If w = s1 . . . sk is a reduced expression, for all i we
can write by (iii) BwB = Bs1 . . . si−1BsiBsi+1 . . . skB and similarly for Bw−1B
whence

Bw−1BwB = Bsk . . . si+1BsiBsi−1 . . . s1Bs1 . . . si−1BsiBsi+1 . . . skB

⊃ Bsk . . . si+1BsiBsiBsi+1 . . . skB

⊃ Bsk . . . si+1BsiBsi+1 . . . skB

⊃ Bsk . . . si+1sisi+1 . . . skB

whence the result.
(v) follows immediately from (iv), which implies that B ∪ BwB can be a

group only if |N(w) | ≤ 1, and from (iii) which implies that B ∪ BsB is a group.
(vi) also follows from (iv). For g ∈ BwB we have gB = B ⇔ wB = B ⇔

BwBw−1B = B which by (iv) happens only for w = 1. �

In a group G with a (B,N)-pair, we call Borel subgroups the conjugates of
B and maximal tori the conjugates of T; this fits the terminology for algebraic
groups.

Corollary 3.1.4 In a group G with a (B,N)-pair, every pair of Borel sub-
groups is conjugate to a pair of the form (B, wB) with w ∈ W; the intersection
of two Borel subgroups contains a maximal torus.

Proof Up to conjugacy, we may assume the given pair of Borel subgroups of
the form (B, gB). By the Bruhat decomposition we may write g = bwb′ where
b,b′ ∈ B; thus the pair is equal to (B, bwB), which is conjugate to (B, wB). Since
B and wB both contain T , the intersection of every conjugate pair also contains
a maximal torus. �

Example 3.1.5 For m a matrix in GLn, let mi,j be the submatrix on the last
lines i, . . . ,n and first columns 1, . . . , j. Let w be a permutation matrix; then
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42 (B,N)-Pairs; Parabolic and Reductive Subgroups

m ∈ BwB, where B is the Borel subgroup of upper triangular matrices, if and
only if the matrices mi,j and wi,j have same rank for all i, j. Indeed,

• The ranks of mi,j are invariant by left or right multiplication of m by an upper
triangular matrix.

• A permutation matrix w for the permutation σ is characterised by the ranks
of wi,j, given by |{k ≤ j | σ(k) ≥ i}|.
If {F′

i } and {F′′
i } are two complete flags whose stabilisers are the Borel

subgroups B′ and B′′, then the permutation matrix w such that (B′,B′′) is
conjugate to (B, wB) (the relative position of the two flags) is characterised

by rank wi,j = dim
F′

i∩F′′
j

(F′
i−1∩F′′

j )+(F′
i∩F′′

j−1) .

3.2 Parabolic Subgroups of Coxeter Groups
and of (B, N)-Pairs

Lemma 3.2.1 Let (W,S) be a Coxeter system, let I be a subset of S, and let WI

be the subgroup of W generated by I, called a standard parabolic subgroup
of W. Then (WI , I) is a Coxeter system.

An element w ∈ W is said to be reduced-I if it satisfies one of the equivalent
conditions:

(i) For any v ∈ WI, we have l(wv) = l(w) + l(v).
(ii) For any s ∈ I, we have l(ws) > l(w).

(iii) w has minimal length in the coset wWI.
(iv) N(w) ∩ I = ∅.
(v) N(w) ∩ Ref(WI ) = ∅.

There is a unique reduced-I element in wWI.

By exchanging left and right we have the notion of I-reduced element which
satisfies the mirror properties. A subgroup of W conjugate to a standard para-
bolic subgroup is called a parabolic subgroup.

Proof A reduced expression in WI is reduced in W by the exchange condi-
tion and then satisfies the exchange condition in WI , thus (WI , I) is a Coxeter
system.

(iii)⇒(ii) since (iii) implies l(ws) ≥ l(w) when s ∈ I. Let us show that “not
(iii)”⇒ “not (ii)”. If w′ does not have minimal length in w′WI , then w′ = wv
with v ∈ WI and l(w) < l(w′); adding one by one the terms of a reduced
expression for v to w and applying at each stage the exchange condition, we
find that w′ has a reduced expression of the shape ŵv̂ where ŵ (resp. v̂) denotes
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3.2 Parabolic Subgroups of Coxeter Groups and of (B,N)-Pairs 43

a subsequence of the chosen reduced expression. As l(ŵ) ≤ l(w) < l(w′), we
have l(v̂) > 0, thus w′ has a reduced expression ending by an element of I, thus
w′ does not satisfy (ii).

(i)⇒(iii) is clear. Let us show “not (i)”⇒ “not (iii)”. If l(wv) < l(w) + l(v)
then a reduced expression for wv has the shape ŵv̂ where l(ŵ) < l(w). Then
ŵ ∈ wWI and has a length smaller than that of w.

By 2.1.6(ii) property (ii) is equivalent to (iv).
It is clear that (v) implies (iv), and (i) applied to v ∈ Ref(W) implies (v)

by 2.1.6(ii).
Finally, an element satisfying (i) is clearly unique in wWI . �

Lemma 3.2.2 Let I and J be two subsets of S. An element w ∈ W is I-reduced-
J if it satisfies one of the equivalent properties:

(i) w is both I-reduced and reduced-J.
(ii) w has minimal length in WIwWJ.

(iii) Every element of WIwWJ can be written uniquely xwy with x ∈ WI, y ∈ WJ,
l(x) + l(w) + l(y) = l(xwy) and xw is reduced-J.

(iii) implies that in a double coset in WI\W/WJ there is a unique I-reduced-J
element, which has minimal length; by symmetry we can replace in condition
(iii) the assumption that xw is reduced-J by the assumption that wy is I-reduced.

Proof We first show that two elements w,w′ in the same double coset and
satisfying (i) have the same length. Write w′ = xwy with x ∈ WI and y ∈ WJ ;
then w′y−1 = xw and x−1w′ = wy; by the defining properties of I-reduced and
reduced-J and using l(y−1) = l(y), l(x−1) = l(x) we get l(w′)+l(y) = l(x)+l(w)
and l(x) + l(w′) = l(w) + l(y), whence l(x) = l(y) and l(w) = l(w′). As clearly
(ii)⇒(i) this common length must be the minimal length, thus (i)⇔(ii).

We now show (ii)⇒(iii). Assume w satisfies (ii); write an element v ∈
WIwWJ as xwy with x ∈ WI , y ∈ WJ and x of minimal possible length. By
the exchange lemma a reduced expression for xwy is of the form x̂ŵŷ where
x̂ (resp. ŵ, ŷ) is a subsequence of a reduced expression for x (resp. w, y).
Necessarily ŵ = w otherwise w would not be of minimal length in its dou-
ble coset. Then the minimal length assumption on x implies x̂ = x, whence
ŷ = y, thus l(x) + l(w) + l(y) = l(xwy). The element xw is reduced-J oth-
erwise we can write xw = v′y′ where v′ ∈ WIwWJ , y′ ∈ WJ − {1} and
l(v′) + l(y′) = l(xw). Using what we just proved on w we can write v′ = x′′wy′′

with l(x′′) + l(w) + l(y′′) + l(y′) = l(x) + l(w) which implies l(x′′) < l(x),
contradicting the minimality of l(x). Finally the decomposition xwy is unique
since xw is the unique J-reduced element in its coset.

Finally, (iii)⇒(ii) is clear. �
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44 (B,N)-Pairs; Parabolic and Reductive Subgroups

Note that not every decomposition xwy where w is I-reduced-J satisfies
(iii); consider for instance the case w = y = 1, I = J and x the longest element
of WI ; thus the situation is not as good as in the I-reduced case.

In a group with a (B,N)-pair, we use the term parabolic subgroups for the
subgroups containing a Borel subgroup.

Proposition 3.2.3 Let G be a group with a (B,N)-pair. Then

(i) The (parabolic) subgroups containing B are the PI = BWIB for some I ⊂ S.
(ii) Given two parabolic subgroups PI and PJ, we have a relative Bruhat de-

composition G =
∐

w PIwPJ where w runs over the I-reduced-J elements.
It follows a natural bijection PI\G/PJ

∼−→ WI\W/WJ.

Proof Let us show (i). Let P be a subgroup containing B and let w ∈ W be
such that BwB ⊂ P. Since P is a group we get Bw−1BwB ⊂ P, thus by 3.1.3(iv)
we get BtB ⊂ P for any t ∈ N(w). If w = s1 . . . sk is a reduced expression we
get in particular BskB ⊂ P, thus s1 . . . sk−1 ∈ P and by induction for each i we
have si ∈ P. It follows that P = BWIB where I is the union of the elements of S
appearing in any reduced expression of any w such that BwB ⊂ P. Conversely,
for any I ⊂ S, using 3.1.1(ii)(a) we see that BWIB is a group.

Let us show (ii). For any w ∈ W we have PIwPJ = BWIBwBWJB =
BWIwWJB, the last equality by repeated application of 3.1.1(ii)(a) and of its
right counterpart. Since, by Lemma 3.2.2 we can take I-reduced-J elements as
representatives of the double cosets we see that the first assertion of (ii) is just
the Bruhat decomposition. Conversely, any coset PIgPJ is of the form PIwPJ if
g ∈ BwB whence the last assertion of (ii). �

Remark 3.2.4 Using 3.2.3 we see that in the definition 1.3.5 of a parabolic
subgroup the word “closed” can be omitted. Indeed a reductive group has a
(B,N) pair, hence by 3.2.3 a subgroup containing a Borel subgroup is conjugate
to some BWIB, hence it is closed. In general, if G is a connected group and P
is a subgroup containing a Borel subgroup, then P/Ru(G) contains a Borel
subgroup of the reductive group G/Ru(G) hence it is closed, thus P is closed
by continuity of the quotient morphism.

Example 3.2.5 In GLn, the parabolic subgroup PJ for J ⊂ S containing the
Borel subgroup of upper triangular matrices is the subgroup of upper block-
triangular matrices where the blocks correspond to maximal intervals [i,k] in
[1,n] such that si, . . . ,sk−1 ∈ J.

Example 3.2.6 For the symplectic group Sp2n, as the stabiliser B of any com-
plete isotropic flag V1 ⊂ · · · ⊂ Vn in Sp2n is a Borel subgroup, the stabiliser of
any subflag is a parabolic subgroup. We thus get 2n distinct parabolic subgroups
containing B. Since there are also 2n subsets of S, they are the only parabolic
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subgroups containing B. As any isotropic flag may be completed to a complete
one, we get the result that in general parabolic subgroups are the stabilisers of
(complete or not) isotropic flags.

Lemma 3.2.7 (unicity in Bruhat decomposition) Let G be a connected re-
ductive group and B = U�T be a decomposition of a Borel subgroup B as
in 1.3.1(ii), where U = Ru(B). Then BwB has a direct product decomposition
U × Tw × Uw where Uw :=

∏
{α∈Φ+ |w(α)<0} Uα .

Proof Notice first that Uw is a group; since if in 2.3.1(vii) α and β are sent
to negative roots by w, then the same holds for λα + μβ. We have U = U′Uw

where U′ =
∏

{α∈Φ+ |w(α)>0} Uα thus wU′ ⊂ U; thus BwB = UTwU′Uw =

UTwUw. It remains to be shown that the decomposition is unique; that is, if
uTwu′ = Tw with u ∈ U,u′ ∈ Uw then u = u′ = 1. The condition implies
wu′ ∈ B. But wUw ∩ B = 1 since all Uα in wUw are for negative α. Thus u′ = 1,
whence u = 1. �

The next proposition says that the decomposition of G in Bruhat cells BwB
is a stratification (the closure of a stratum is a union of strata).

Proposition 3.2.8 Let G be a connected reductive group and B = U � T be
a decomposition of a Borel subgroup B as in 3.2.7. Then the Zariski closure of
BwB in G is given by BwB =

∐
v≤w BvB, where ≤ is the Bruhat–Chevalley

order on w, given by v ≤ w if a reduced expression of v is a subsequence of a
reduced expression of w.

Reference See Chevalley (1994, Proposition 6). �

3.3 Closed Subsets of a Crystallographic Root System

In this section,Φ will be a reduced crystallographic root system in the Q-vector
space V , and Π will be a basis of Φ; we denote by Φ+ the corresponding
positive subsystem and by (W,S) the corresponding Coxeter system, where
S = {sα }α∈Π .

Definition 3.3.1 A subset Ψ ⊂ Φ is:

(i) closed if α, β ∈ Ψ,α + β ∈ Φ⇒ α + β ∈ Ψ.
(ii) symmetric if Ψ = −Ψ.

The intersection of two closed subsets is clearly closed.

Lemma 3.3.2 The reduced crystallographic root systems of rank 2 are A1×A1,
A2, C2 = B2 and G2.
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Here is a picture of their positive roots:

α

β

α

β+αβ

α

β+2α
β+α

β

α

3α+β2α+β

2β+3α

β+αβ

Proof LetΦ be crystallographic of rank 2 with Weyl group W. LetΠ = {α, β}.
Choosing a W-invariant scalar product (�, �) as in 2.2.3, we have α∨(β) β∨(α) =

4 (α,β)2

(α,α)(β,β) = 4 cos2 θ where θ is the angle between α and β. Since α, β ∈ Π
we have (α, β) ≤ 0 thus π/2 ≤ θ ≤ π and the integrality of 4 cos2 θ implies
that 4 cos2 θ ∈ {0,1,2,3} thus π − θ ∈ {π/2, π/3, π/4, π/6}. Except for A1 × A1,
the ratio of the lengths of α and β is implied by the equation α∨(β) β∨(α) =
4 cos2 θ. For instance if 4 cos2 θ = 2 the only integral solution, up to exchanging
α and β, is α∨(β) = −1 and β∨(α) = −2 whence 2(β, β) = (α,α). For A1 ×A1

the ratio of the lengths is not determined, we have chosen 1 in the picture. �

Corollary 3.3.3 For a crystallographic root system Φ and a positive subsys-
tem Φ+, we have:

(i) If α, β ∈ Φ, α � −β and (α, β) < 0, then α + β ∈ Φ.
(ii) If α, β ∈ Φ and α+nβ ∈ Φ for n ∈ N, then α+mβ ∈ Φ for all 0 ≤ m ≤ n.

(iii) If α1, . . . ,αk ∈ Φ+ and α = α1 + · · · + αk ∈ Φ+, then if k > 1 we have
α − αi ∈ Φ+ for some i.

(iv) If Ψ ⊂ Φ is closed, α, β ∈ Ψ, α � −β and nα+mβ ∈ Φ for some n,m > 0,
then nα + mβ ∈ Ψ.

Proof For (i), by the argument in the proof of 3.3.2 about possible integral
solutions, up to exchanging α and β we have α∨(β) = −1, whence α + β =

sα (β) ∈ Φ. For (iii) as (α,α) > 0 we must have (α,αi) > 0 for some i thus by
(i) α − αi ∈ Φ.

For (ii), by (iii) either α + (n − 1) β or nβ is in Φ, and since Φ is reduced,
nβ � Φ if n � 1, whence the result by induction on n.

For (iv) we may assume both α and β positive (they are for some order since
α � −β), and then we apply (iii) and induction on n + m. �

Corollary 3.3.4 If Ψ ⊂ Φ is closed and symmetric, it is a root subsystem.

Proof For α, β ∈ Ψ, we have to show that sα (β) ∈ Ψ. This is true if β =
±α since Ψ is symmetric. Otherwise, replacing α by −α if necessary we have
sα (β) = β + nα for some n ∈ N∗; then Corollary 3.3.3(iv) gives the result. �

Proposition 3.3.5 If Ψ is closed and Ψ ∩ −Ψ = ∅, there exists a positive
subsystem Φ+ such that Ψ ⊂ Φ+.
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Proof We first show by induction on k > 0 that 0 is not the sum of k elements
of Ψ. This is clear for k = 1. If 0 = α1 + · · · + αk then 0 < (α1,α1) =
(−α1,α2 + · · · + αk) thus there exists i � 1 such that (α1,αi) < 0. Using
α1 � −αi (since −αi � Ψ by assumption) and 3.3.3(i) we get α1 + αi ∈ Φ thus
α1 + αi ∈ Ψ, thus the sum is the sum of k − 1 elements, a contradiction.

We now build by induction on k a sequence γk of elements of Ψ such that
γk ∈ Ψ is the sum of k elements of Ψ. We start with γ1 equal to an arbitrary
element of Ψ. If there is α ∈ Ψ such that (γk,α) < 0 we set γk+1 = α + γk ∈ Ψ.
For i < j we have γi � γj, otherwise γj − γi would be a zero sum of elements of
Ψ, thus by finiteness the sequence must stop on some γk such that (γk,α) ≥ 0
for any α ∈ Ψ. The linear form (γk, �) almost defines an order as in 2.2.4. We
need to modify it on γ⊥

k . But γ⊥
k ∩ Ψ ⊂ γ⊥

k ∩ Φ satisfies the same assumptions
as the proposition and we may iterate the construction on this subspace. �

For I ⊂ S we set ΠI := {α ∈ Π | sα ∈ I} and ΦI = Φ ∩ QΠI ; it is clearly
a root subsystem with basis ΠI , since when decomposed on Π a root of ΦI

involves only elements of ΠI .
It is clear that ΦI is closed and symmetric and that Φ+ −ΦI and Φ+ ∪ΦI are

closed.

Example 3.3.6 There exist closed and symmetric subsystems which are not of
the form ΦI ; for instance the long roots in a system B2 form a system of type
A1 × A1, and the long roots in G2 form a system of type A2. See also 11.2.7.

Lemma 3.3.7 If sα ∈ WI for α ∈ Φ, then α ∈ ΦI .

Proof Elements of WI are the product of some sβ for β ∈ ΠI , thus they fix
Π⊥

I . Thus sα fixes Π⊥
I , which implies that α ∈ QΠI ∩ Φ = ΦI . �

We say that Ψ is a parabolic subset of Φ if Ψ is closed and Ψ ∪ −Ψ = Φ.

Proposition 3.3.8

(i) A parabolic subset is conjugate to a parabolic subset containing Φ+; such
a subset is of the form Φ+ ∪ ΦI for some I ⊂ S.

(ii) A parabolic subset is a set of the form {α | λ(α) ≥ 0} for some linear form
λ on V.

Proof For the first part of (i) it is equivalent to show that a parabolic subset Ψ
contains some positive subsystem. Choose such a positive subsystem Φ+ such
that |Ψ ∩ Φ+ | is maximal. We show by contradiction that Φ+ ⊂ Ψ. Otherwise
let Π be the basis of Φ defining Φ+; there must exist α ∈ Π,α � Ψ, thus
−α ∈ Ψ. Since α � Ψ we have sα (Ψ ∩ Φ+) ⊂ Φ+; applying sα again we get
Ψ ∩ Φ+ ⊂ sα (Φ+). But then the positive subsystem sα (Φ+) contains −α thus
satisfies |Ψ ∩ sα (Φ+) | > |Ψ ∩ Φ+ |, a contradiction.
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We now assume that Ψ ⊃ Φ+. Let I = {sα | −α ∈ {−Π ∩ Ψ}}. Let us show
that Ψ ∩ Φ− = Φ−

I .
We first show that Φ−

I ⊂ Ψ. Note that by 2.2.8 applied to the basis −ΠI of
Φ−

I any root in Φ−
I is a sum of elements of −ΠI . We show by induction on k that

a root in Φ−
I sum of k roots in −ΠI is in Ψ. It is true by assumption when k =

1; in general by 3.3.3(iii) we may write the root as α + β where α ∈ −ΠI and
β ∈ Φ−

I sum of k − 1 roots in −ΠI ; by induction β ∈ Ψ and as α ∈ Ψ and Ψ is
closed α + β ∈ Ψ.

We finally show the reverse inclusion by induction. Let γ ∈ Ψ ∩ Φ− be the
sum of k roots of −Π, and write it γ = α + β where α ∈ −Π and β ∈ Φ is
the sum of k − 1 roots in −Π. As −β ∈ Φ+ ⊂ Ψ we get α = γ + (−β) ∈ Ψ
whence α ∈ −Π ∩Ψ = −ΠI . Thus −α ∈ Ψ whence β = γ + (−α) ∈ Ψ, and we
conclude since by induction β ∈ Φ−

I .
Conversely the fact that for any I ⊂ S the set Φ+ ∪ ΦI is parabolic is a

consequence of the proof of (ii) below.
We now show (ii). It is clear that a subset of the form {α | λ(α) ≥ 0} is

parabolic. It is thus sufficient to show that Φ+ ∪ ΦI is of this form. Take any
x such that 〈x,α〉 = 0 if α ∈ ΦI and 〈x,α〉 > 0 if α ∈ Ψ − ΦI . Such an x
exists: the projection of Φ+ on Φ⊥

I lies in a half-space, and we may take x in
this half-space, orthogonal to the hyperplane which delimits it. It is clear that
by construction x has the required properties. �

A consequence of 3.3.8 is that the complement of a parabolic subset is
closed.

Subgroups of Maximal Rank and Quasi-closed Sets

In the remainder of this chapter G is a connected reductive algebraic group, T
is a maximal torus of G, and Φ is the set of roots of G relative to T. For Ψ ⊂ Φ,
we set G∗

Ψ
:= 〈Uα | α ∈ Ψ〉 and GΨ := 〈T,Uα | α ∈ Ψ〉. These are closed

connected subgroups by 1.1.3 and G∗
ψ is a normal subgroup of GΨ.

Definition 3.3.9 A subsetΨ ⊂ Φ is called quasi-closed if G∗
Ψ

does not contain
any Uα with α ∈ Φ − Ψ.

We get an equivalent definition by replacing G∗
Ψ

with GΨ, since GΨ/G∗
Ψ

is
a quotient of T and thus is a torus. Hence any Uα ⊂ GΨ is in the kernel of this
quotient, and is thus in G∗

Ψ
.

Proposition 3.3.10 A closed and connected subgroup H ⊂ G containing T is
equal to GΨ with Ψ = {α ∈ Φ | Ua ⊂ H}; the set Ψ is quasi-closed.
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Proof By 2.3.1(iv) H is generated by T and the Uα it contains. The subset
Ψ ⊂ Φ of those α is quasi-closed by definition. �

Let Ψ,Ψ′ be quasi-closed; it is clear that Ψ∩Ψ′ is quasi-closed (since GΨ∩Ψ′

is a subgroup of both GΨ and GΨ′); actually one sees that GΨ∩Ψ′ = (GΨ∩GΨ′ )0

by applying 2.3.1(iv) to the right-hand side.

Definition 3.3.11 A connected linear algebraic group P has a Levi decompo-
sition if there is a closed subgroup L ⊂ P such that P = Ru(P) � L. The group
L is called a Levi subgroup of P (or a Levi complement).

A Levi complement is clearly reductive.

Proposition 3.3.12 Let Ψ ⊂ Φ be quasi-closed, and let Ψs = {α ∈ Ψ | −α ∈
Ψ} and Ψu = {α ∈ Ψ | −α � Ψ}. Then Ψs and Ψu are quasi-closed and GΨ has
a Levi decomposition GΨ = G∗

Ψu
� GΨs where G∗

Ψu
= Ru(GΨ). In particular

GΨ is reductive if and only if Ψ is symmetric.

Proof We first show that Ψs is quasi-closed. As the intersection of two quasi-
closed sets is quasi-closed, it is enough to show that −Ψ is quasi-closed. This
results from the existence of the opposition automorphism of G which acts by
−1 on X(T); see Example 2.4.9.

As a connected group normalised by T the group Ru(GΨ) is – by Theorem
2.3.1(v) – of the form G∗

Ψ′ for a subset Ψ′ ⊂ Ψ that we may assume quasi-
closed. We have Ψ′ ⊂ Ψu, otherwise there is α ∈ Ψs ∩Ψ′, thus U−α ⊂ GΨ thus
normalises Ru(GΨ) thus [U−α ,Uα] ⊂ Ru(GΨ) which is a contradiction since
this commutator set contains non-unipotent elements by Theorem 2.3.1(ii).

To show Ψ′ = Ψu it is thus enough to show Ψ − Ψ′ ⊂ Ψs. If α ∈ Ψ −
Ψ′, then Uα ∩ Ru(GΨ) = 1 since this intersection is normalised by T thus
contains the whole Uα if not trivial. Thus, in the quotient GΨ → L′, where
L′ is the reductive group GΨ/Ru(GΨ), the group Uα maps injectively to a root
subgroup of L′. Let U′ be the root subgroup of L′ corresponding to the opposed
root and U′′ its preimage. Any element of U′′ is unipotent since, its image
being unipotent, its semi-simple part is in Ru(GΨ) so is trivial. Hence U′′ is a
unipotent subgroup normalised by T, so is a product of certain root subgroups
and must contain U−α , thus −α ∈ Ψ and α ∈ Ψs.

It also follows from the proof that GΨs maps injectively to L′, thus GΨs is a
Levi complement of Ru(GΨ). �

Proposition 3.3.13 A closed subset is quasi-closed.
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Proof Let Ψ ⊂ Φ be a closed subset and let Ψs and Ψu be as in 3.3.12. It is
clear that Ψs is closed. Note that if α ∈ Ψ, β ∈ Ψu and α + β ∈ Φ then α + β ∈
Ψu, otherwise α + β ∈ Ψs whence −α − β ∈ Ψs thus α + (−α − β) = −β ∈ Ψ
which contradicts β ∈ Ψu. In particular Ψu is closed. By 3.3.5 there exists a
positive subsystem such that Ψu ⊂ Φ+.

Lemma 3.3.14 If Ψ is a closed subset of a positive subsystemΦ+ ofΦ, then Ψ
is quasi-closed and G∗

Ψ
=
∏
α∈Ψ Uα where the product is taken in an arbitrary

order.

In the situation of the lemma we will write UΨ for G∗
Ψ

.

Proof By 2.3.1(vii) and 3.3.3(iv)
∏
α∈Ψ Uα is a group, thus equal to G∗

Ψ
. �

We deduce that Ψu is quasi-closed. In addition, if α ∈ Ψs, β ∈ Ψu and
α + β ∈ Φ, using the fact that α + β ∈ Ψu and 3.3.3(iv), we get nα + mβ ∈ Ψu

for n,m ≥ 1 such that nα + mβ ∈ Φ. Thus G∗
Ψu

is normalised by GΨs .
Since Ψs is closed and symmetric, it is a root subsystem by 3.3.4. Let Πs

be its basis corresponding to the positive subsystem Ψs ∩ Φ+. Note that GΨs is
already generated by T and Uα such that α ∈ ±Πs; indeed 〈Uα ,U−α〉 contains
a representative of sα by 2.3.1(iii), thus GΨs contains WΨs , and every root of
Ψs is in the orbit of Πs by 2.2.8, whence the result by the remark above 2.3.3.
We show now that GΨs = UΨ+s WΨs TUΨ+s . For that it is enough to show that the
right-hand side is a group. Since it is stable by left translation by T and by any
Uα for α ∈ Ψ+s it is enough to see it is stable by left translation by U−α for
α ∈ Πs. Decomposing UΨ+s = UΨ+s −{α }Uα , and using that by 2.3.1(vii) U−α
normalises UΨ+s −{α } since α is simple, it is enough to see that UαWΨs TUΨ+s is
stable by left translation by U−α . The Bruhat decomposition 〈T,Uα ,U−α〉 =
UαT ∪ UαsαTUα shows that U−αUα ⊂ UαT ∪ UαsαTUα . We just need to
consider the second term

UαsαTUαWΨs TUΨ+s =
⋃

w∈Ψs

UαsαUαwTUΨ+s .

If w−1(α) ∈ Ψ+, then UαwT = wTUw−1 (α) and the term has the right form.
Otherwise, letting β = −w−1(α) ∈ Ψ+s we get

UαsαwTUw−1 (α)UΨ+s = UαsαwTU−βUβUΨ+s −{β }
⊂ UαsαwT(Uβ ∪ UβsβUβ )UΨ+s −{β }
= UαsαwTUΨ+s ∪ UαsαwTUβsβUΨ+s .

We just need to consider the rightmost term. Since sαwUβT = sαU−αwT =
UαsαwT we get the result.
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Let us now show that Ψs is quasi-closed. Let γ be such that Uγ ⊂ GΨs ; since
Ψs = −Ψs, we may assume γ ∈ Φ+, thus Uγ ⊂ B. As each term UΨ+s wTUΨ+s is
in a unique Bruhat cell of G, we must have Uγ ⊂ TUΨ+s . By Lemma 3.3.14 Ψ+s
is quasi-closed, thus γ ∈ Ψ+s .

We have seen that GΨ has a semi-direct product decomposition G∗
Ψu
�GΨs .

It follows that Ψ is quasi-closed since if α � Ψu and Uα ⊂ GΨ then Uα maps
isomorphically to the quotient GΨs thus α ∈ Ψs. �

Conversely any quasi-closed subset of Φ is closed apart from some excep-
tions in characteristics 2 and 3; see Borel and Tits (1965, 3.8). This can be
shown by proving that in other characteristics the group 〈Uα ,Uβ〉 contains all
Unα+mβ for n,m ∈ N such that nα + mβ ∈ Φ, using the explicit values of
the coefficients in the proof of 2.3.1(vii). For a combinatorial description of
quasi-closed subsets in these characteristics, see Malle and Testerman (2011,
Corollary 13.7).

3.4 Parabolic Subgroups and Levi Subgroups

Proposition 3.4.1 The parabolic subgroup PI = BWIB (see 3.2.3) has a
Levi decomposition PI = Ru(PI ) � LI where Ru(PI ) = UΦ+−ΦI and LI =

〈T, {Uα }α∈ΦI 〉 is reductive. We have PI = NG(Ru(PI )).

Proof The set Ψ = Φ+ ∪ ΦI is quasi-closed since it is closed by Proposition
3.3.8. The proposition is then a consequence of 3.3.12 if we show that PI = GΨ.
We have PI ⊃ GΨ since PI ⊃ Uα for α ∈ Φ+ since PI ⊃ B, and by 3.2.7
PI contains all Uα for α ∈ Φ− which change sign by some element of WI ,
thus contains all Uα for α ∈ Φ−

I . Conversely GΨ contains Uα and U−α for
all α ∈ ΠI , hence GΨ contains a representative of sα in 〈Uα ,U−α〉 hence GΨ
contains WI , thus contains PI .

Finally, NG(Ru(PI )) contains PI thus B, thus is some parabolic subgroup
PJ . If J � I we have Ru(PJ ) = UΦ+−ΦJ � Ru(PI ) which contradicts that PJ

normalises Ru(PI ) since Ru(PJ ) is the largest normal connected unipotent sub-
group of PJ . �

We will say that PI (resp. LI ) is a standard parabolic subgroup (resp. Levi
subgroup) of G.

Proposition 3.4.2 Let P be a parabolic subgroup of G containing T.

(i) There is a unique Levi subgroup of P containing T.
(ii) Two Levi subgroups of P are conjugate by a unique element of Ru(P).
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Proof The existence of a Levi subgroup containing T results from 3.4.1, since
P is conjugate to some PI and all maximal tori of PI are conjugate in PI . Con-
versely, we may assume P = PI ; any Levi subgroup of PI containing T is a GΨ
for some Ψ ⊂ Φ+∪ΦI by Proposition 3.3.10. Since any Uα where α ∈ Φ+−ΦI

is in Ru(PI ), we must have Ψ ⊂ ΦI , thus L ⊂ LI , thus there must be equality.
Two Levi subgroups L,L′ of P are conjugate in P, since by (i) an element

which conjugates a maximal torus T of L into L′ conjugates L to L′. Mod-
ulo L, we can choose the conjugating element u in Ru(P). The unicity of u is
equivalent to Ru(P) ∩ NP(L) = 1. Assume u ∈ Ru(P) ∩ NP(L); then for any
l ∈ L we have [u, l] ∈ Ru(P)∩L = 1, thus u ∈ CP(L); but CP(L) ⊂ CG(T) = T
thus u = 1. �

Proposition 3.4.3 The G-conjugacy classes of Levi subgroups of parabolic
subgroups of G are in bijection with the W-orbits of subsets of S, which are
themselves in bijection with the W-conjugacy classes of parabolic subgroups
of W.

Proof Since all parabolic subgroups are conjugate to a PI , we may assume
that we consider a Levi subgroup of some PI . Since by 3.4.2 such a Levi sub-
group is G-conjugate to LI , the question becomes that of finding when LJ is
G-conjugate to LI for two subsets I and J of S. If LJ =

gLI for some g ∈ G,
then, since g−1

T and T are two maximal tori of LI , there exists l ∈ LI such that
g−1

T = lT and gl ∈ NG(T) also conjugates LI to LJ ; so the G-conjugacy classes
of LI are the same as the W (T)-conjugacy classes. Since LI = GΦI , the element
w ∈ W conjugates LI to LJ if and only if wΦI = ΦJ . Since any two bases of
ΦI are conjugate by an element of WI (see 2.2.6), we may assume that wI = J
whence the first part of the statement. To see the second part it is enough to see
that if w ∈ NW (WI ) then wΦI = ΦI . This results from Lemma 3.3.7. �

The proof above shows that NG(LI )/LI is isomorphic to NW (WI )/WI .

Proposition 3.4.4 Let L be a Levi subgroup of a parabolic subgroup P. Then
R(P) = Ru(P) � R(L).

Proof The quotient P/(R(L)Ru(P)) is isomorphic to L/R(L), so is semi-
simple. So R(P) ⊂ R(L)Ru(P). But R(L)Ru(P) is connected, solvable and nor-
mal in P as the inverse image of a normal subgroup of the quotient P/Ru(P) �
L, whence the reverse inclusion. �

We will now characterise parabolic subgroups in terms of roots.

Proposition 3.4.5 A closed subgroup P of G containing T is parabolic if and
only if P = GΨ for some parabolic subset Ψ.
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Proof We have seen that a parabolic subsetΨ is conjugate under W toΦ+∪ΦI ;
thus GΨ is conjugate under W to PI . Conversely, assume that P is a parabolic
subgroup. It contains a Borel subgroup containing T, thus up to conjugacy by
W it contains B (see Proposition 2.3.3), thus is of the form PI . �

We now give an important property of Levi subgroups.

Proposition 3.4.6 Let L be a Levi subgroup of a parabolic subgroup of G;
then L = CG(Z(L)0).

Proof We may assume that L = LI . Then by 2.3.4(i) the group Z(L) is the
intersection of the kernels of the roots in ΦI . The group CG(Z(L)0) is con-
nected as it is the centraliser of a torus – Z(L)0 is diagonalisable by 1.2.1(ii)
and is a torus by 1.2.3(i) thus 1.3.3(iii) applies. It is normalised by T be-
cause it contains T, hence by 2.3.1(iv) it is generated by T and the Uα it con-
tains. If Uα ⊂ CG(Z(L)0) then α is trivial on (

⋂
α∈ΦI

Ker α)0. This identity
component has finite index in

⋂
α∈ΦI

Ker α, hence some multiple nα of α is
trivial on

⋂
α∈ΦI

Ker α. With the notation of 1.2.12, this can be rewritten as
nα ∈ (〈ΦI〉⊥T )⊥X(T) . But (〈ΦI〉⊥T )⊥X(T)/〈ΦI〉 is a torsion group (see 1.2.13). This
implies that α ∈ 〈ΦI〉 ⊗ Q, which in turn yields α ∈ ΦI by the definition of ΦI .
This proves that CG(Z(L)0) ⊂ L. The reverse inclusion is obvious. �

The next proposition is a kind of converse.

Proposition 3.4.7 For any torus S, the group CG(S) is a Levi subgroup of
some parabolic subgroup of G.

Proof Let T be a maximal torus containing S. As the group CG(S) is connec-
ted by 1.3.3(iii) and contains T, by 2.3.1(iv) we have CG(S) = 〈T,Uα | Uα ⊂
CG(S)〉. As S acts by α on Uα (see 2.3.1(i)), we have

Uα ⊂ CG(S) ⇔ α |S = 0,

where 0 is the trivial element of X(S). Let us choose a total order on X(S); that
is, a structure of ordered Z-module. As X(S) is a quotient of X(T) (see 1.2.4)
there exists a total order on X(T) compatible with the chosen order on X(S);
that is, such that for x ∈ X(T) we have x ≥ 0 ⇒ x|S ≥ 0. This implies that the
set Ψ = {α ∈ Φ | α > 0 or α |S = 0} is also equal to {α ∈ Φ | α |S ≥ 0}. This
last definition implies that Ψ is closed, so (see 3.3.13 and 3.3.10) Ψ is also the
set of α such that Uα ⊂ GΨ. Since Ψ is parabolic, it follows then from 3.4.5
that GΨ is a parabolic subgroup, of which CG(S) is a Levi complement. �

We now study the intersection of two parabolic subgroups. First note that by
3.1.4 the intersection of two parabolic subgroups always contains some maxi-
mal torus of G.
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Proposition 3.4.8 Let P and P′ be two parabolic subgroups of G and let L
and L′ be respective Levi subgroups of P and P′ containing the same maximal
torus T of G. Let U = Ru(P) and U′ = Ru(P′). Then

(i) The group (P ∩ P′).U is a parabolic subgroup of G which has the same
intersection as P′ with L, and it has L ∩ L′ as a Levi subgroup.

(ii) The group P ∩ P′ is connected, as well as L ∩ L′ and we have the Levi
decomposition

P ∩ P′ = ((L ∩ U′).(L′ ∩ U).(U ∩ U′)) � (L ∩ L′)

where the right-hand side is a direct product of varieties – the decompo-
sition of an element of P ∩ P′ as a product of four terms is unique. On the
right-hand side the last factor is a Levi subgroup of P ∩ P′ and the first 3
factors form a decomposition of Ru(P ∩ P′).

Proof Let Φ be the roots of G with respect to T and define subsets Ψ,Ψ′ ⊂ Φ
by P = GΨ and P′ = GΨ′ .

Let us show first that for any α ∈ Φ, either Uα or U−α is in the group
(P ∩ P′) · U (it is a group since P normalises U). By the remarks before 3.3.11
and by 3.3.12 we have (P∩P′)0 · U = GΨ∩Ψ′ · G∗

Ψu
, with the notation of 3.3.12.

If neither α nor −α is in Ψu, they are both in Ψ in which case since one of them
is inΨ′, one of them is inΨ∩Ψ′. Hence (Ψ∩Ψ′)∪Ψu is a parabolic set; indeed,
this set is closed as the sum of an element of Ψ and an element of Ψu which
is a root is in Ψu – see the beginning of the proof of 3.3.13. Proposition 3.4.5
then shows that (P ∩ P′)0.U is a parabolic subgroup of G, equal to G(Ψ∩Ψ′)∪Ψu .
Then (P ∩ P′)U, containing a parabolic subgroup is connected, hence equal to
(P ∩ P′)0.U.

Now (P∩P′).U = (P∩P′).G∗
Ψu−Ψ′ since Ψ′ ∩Ψu ⊂ Ψ∩Ψ′. The set Ψu −Ψ′

is closed as the intersection of the closed subsets Ψu and the complement −Ψ′
u

of Ψ′, hence the product (P ∩ P′).G∗
Ψu−Ψ′ is a direct product of varieties as the

intersection is a unipotent subgroup normalised by T containing no Uα , see
2.3.1(v). As the product is connected, each term is. Thus P ∩ P′ is connected
equal to GΨ∩Ψ′ . The groups (P∩P′).U and P∩P′ have both (L∩L′)0 as a Levi
subgroup since ((Ψ ∩ Ψ′) ∪ Ψu)s = (Ψ ∩ Ψ′)s = Ψs ∩ Ψ′

s – indeed if α ∈ Ψu

then −α � Ψ thus −α � (Ψ ∩ Ψ′) ∪ Ψu.
The decomposition Ψ∩Ψ′ = (Ψs∩Ψ′

s)
∐

(Ψs∩Ψ′
u)
∐

(Ψu∩Ψ′
s)
∐

(Ψu∩Ψ′
u)

shows that P∩P′ = 〈L∩L′,L∩U′,L′∩U,U∩U′〉. Using that U∩U′ is normal
in P ∩ P′, then that L ∩ L′ normalises L ∩ U′ and L′ ∩ U, we get

P ∩ P′ = (L ∩ L′).〈L ∩ U′,L′ ∩ U〉.(U ∩ U′).
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Further, the commutator of an element of L ∩ U′ with an element of L′ ∩ U
is in U ∩ U′, thus

P ∩ P′ = (L ∩ L′).(L ∩ U′).(L′ ∩ U).(U ∩ U′),

Write now x = lu′uv ∈ P ∩ P′, where l ∈ L ∩ L′, u′ ∈ L ∩ U′, u ∈ L′ ∩ U,
v ∈ U∩U′. Then lu′ is the image of x by the projection P → L and l (resp. u) is
the image of lu′ (resp. uv) by the morphism P′ → L′. Thus the decomposition
of x is unique, and the product map (L∩L′)× (L∩U′)× (L′ ∩U)× (U∩U′) →
P ∩ P′ is an isomorphism of varieties; the four terms are connected since the
product is. In particular L ∩ L′ is connected. �

Proposition 3.4.9

(i) Let P and P′ be two parabolic subgroups of G such that P′ ⊂ P, then
Ru(P′) ⊃ Ru(P) and for any Levi subgroup L′ of P′, there exists a unique
Levi subgroup L of P such that L ⊃ L′.

(ii) Let L be a Levi subgroup of a parabolic subgroup P of G and L′ be a
closed subgroup of L. Then the following are equivalent:

(a) L′ is a Levi subgroup of a parabolic subgroup of L.

(b) L′ is a Levi subgroup of a parabolic subgroup of G.

Proof Let us prove (i); given a maximal torus T of L′ there is by 3.4.2(i) a
unique Levi subgroup L of P containing T. Then by 3.4.8(ii) the group L′ ∩ L
is a Levi subgroup of P′ = P ∩ P′ thus L ∩ L′ = L′. Also Ru(P) is contained in
all Borel subgroups of P, thus in P′, whence Ru(P) ⊂ Ru(P′).

Let us show (ii); if L′ is a Levi subgroup of the parabolic subgroup PL of
L, then PLRu(P) is a parabolic subgroup of G; indeed it is a group since L,
thus PL, normalises Ru(P) and it clearly contains either Uα or U−α for any α ∈
Φ. Thus L′ is a Levi subgroup of PLRu(P), since Ru(PL).Ru(P) is unipotent
normal in PL.Ru(P). We have shown that (a) implies (b).

Conversely, let P′ be a parabolic subgroup of G with L′ as a Levi subgroup.
By 3.4.8(ii) we have P ∩ P′ = L′.(L ∩ U′).(U ∩ U′) thus (L ∩ U′) � L′ is a
Levi decomposition of L ∩ P′, and this last group is a parabolic subgroup of L
by 3.4.5. �

When L is a Levi subgroup of some parabolic subgroup of G we will say
(improperly) “L is a Levi subgroup of G” which is justified by statement (ii)
of 3.4.9.

Proposition 3.4.10 Let H be a closed connected reductive subgroup of G of
maximal rank. Then:
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(i) The Borel subgroups of H are the B ∩ H where B is a Borel subgroup of
G containing a maximal torus of H.

(ii) The parabolic subgroups of H are the P ∩ H, where P is a parabolic sub-
group of G containing a maximal torus of H.

(iii) If P is a parabolic subgroup of G containing a maximal torus of H, the
Levi subgroups of P ∩ H are the L ∩ H where L is a Levi subgroup of P
containing a maximal torus of H.

Proof Let T be a maximal torus of H; by assumption, it is also a maximal
torus of G. Let B be a Borel subgroup of G containing T, and let B = U.T be
the corresponding semi-direct product decomposition. The Borel subgroup B
defines an order on the root system Φ (resp. ΦH) of G (resp. H) with respect
to T. The group U ∩ H is normalised by T, so is connected and equal to the
product of the Uα it contains, that is those Uα such that α is positive and in
ΦH, so (U ∩ H).T = B ∩ H is a Borel subgroup of H. This gives (i) since all
Borel subgroups of H are conjugate under H.

Let us prove (ii). If P is a parabolic subgroup of G containing T, it contains
a Borel subgroup B containing T, so its intersection with H contains the Borel
subgroup B ∩ H of H and thus is a parabolic subgroup. Conversely, let Q be a
parabolic subgroup of H containing T, and let x be a vector of X(T)⊗Q defining
Q as in 3.3.8(ii). Then x defines a parabolic subgroup P of G. It remains to show
that P ∩ H = Q. The group P ∩ H is a parabolic subgroup of H by the first part.
It is generated by T and the Uα it contains. But Uα ⊂ P ∩ H if and only if
α ∈ ΦH and 〈α,x〉 ≥ 0; that is, if and only if Uα ⊂ Q by definition of x.

Similarly, the Levi subgroup of Q containing T is the intersection of the
Levi subgroup of P containing T with H, as it is generated by T and the Uα

with α ∈ ΦH orthogonal to x, whence (iii). �

3.5 Centralisers of Semi-Simple Elements

Proposition 3.5.1 Let s ∈ G be a semi-simple element, and let T be a maximal
torus containing s and Φ be the set of roots of G relative to T; then

(i) The identity component CG(s)0 is generated by T and the Uα for α ∈ Φ
such that α(s) = 1. It is a connected reductive subgroup of G of maximal
rank.

(ii) CG(s) is generated by CG(s)0 and the elements n ∈ NG(T) such that ns = s.

Proof (i) is an immediate consequence of 2.3.1(iv), and of the fact that the
corresponding set of α is closed and symmetric – see 3.3.12 and 3.3.13.
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Let us prove (ii). Let B = U � T be the Levi decomposition of a Borel
subgroup of G and let g ∈ CG(s); by Lemma 3.2.7 the element g has a unique
decomposition g = unv with n ∈ NG(T), u ∈ U and v ∈ Uw where w is the
image of n in W (T). As s normalises U, Uw and NG(T), this decomposition
is invariant under conjugation by s, so each of u, n and v also centralises s.
Writing again a unique decomposition of the form u =

∏
α>0 uα we see that

the α must satisfy α(s) = 1 so u ∈ CG(s)0, and the same argument applies to v.
Thus we get (ii). �

Remark 3.5.2 The Weyl group W0(s) of CG(s)0 is thus the group generated by
the reflections sα for which α(s) = 1. It is a normal subgroup of the Weyl group
of CG(s) which is W (s) = {w ∈ W (T) | ws = s}. The quotient W (s)/W0(s) is
isomorphic to the quotient CG(s)/CG(s)0.

Proposition 3.5.3 If x = su is the Jordan decomposition of an element of G,
where s is semi-simple and u unipotent, then x ∈ CG(s)0.

Proof Let B = U�T be a Levi decomposition of a Borel subgroup containing
x, where T is a maximal torus of B containing s, and write u =

∏
uα (with uα ∈

Uα where U =
∏

Uα). Then for any root α such that uα � 1, we have α(s) = 1
which implies that Uα ⊂ CG(s)0, whence the result as s ∈ T ⊂ CG(s)0. �

Examples 3.5.4

(i) All centralisers in GLn are connected. Indeed, the centraliser in the variety
of all matrices is an affine space, thus its intersection with GLn is an open
subspace of an affine space, which is always connected.

(ii) In the group SLn, centralisers of semi-simple elements are connected.
Indeed such an element is conjugate to an element s = diag(t1, . . . , tn)
of the torus T of diagonal matrices where we may assume, in addition,
that equal ti are grouped in consecutive blocks, thereby defining a par-
tition π of n. The elements of W (T) (permutation matrices) which cen-
tralise s are products of generating reflections sα which centralise s; that
is, W (s) = W0(s) showing that the centraliser of s is connected.

(iii) We finish with an example of a semi-simple element whose centraliser is

not connected. Let s ∈ PGL2 be the image of

(
1 0
0 −1

)
; in characteris-

tic different from 2, CPGL2 (s) has two connected components, consisting

respectively of the images of the matrices of the form

(
a 0
0 b

)
and of the

form

(
0 a
b 0

)
.
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Notes

A classic reference about (B,N)-pairs is Bourbaki (1968, Chapter IV). A
detailed study of closed and quasi-closed subsets and reductive and parabolic
subgroups is in Borel and Tits (1965). A detailed study of the centralisers of
semi-simple elements can be found in, for example, Deriziotis (1984).
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