(*B*,*N*)-Pairs; Parabolic, Levi, and Reductive Subgroups; Centralisers of Semi-Simple Elements

3.1 (*B*, *N*)-Pairs

We review properties of reductive groups related to existence of a (B,N)-pair. For an abstract group, having a (B,N)-pair is a very strong condition; many of the theorems we will give for reductive groups follow from this single property.

Definition 3.1.1 We say that two subgroups B and N of a group G form a (B, N)-pair (also called a **Tits system**) for G if:

- (i) *B* and *N* generate *G* and $T := B \cap N$ is normal in *N*.
- (ii) The group W := N/T is generated by a set S of involutions such that:
 - (a) For $s \in S$, $w \in W$ we have $BsB.BwB \subset BwB \cup BswB$.
 - (b) For $s \in S$, we have $sBs \nsubseteq B$.

The group *W* is called the **Weyl group** of the (B,N)-pair. Note that we write elements of *W* – instead of representatives of them in *N* – in expressions representing subsets of *G* when these expressions do not depend upon the chosen representative.

We will see in 3.1.3(v) that under the assumptions of 3.1.1 we have $S = \{w \in W - \{1\} \mid B \cup BwB \text{ is a group}\}$, thus S is determined by (B,N).

Proposition 3.1.2 If **G** is a connected reductive group and $\mathbf{T} \subset \mathbf{B}$ is a pair of a maximal torus and a Borel subgroup, then $(\mathbf{B}, N_{\mathbf{G}}(\mathbf{T}))$ is a (B, N)-pair for **G**.

Proof We show first that $\mathbf{B} \cap N_{\mathbf{G}}(\mathbf{T}) = \mathbf{T}$. By 1.3.1(iii) we have $N_{\mathbf{B}}(\mathbf{T}) = C_{\mathbf{B}}(\mathbf{T}) \subset C_{\mathbf{G}}(\mathbf{T}) = \mathbf{T}$ (see 2.3.1(iii)). By definition \mathbf{T} is normal in $N_{\mathbf{G}}(\mathbf{T})$. To prove (i) it remains to show that \mathbf{B} and $N_{\mathbf{G}}(\mathbf{T})$ generate \mathbf{G} . Let Φ^+ be the positive subsystem defined by \mathbf{B} . By 2.3.1(vi), \mathbf{B} contains all the \mathbf{U}_{α} ($\alpha \in \Phi^+$). Since s_{α} conjugates \mathbf{U}_{α} to $\mathbf{U}_{s_{\alpha}(\alpha)} = \mathbf{U}_{-\alpha}$, the group generated by \mathbf{B} and $N_{\mathbf{G}}(\mathbf{T})$ contains \mathbf{T} and all the \mathbf{U}_{α} ($\alpha \in \Phi$), thus by 2.3.1(v) this group is equal to \mathbf{G} . If Π is the basis defined by the ordering Φ^+ , (ii) is obtained by taking for *S* the $\{s_{\alpha} \mid \alpha \in \Pi\}$.

(ii)(b) reflects that ${}^{s_{\alpha}}\mathbf{U}_{\alpha} = \mathbf{U}_{-\alpha}$ is not in **B**.

It remains to show (ii)(a). Let $s = s_{\alpha}$, and write $\mathbf{B} = \mathbf{T} \prod_{\beta \in \Phi^+} \mathbf{U}_{\beta}$. As *s* normalises **T**, as ${}^{s}\mathbf{U}_{\beta} = \mathbf{U}_{s_{\alpha}(\beta)}$ and as $s_{\alpha}(\beta) \in \Phi^+$ if $\beta \in \Phi^+ - \{\alpha\}$, we get $\mathbf{B}s\mathbf{B}w\mathbf{B} = \mathbf{B}s\mathbf{U}_{\alpha}w\mathbf{B}$. If $w^{-1}(\alpha) \in \Phi^+$ the right hand side is equal to $\mathbf{B}sw\mathbf{B}$. Otherwise we write it as $\mathbf{B}s\mathbf{U}_{\alpha}ssw\mathbf{B}$ where this time $(sw)^{-1}(\alpha) \in \Phi^+$. Let \mathbf{B}_{α} be the image by ϕ_{α} (see 2.3.1(ii)) of the Borel subgroup of \mathbf{SL}_2 of upper triangular matrices. If $c \neq 0$ we have in \mathbf{SL}_2 :

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -1/c & -a \\ 0 & -c \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & d/c \\ 0 & 1 \end{pmatrix}$$

which taking images shows that $s\mathbf{U}_{\alpha}s \subset \operatorname{Im} \phi_{\alpha} = \mathbf{B}_{\alpha} \cup \mathbf{B}_{\alpha}s\mathbf{U}_{\alpha}$, whence $\mathbf{B}s\mathbf{U}_{\alpha}ssw\mathbf{B} \subset \mathbf{B}s\mathbf{U}_{\alpha}sw\mathbf{B} \cup \mathbf{B}sw\mathbf{B}$ where the first term in the right-hand side is $\mathbf{B}w\mathbf{B}$ since $(sw)^{-1}(\alpha) \in \Phi^+$.

Theorem 3.1.3 If G has a (B,N)-pair, then

- (i) $G = \prod_{w \in W} BwB$ (Bruhat decomposition).
- (ii) (W,S) is a Coxeter group.
- (iii) Condition (ii)(a) of 3.1.1 can be refined to

$$BsB.BwB = \begin{cases} BswB & if \ l(sw) = l(w) + 1, \\ BswB \cup BwB & otherwise. \end{cases}$$

- (iv) For any $t \in N(w)$ (see 2.1.2(ii)), we have $BtB \subset Bw^{-1}BwB$.
- (v) $S = \{w \in W \{1\} \mid B \cup BwB \text{ is a group}\}.$
- (vi) We have $N_G(B) = B$.

Proof Let us show (i). As *B* and *N* generate *G*, we have $G = \bigcup_i (BNB)^i$. Since BNB = BWB we will get G = BWB if we show that BWBWB = BWB. For this it is enough to show that $BwBWB \subset BWB$ for $w \in W$; writing $w = s_1 \dots s_n$ with $s_i \in S$, since $BwB \subset Bs_1B \dots Bs_nB$ it is enough to show $BsBWB \subset BWB$ for $s \in S$; but this results from 3.1.1(ii)(a). It remains to show that $BwB \neq Bw'B$ if $w \neq w'$. We show this by induction on $\inf(l(w), l(w'))$, where *l* is the length with respect to *S*; assume for instance that $l(w) \leq l(w')$. The start of the induction is l(w) = 0 and the result comes from $w' \notin B$. Otherwise, taking $s \in S$ such that l(sw) < l(w), by induction BswB is equal neither to Bw'B nor to Bsw'B thus $BswB \cap BsB.Bw'B = \emptyset$; as $BswB \subset BsB.BwB$ it follows that $BwB \neq Bw'B$.

For (ii), we use 2.2.9 with $D_s = \{w \in W \mid BsBwB = BswB\}$ (note that if $w \notin D_s$ then $BsBwB = BswB \bigsqcup BwB$). Clearly $D_s \ni 1$.

If w, $sw \in D_s$, then from BsBwB = BswB and BsBswB = BwB we get BsBsBwB = BwB which is a contradiction since multiplying on the right by BwB the equality $BsBsB = BsB \coprod B$ (since $sBs \notin B$ by 3.1.1(ii)(b)), we get $BsBsBwB = BswB \coprod BwB$.

It remains to show for (ii) that $w \in D_s, ws' \notin D_s$ implies ws' = sw. The assumption $ws' \notin D_s$ implies $BsBws'B = Bsws'B \coprod Bws'B$; in particular BsBws'meets Bws'B; multiplying on the right by s'B it follows that BsBwB meets $Bws'Bs'B \subset (BwB \coprod Bws'B)$ (this last inclusion follows from 3.1.1(ii)(a) reversed, which is obtained by taking inverses). Thus BswB = BsBwB (since $w \in D_s$) is equal to Bws'B, or to BwB. The latter cannot happen since $w \neq sw$, thus sw = ws' as was to be shown. We have also shown (iii) by the property of D_s given in the last sentence of 2.2.9.

Let us show (iv). If $w = s_1 \dots s_k$ is a reduced expression, for all *i* we can write by (iii) $BwB = Bs_1 \dots s_{i-1}Bs_iBs_{i+1} \dots s_kB$ and similarly for $Bw^{-1}B$ whence

$$Bw^{-1}BwB = Bs_k \dots s_{i+1}Bs_iBs_{i-1} \dots s_1Bs_1 \dots s_{i-1}Bs_iBs_{i+1} \dots s_kB$$

$$\supset Bs_k \dots s_{i+1}Bs_iBs_iBs_{i+1} \dots s_kB$$

$$\supset Bs_k \dots s_{i+1}s_iBs_{i+1} \dots s_kB$$

$$\supset Bs_k \dots s_{i+1}s_is_{i+1} \dots s_kB$$

whence the result.

(v) follows immediately from (iv), which implies that $B \cup BwB$ can be a group only if $|N(w)| \le 1$, and from (iii) which implies that $B \cup BsB$ is a group.

(vi) also follows from (iv). For $g \in BwB$ we have ${}^{g}B = B \Leftrightarrow {}^{w}B = B \Leftrightarrow BwBw^{-1}B = B$ which by (iv) happens only for w = 1.

In a group G with a (B,N)-pair, we call **Borel subgroups** the conjugates of B and **maximal tori** the conjugates of T; this fits the terminology for algebraic groups.

Corollary 3.1.4 In a group G with a (B,N)-pair, every pair of Borel subgroups is conjugate to a pair of the form $(B, {}^{w}B)$ with $w \in W$; the intersection of two Borel subgroups contains a maximal torus.

Proof Up to conjugacy, we may assume the given pair of Borel subgroups of the form $(B, {}^{g}B)$. By the Bruhat decomposition we may write g = bwb' where $b,b' \in B$; thus the pair is equal to $(B, {}^{bw}B)$, which is conjugate to $(B, {}^{w}B)$. Since *B* and ${}^{w}B$ both contain *T*, the intersection of every conjugate pair also contains a maximal torus.

Example 3.1.5 For *m* a matrix in GL_n , let $m_{i,j}$ be the submatrix on the last lines i, \ldots, n and first columns $1, \ldots, j$. Let *w* be a permutation matrix; then

 $m \in \mathbf{B}w\mathbf{B}$, where **B** is the Borel subgroup of upper triangular matrices, if and only if the matrices $m_{i,j}$ and $w_{i,j}$ have same rank for all *i*,*j*. Indeed,

- The ranks of $m_{i,j}$ are invariant by left or right multiplication of m by an upper triangular matrix.
- A permutation matrix w for the permutation σ is characterised by the ranks of $w_{i,j}$, given by $|\{k \le j \mid \sigma(k) \ge i\}|$.

If $\{F'_i\}$ and $\{F''_i\}$ are two complete flags whose stabilisers are the Borel subgroups **B**' and **B**'', then the permutation matrix *w* such that $(\mathbf{B}', \mathbf{B}'')$ is conjugate to $(\mathbf{B}, {}^w\mathbf{B})$ (the **relative position** of the two flags) is characterised by rank $w_{i,j} = \dim \frac{F'_i \cap F''_j}{(F'_{i-1} \cap F''_j) + (F'_i \cap F''_{j-1})}$.

3.2 Parabolic Subgroups of Coxeter Groups and of (*B*, *N*)-Pairs

Lemma 3.2.1 Let (W, S) be a Coxeter system, let I be a subset of S, and let W_I be the subgroup of W generated by I, called a **standard parabolic subgroup** of W. Then (W_I, I) is a Coxeter system.

An element $w \in W$ is said to be **reduced-***I* if it satisfies one of the equivalent conditions:

(i) For any $v \in W_I$, we have l(wv) = l(w) + l(v).

- (ii) For any $s \in I$, we have l(ws) > l(w).
- (iii) w has minimal length in the coset wW_I .

(iv)
$$N(w) \cap I = \emptyset$$
.

(v) $N(w) \cap \operatorname{Ref}(W_I) = \emptyset$.

There is a unique reduced-I element in wW_I .

By exchanging left and right we have the notion of *I*-reduced element which satisfies the mirror properties. A subgroup of *W* conjugate to a standard parabolic subgroup is called a **parabolic subgroup**.

Proof A reduced expression in W_I is reduced in W by the exchange condition and then satisfies the exchange condition in W_I , thus (W_I, I) is a Coxeter system.

(iii) \Rightarrow (ii) since (iii) implies $l(ws) \ge l(w)$ when $s \in I$. Let us show that "not (iii)" \Rightarrow "not (ii)". If w' does not have minimal length in $w'W_I$, then w' = wv with $v \in W_I$ and l(w) < l(w'); adding one by one the terms of a reduced expression for v to w and applying at each stage the exchange condition, we find that w' has a reduced expression of the shape $\hat{w}\hat{v}$ where \hat{w} (resp. \hat{v}) denotes

a subsequence of the chosen reduced expression. As $l(\hat{w}) \le l(w) < l(w')$, we have $l(\hat{v}) > 0$, thus w' has a reduced expression ending by an element of *I*, thus w' does not satisfy (ii).

(i) \Rightarrow (iii) is clear. Let us show "not (i)" \Rightarrow "not (iii)". If l(wv) < l(w) + l(v) then a reduced expression for wv has the shape $\hat{w}\hat{v}$ where $l(\hat{w}) < l(w)$. Then $\hat{w} \in wW_I$ and has a length smaller than that of w.

By 2.1.6(ii) property (ii) is equivalent to (iv).

It is clear that (v) implies (iv), and (i) applied to $v \in \text{Ref}(W)$ implies (v) by 2.1.6(ii).

Finally, an element satisfying (i) is clearly unique in wW_I .

Lemma 3.2.2 Let I and J be two subsets of S. An element $w \in W$ is I-reduced-J if it satisfies one of the equivalent properties:

- (i) w is both I-reduced and reduced-J.
- (ii) w has minimal length in $W_I w W_J$.
- (iii) Every element of $W_I w W_J$ can be written uniquely xwy with $x \in W_I$, $y \in W_J$, l(x) + l(w) + l(y) = l(xwy) and xw is reduced-J.

(iii) implies that in a double coset in $W_I \setminus W/W_J$ there is a unique *I*-reduced-*J* element, which has minimal length; by symmetry we can replace in condition (iii) the assumption that *xw* is reduced-*J* by the assumption that *wy* is *I*-reduced.

Proof We first show that two elements w, w' in the same double coset and satisfying (i) have the same length. Write w' = xwy with $x \in W_I$ and $y \in W_J$; then $w'y^{-1} = xw$ and $x^{-1}w' = wy$; by the defining properties of *I*-reduced and reduced-*J* and using $l(y^{-1}) = l(y)$, $l(x^{-1}) = l(x)$ we get l(w') + l(y) = l(x) + l(w) and l(x) + l(w') = l(w) + l(y), whence l(x) = l(y) and l(w) = l(w'). As clearly (ii) \Rightarrow (i) this common length must be the minimal length, thus (i) \Leftrightarrow (ii).

We now show (ii) \Rightarrow (iii). Assume *w* satisfies (ii); write an element $v \in W_I w W_J$ as *xwy* with $x \in W_I$, $y \in W_J$ and *x* of minimal possible length. By the exchange lemma a reduced expression for *xwy* is of the form $\hat{x}\hat{w}\hat{y}$ where \hat{x} (resp. \hat{w} , \hat{y}) is a subsequence of a reduced expression for *x* (resp. *w*, *y*). Necessarily $\hat{w} = w$ otherwise *w* would not be of minimal length in its double coset. Then the minimal length assumption on *x* implies $\hat{x} = x$, whence $\hat{y} = y$, thus l(x) + l(w) + l(y) = l(xwy). The element *xw* is reduced-*J* otherwise we can write xw = v'y' where $v' \in W_I w W_J$, $y' \in W_J - \{1\}$ and l(v') + l(y') = l(xw). Using what we just proved on *w* we can write v' = x''wy'' with l(x'') + l(w) + l(y'') + l(y') = l(x) + l(w) which implies l(x'') < l(x), contradicting the minimality of l(x). Finally the decomposition *xwy* is unique since *xw* is the unique *J*-reduced element in its coset.

Finally, (iii) \Rightarrow (ii) is clear.

Note that not every decomposition *xwy* where *w* is *I*-reduced-*J* satisfies (iii); consider for instance the case w = y = 1, I = J and *x* the longest element of W_I ; thus the situation is not as good as in the *I*-reduced case.

In a group with a (B,N)-pair, we use the term **parabolic subgroups** for the subgroups containing a Borel subgroup.

Proposition 3.2.3 Let G be a group with a (B,N)-pair. Then

- (i) The (parabolic) subgroups containing B are the $P_I = BW_IB$ for some $I \subset S$.
- (ii) Given two parabolic subgroups P_I and P_J, we have a relative Bruhat decomposition G = ∐_w P_IwP_J where w runs over the I-reduced-J elements. It follows a natural bijection P_I\G/P_J → W_I\W/W_J.

Proof Let us show (i). Let *P* be a subgroup containing *B* and let $w \in W$ be such that $BwB \subset P$. Since *P* is a group we get $Bw^{-1}BwB \subset P$, thus by 3.1.3(iv) we get $BtB \subset P$ for any $t \in N(w)$. If $w = s_1 \dots s_k$ is a reduced expression we get in particular $Bs_kB \subset P$, thus $s_1 \dots s_{k-1} \in P$ and by induction for each *i* we have $s_i \in P$. It follows that $P = BW_IB$ where *I* is the union of the elements of *S* appearing in any reduced expression of any *w* such that $BwB \subset P$. Conversely, for any $I \subset S$, using 3.1.1(ii)(a) we see that BW_IB is a group.

Let us show (ii). For any $w \in W$ we have $P_IwP_J = BW_IBwBW_JB = BW_IwW_JB$, the last equality by repeated application of 3.1.1(ii)(a) and of its right counterpart. Since, by Lemma 3.2.2 we can take *I*-reduced-*J* elements as representatives of the double cosets we see that the first assertion of (ii) is just the Bruhat decomposition. Conversely, any coset P_IgP_J is of the form P_IwP_J if $g \in BwB$ whence the last assertion of (ii).

Remark 3.2.4 Using 3.2.3 we see that in the definition 1.3.5 of a parabolic subgroup the word "closed" can be omitted. Indeed a reductive group has a (B,N) pair, hence by 3.2.3 a subgroup containing a Borel subgroup is conjugate to some **B** W_I **B**, hence it is closed. In general, if **G** is a connected group and **P** is a subgroup containing a Borel subgroup, then **P** $/R_u$ (**G**) contains a Borel subgroup of the reductive group **G** $/R_u$ (**G**) hence it is closed, thus **P** is closed by continuity of the quotient morphism.

Example 3.2.5 In **GL**_{*n*}, the parabolic subgroup **P**_{*J*} for $J \,\subset S$ containing the Borel subgroup of upper triangular matrices is the subgroup of upper block-triangular matrices where the blocks correspond to maximal intervals [i,k] in [1,n] such that $s_i, \ldots, s_{k-1} \in J$.

Example 3.2.6 For the symplectic group \mathbf{Sp}_{2n} , as the stabiliser **B** of any complete isotropic flag $V_1 \subset \cdots \subset V_n$ in \mathbf{Sp}_{2n} is a Borel subgroup, the stabiliser of any subflag is a parabolic subgroup. We thus get 2^n distinct parabolic subgroups containing **B**. Since there are also 2^n subsets of *S*, they are the only parabolic

subgroups containing **B**. As any isotropic flag may be completed to a complete one, we get the result that in general parabolic subgroups are the stabilisers of (complete or not) isotropic flags.

Lemma 3.2.7 (unicity in Bruhat decomposition) Let **G** be a connected reductive group and **B** = **U** \rtimes **T** be a decomposition of a Borel subgroup **B** as in 1.3.1(ii), where **U** = $R_u(\mathbf{B})$. Then **B**w**B** has a direct product decomposition $\mathbf{U} \times \mathbf{T}_W \times \mathbf{U}_W$ where $\mathbf{U}_W := \prod_{\{\alpha \in \Phi^+ | w(\alpha) < 0\}} \mathbf{U}_{\alpha}$.

Proof Notice first that \mathbf{U}_w is a group; since if in 2.3.1(vii) α and β are sent to negative roots by w, then the same holds for $\lambda \alpha + \mu \beta$. We have $\mathbf{U} = \mathbf{U}'\mathbf{U}_w$ where $\mathbf{U}' = \prod_{\{\alpha \in \Phi^+ | w(\alpha) > 0\}} \mathbf{U}_\alpha$ thus ${}^w\mathbf{U}' \subset \mathbf{U}$; thus $\mathbf{B}w\mathbf{B} = \mathbf{U}\mathbf{T}w\mathbf{U}'\mathbf{U}_w = \mathbf{U}\mathbf{T}w\mathbf{U}_w$. It remains to be shown that the decomposition is unique; that is, if $u\mathbf{T}wu' = \mathbf{T}w$ with $u \in \mathbf{U}, u' \in \mathbf{U}_w$ then u = u' = 1. The condition implies ${}^wu' \in \mathbf{B}$. But ${}^w\mathbf{U}_w \cap \mathbf{B} = 1$ since all \mathbf{U}_α in ${}^w\mathbf{U}_w$ are for negative α . Thus u' = 1, whence u = 1.

The next proposition says that the decomposition of **G** in **Bruhat cells** BwB is a stratification (the closure of a stratum is a union of strata).

Proposition 3.2.8 Let **G** be a connected reductive group and $\mathbf{B} = \mathbf{U} \rtimes \mathbf{T}$ be a decomposition of a Borel subgroup **B** as in 3.2.7. Then the Zariski closure of **B**w**B** in **G** is given by $\overline{\mathbf{B}w\mathbf{B}} = \coprod_{v \leq w} \mathbf{B}v\mathbf{B}$, where \leq is the **Bruhat–Chevalley** order on w, given by $v \leq w$ if a reduced expression of v is a subsequence of a reduced expression of w.

Reference See Chevalley (1994, Proposition 6).

3.3 Closed Subsets of a Crystallographic Root System

In this section, Φ will be a reduced crystallographic root system in the Q-vector space *V*, and Π will be a basis of Φ ; we denote by Φ^+ the corresponding positive subsystem and by (*W*,*S*) the corresponding Coxeter system, where $S = \{s_{\alpha}\}_{\alpha \in \Pi}$.

Definition 3.3.1 A subset $\Psi \subset \Phi$ is:

- (i) **closed** if $\alpha, \beta \in \Psi, \alpha + \beta \in \Phi \Rightarrow \alpha + \beta \in \Psi$.
- (ii) symmetric if $\Psi = -\Psi$.

The intersection of two closed subsets is clearly closed.

Lemma 3.3.2 The reduced crystallographic root systems of rank 2 are $A_1 \times A_1$, A_2 , $C_2 = B_2$ and G_2 .

Here is a picture of their positive roots:

Proof Let Φ be crystallographic of rank 2 with Weyl group *W*. Let $\Pi = \{\alpha, \beta\}$. Choosing a *W*-invariant scalar product (.,.) as in 2.2.3, we have $\alpha^{\vee}(\beta)\beta^{\vee}(\alpha) = 4\frac{(\alpha,\beta)^2}{(\alpha,\alpha)(\beta,\beta)} = 4\cos^2\theta$ where θ is the angle between α and β . Since $\alpha, \beta \in \Pi$ we have $(\alpha,\beta) \leq 0$ thus $\pi/2 \leq \theta \leq \pi$ and the integrality of $4\cos^2\theta$ implies that $4\cos^2\theta \in \{0,1,2,3\}$ thus $\pi - \theta \in \{\pi/2,\pi/3,\pi/4,\pi/6\}$. Except for $A_1 \times A_1$, the ratio of the lengths of α and β is implied by the equation $\alpha^{\vee}(\beta)\beta^{\vee}(\alpha) = 4\cos^2\theta$. For instance if $4\cos^2\theta = 2$ the only integral solution, up to exchanging α and β , is $\alpha^{\vee}(\beta) = -1$ and $\beta^{\vee}(\alpha) = -2$ whence $2(\beta,\beta) = (\alpha,\alpha)$. For $A_1 \times A_1$ the ratio of the lengths is not determined, we have chosen 1 in the picture. \Box

Corollary 3.3.3 For a crystallographic root system Φ and a positive subsystem Φ^+ , we have:

- (i) If $\alpha, \beta \in \Phi$, $\alpha \neq -\beta$ and $(\alpha, \beta) < 0$, then $\alpha + \beta \in \Phi$.
- (ii) If $\alpha, \beta \in \Phi$ and $\alpha + n\beta \in \Phi$ for $n \in \mathbb{N}$, then $\alpha + m\beta \in \Phi$ for all $0 \le m \le n$.
- (iii) If $\alpha_1, \ldots, \alpha_k \in \Phi^+$ and $\alpha = \alpha_1 + \cdots + \alpha_k \in \Phi^+$, then if k > 1 we have $\alpha \alpha_i \in \Phi^+$ for some *i*.
- (iv) If $\Psi \subset \Phi$ is closed, $\alpha, \beta \in \Psi, \alpha \neq -\beta$ and $n\alpha + m\beta \in \Phi$ for some n, m > 0, then $n\alpha + m\beta \in \Psi$.

Proof For (i), by the argument in the proof of 3.3.2 about possible integral solutions, up to exchanging α and β we have $\alpha^{\vee}(\beta) = -1$, whence $\alpha + \beta = s_{\alpha}(\beta) \in \Phi$. For (iii) as $(\alpha, \alpha) > 0$ we must have $(\alpha, \alpha_i) > 0$ for some *i* thus by (i) $\alpha - \alpha_i \in \Phi$.

For (ii), by (iii) either $\alpha + (n-1)\beta$ or $n\beta$ is in Φ , and since Φ is reduced, $n\beta \notin \Phi$ if $n \neq 1$, whence the result by induction on *n*.

For (iv) we may assume both α and β positive (they are for some order since $\alpha \neq -\beta$), and then we apply (iii) and induction on n + m.

Corollary 3.3.4 If $\Psi \subset \Phi$ is closed and symmetric, it is a root subsystem.

Proof For $\alpha, \beta \in \Psi$, we have to show that $s_{\alpha}(\beta) \in \Psi$. This is true if $\beta = \pm \alpha$ since Ψ is symmetric. Otherwise, replacing α by $-\alpha$ if necessary we have $s_{\alpha}(\beta) = \beta + n\alpha$ for some $n \in \mathbb{N}^*$; then Corollary 3.3.3(iv) gives the result. \Box

Proposition 3.3.5 If Ψ is closed and $\Psi \cap -\Psi = \emptyset$, there exists a positive subsystem Φ^+ such that $\Psi \subset \Phi^+$.

Proof We first show by induction on k > 0 that 0 is not the sum of k elements of Ψ . This is clear for k = 1. If $0 = \alpha_1 + \cdots + \alpha_k$ then $0 < (\alpha_1, \alpha_1) =$ $(-\alpha_1, \alpha_2 + \cdots + \alpha_k)$ thus there exists $i \neq 1$ such that $(\alpha_1, \alpha_i) < 0$. Using $\alpha_1 \neq -\alpha_i$ (since $-\alpha_i \notin \Psi$ by assumption) and 3.3.3(i) we get $\alpha_1 + \alpha_i \in \Phi$ thus $\alpha_1 + \alpha_i \in \Psi$, thus the sum is the sum of k - 1 elements, a contradiction.

We now build by induction on *k* a sequence γ_k of elements of Ψ such that $\gamma_k \in \Psi$ is the sum of *k* elements of Ψ . We start with γ_1 equal to an arbitrary element of Ψ . If there is $\alpha \in \Psi$ such that $(\gamma_k, \alpha) < 0$ we set $\gamma_{k+1} = \alpha + \gamma_k \in \Psi$. For i < j we have $\gamma_i \neq \gamma_j$, otherwise $\gamma_j - \gamma_i$ would be a zero sum of elements of Ψ , thus by finiteness the sequence must stop on some γ_k such that $(\gamma_k, \alpha) \ge 0$ for any $\alpha \in \Psi$. The linear form (γ_k, \cdot) almost defines an order as in 2.2.4. We need to modify it on γ_k^{\perp} . But $\gamma_k^{\perp} \cap \Psi \subset \gamma_k^{\perp} \cap \Phi$ satisfies the same assumptions as the proposition and we may iterate the construction on this subspace.

For $I \subset S$ we set $\Pi_I := \{ \alpha \in \Pi \mid s_\alpha \in I \}$ and $\Phi_I = \Phi \cap \mathbb{Q}\Pi_I$; it is clearly a root subsystem with basis Π_I , since when decomposed on Π a root of Φ_I involves only elements of Π_I .

It is clear that Φ_I is closed and symmetric and that $\Phi^+ - \Phi_I$ and $\Phi^+ \cup \Phi_I$ are closed.

Example 3.3.6 There exist closed and symmetric subsystems which are not of the form Φ_I ; for instance the long roots in a system B_2 form a system of type $A_1 \times A_1$, and the long roots in G_2 form a system of type A_2 . See also 11.2.7.

Lemma 3.3.7 If $s_{\alpha} \in W_I$ for $\alpha \in \Phi$, then $\alpha \in \Phi_I$.

Proof Elements of W_I are the product of some s_β for $\beta \in \Pi_I$, thus they fix Π_I^{\perp} . Thus s_α fixes Π_I^{\perp} , which implies that $\alpha \in \mathbb{Q}\Pi_I \cap \Phi = \Phi_I$.

We say that Ψ is a **parabolic** subset of Φ if Ψ is closed and $\Psi \cup -\Psi = \Phi$.

Proposition 3.3.8

- (i) A parabolic subset is conjugate to a parabolic subset containing Φ⁺; such a subset is of the form Φ⁺ ∪ Φ_I for some I ⊂ S.
- (ii) A parabolic subset is a set of the form $\{\alpha \mid \lambda(\alpha) \ge 0\}$ for some linear form λ on V.

Proof For the first part of (i) it is equivalent to show that a parabolic subset Ψ contains some positive subsystem. Choose such a positive subsystem Φ^+ such that $|\Psi \cap \Phi^+|$ is maximal. We show by contradiction that $\Phi^+ \subset \Psi$. Otherwise let Π be the basis of Φ defining Φ^+ ; there must exist $\alpha \in \Pi, \alpha \notin \Psi$, thus $-\alpha \in \Psi$. Since $\alpha \notin \Psi$ we have $s_{\alpha}(\Psi \cap \Phi^+) \subset \Phi^+$; applying s_{α} again we get $\Psi \cap \Phi^+ \subset s_{\alpha}(\Phi^+)$. But then the positive subsystem $s_{\alpha}(\Phi^+)$ contains $-\alpha$ thus satisfies $|\Psi \cap s_{\alpha}(\Phi^+)| > |\Psi \cap \Phi^+|$, a contradiction.

We now assume that $\Psi \supset \Phi^+$. Let $I = \{s_\alpha \mid -\alpha \in \{-\Pi \cap \Psi\}\}$. Let us show that $\Psi \cap \Phi^- = \Phi_I^-$.

We first show that $\Phi_I^- \subset \Psi$. Note that by 2.2.8 applied to the basis $-\Pi_I$ of Φ_I^- any root in Φ_I^- is a sum of elements of $-\Pi_I$. We show by induction on *k* that a root in Φ_I^- sum of *k* roots in $-\Pi_I$ is in Ψ . It is true by assumption when k = 1; in general by 3.3.3(iii) we may write the root as $\alpha + \beta$ where $\alpha \in -\Pi_I$ and $\beta \in \Phi_I^-$ sum of k - 1 roots in $-\Pi_I$; by induction $\beta \in \Psi$ and as $\alpha \in \Psi$ and Ψ is closed $\alpha + \beta \in \Psi$.

We finally show the reverse inclusion by induction. Let $\gamma \in \Psi \cap \Phi^-$ be the sum of *k* roots of $-\Pi$, and write it $\gamma = \alpha + \beta$ where $\alpha \in -\Pi$ and $\beta \in \Phi$ is the sum of k - 1 roots in $-\Pi$. As $-\beta \in \Phi^+ \subset \Psi$ we get $\alpha = \gamma + (-\beta) \in \Psi$ whence $\alpha \in -\Pi \cap \Psi = -\Pi_I$. Thus $-\alpha \in \Psi$ whence $\beta = \gamma + (-\alpha) \in \Psi$, and we conclude since by induction $\beta \in \Phi_I^-$.

Conversely the fact that for any $I \subset S$ the set $\Phi^+ \cup \Phi_I$ is parabolic is a consequence of the proof of (ii) below.

We now show (ii). It is clear that a subset of the form $\{\alpha \mid \lambda(\alpha) \ge 0\}$ is parabolic. It is thus sufficient to show that $\Phi^+ \cup \Phi_I$ is of this form. Take any *x* such that $\langle x, \alpha \rangle = 0$ if $\alpha \in \Phi_I$ and $\langle x, \alpha \rangle > 0$ if $\alpha \in \Psi - \Phi_I$. Such an *x* exists: the projection of Φ^+ on Φ_I^{\perp} lies in a half-space, and we may take *x* in this half-space, orthogonal to the hyperplane which delimits it. It is clear that by construction *x* has the required properties.

A consequence of 3.3.8 is that the complement of a parabolic subset is closed.

Subgroups of Maximal Rank and Quasi-closed Sets

In the remainder of this chapter **G** is a connected reductive algebraic group, **T** is a maximal torus of **G**, and Φ is the set of roots of **G** relative to **T**. For $\Psi \subset \Phi$, we set $\mathbf{G}_{\Psi}^* := \langle \mathbf{U}_{\alpha} \mid \alpha \in \Psi \rangle$ and $\mathbf{G}_{\Psi} := \langle \mathbf{T}, \mathbf{U}_{\alpha} \mid \alpha \in \Psi \rangle$. These are closed connected subgroups by 1.1.3 and \mathbf{G}_{μ}^* is a normal subgroup of \mathbf{G}_{Ψ} .

Definition 3.3.9 A subset $\Psi \subset \Phi$ is called **quasi-closed** if \mathbf{G}_{Ψ}^* does not contain any \mathbf{U}_{α} with $\alpha \in \Phi - \Psi$.

We get an equivalent definition by replacing G_{Ψ}^* with G_{Ψ} , since G_{Ψ}/G_{Ψ}^* is a quotient of **T** and thus is a torus. Hence any $U_{\alpha} \subset G_{\Psi}$ is in the kernel of this quotient, and is thus in G_{Ψ}^* .

Proposition 3.3.10 A closed and connected subgroup $\mathbf{H} \subset \mathbf{G}$ containing \mathbf{T} is equal to \mathbf{G}_{Ψ} with $\Psi = \{ \alpha \in \Phi \mid \mathbf{U}_a \subset \mathbf{H} \}$; the set Ψ is quasi-closed.

Proof By 2.3.1(iv) **H** is generated by **T** and the U_{α} it contains. The subset $\Psi \subset \Phi$ of those α is quasi-closed by definition.

Let Ψ, Ψ' be quasi-closed; it is clear that $\Psi \cap \Psi'$ is quasi-closed (since $\mathbf{G}_{\Psi \cap \Psi'}$ is a subgroup of both \mathbf{G}_{Ψ} and $\mathbf{G}_{\Psi'}$); actually one sees that $\mathbf{G}_{\Psi \cap \Psi'} = (\mathbf{G}_{\Psi} \cap \mathbf{G}_{\Psi'})^0$ by applying 2.3.1(iv) to the right-hand side.

Definition 3.3.11 A connected linear algebraic group **P** has a **Levi decomposition** if there is a closed subgroup $\mathbf{L} \subset \mathbf{P}$ such that $\mathbf{P} = R_u(\mathbf{P}) \rtimes \mathbf{L}$. The group **L** is called a **Levi subgroup** of **P** (or a **Levi complement**).

A Levi complement is clearly reductive.

Proposition 3.3.12 Let $\Psi \subset \Phi$ be quasi-closed, and let $\Psi_s = \{\alpha \in \Psi \mid -\alpha \in \Psi\}$ and $\Psi_u = \{\alpha \in \Psi \mid -\alpha \notin \Psi\}$. Then Ψ_s and Ψ_u are quasi-closed and \mathbf{G}_{Ψ} has a Levi decomposition $\mathbf{G}_{\Psi} = \mathbf{G}_{\Psi_u}^* \rtimes \mathbf{G}_{\Psi_s}$ where $\mathbf{G}_{\Psi_u}^* = R_u(\mathbf{G}_{\Psi})$. In particular \mathbf{G}_{Ψ} is reductive if and only if Ψ is symmetric.

Proof We first show that Ψ_s is quasi-closed. As the intersection of two quasiclosed sets is quasi-closed, it is enough to show that $-\Psi$ is quasi-closed. This results from the existence of the opposition automorphism of **G** which acts by -1 on $X(\mathbf{T})$; see Example 2.4.9.

As a connected group normalised by **T** the group $R_u(\mathbf{G}_{\Psi})$ is – by Theorem 2.3.1(v) – of the form $\mathbf{G}_{\Psi'}^*$ for a subset $\Psi' \subset \Psi$ that we may assume quasiclosed. We have $\Psi' \subset \Psi_u$, otherwise there is $\alpha \in \Psi_s \cap \Psi'$, thus $\mathbf{U}_{-\alpha} \subset \mathbf{G}_{\Psi}$ thus normalises $R_u(\mathbf{G}_{\Psi})$ thus $[\mathbf{U}_{-\alpha}, \mathbf{U}_{\alpha}] \subset R_u(\mathbf{G}_{\Psi})$ which is a contradiction since this commutator set contains non-unipotent elements by Theorem 2.3.1(i).

To show $\Psi' = \Psi_u$ it is thus enough to show $\Psi - \Psi' \subset \Psi_s$. If $\alpha \in \Psi - \Psi'$, then $\mathbf{U}_{\alpha} \cap R_u(\mathbf{G}_{\Psi}) = 1$ since this intersection is normalised by **T** thus contains the whole \mathbf{U}_{α} if not trivial. Thus, in the quotient $\mathbf{G}_{\Psi} \to \mathbf{L}'$, where \mathbf{L}' is the reductive group $\mathbf{G}_{\Psi}/R_u(\mathbf{G}_{\Psi})$, the group \mathbf{U}_{α} maps injectively to a root subgroup of \mathbf{L}' . Let \mathbf{U}' be the root subgroup of \mathbf{L}' corresponding to the opposed root and \mathbf{U}'' its preimage. Any element of \mathbf{U}'' is unipotent since, its image being unipotent, its semi-simple part is in $R_u(\mathbf{G}_{\Psi})$ so is trivial. Hence \mathbf{U}'' is a unipotent subgroup normalised by **T**, so is a product of certain root subgroups and must contain $\mathbf{U}_{-\alpha}$, thus $-\alpha \in \Psi$ and $\alpha \in \Psi_s$.

It also follows from the proof that \mathbf{G}_{Ψ_s} maps injectively to \mathbf{L}' , thus \mathbf{G}_{Ψ_s} is a Levi complement of $R_u(\mathbf{G}_{\Psi})$.

Proposition 3.3.13 A closed subset is quasi-closed.

https://doi.org/10.1017/9781108673655.005 Published online by Cambridge University Press

Proof Let $\Psi \subset \Phi$ be a closed subset and let Ψ_s and Ψ_u be as in 3.3.12. It is clear that Ψ_s is closed. Note that if $\alpha \in \Psi$, $\beta \in \Psi_u$ and $\alpha + \beta \in \Phi$ then $\alpha + \beta \in$ Ψ_u , otherwise $\alpha + \beta \in \Psi_s$ whence $-\alpha - \beta \in \Psi_s$ thus $\alpha + (-\alpha - \beta) = -\beta \in \Psi$ which contradicts $\beta \in \Psi_u$. In particular Ψ_u is closed. By 3.3.5 there exists a positive subsystem such that $\Psi_u \subset \Phi^+$.

Lemma 3.3.14 If Ψ is a closed subset of a positive subsystem Φ^+ of Φ , then Ψ is quasi-closed and $\mathbf{G}_{\Psi}^* = \prod_{\alpha \in \Psi} \mathbf{U}_{\alpha}$ where the product is taken in an arbitrary order.

In the situation of the lemma we will write U_{Ψ} for G_{Ψ}^* .

Proof By 2.3.1(vii) and 3.3.3(iv) $\prod_{\alpha \in \Psi} U_{\alpha}$ is a group, thus equal to \mathbf{G}_{Ψ}^* . \Box

We deduce that Ψ_u is quasi-closed. In addition, if $\alpha \in \Psi_s$, $\beta \in \Psi_u$ and $\alpha + \beta \in \Phi$, using the fact that $\alpha + \beta \in \Psi_u$ and 3.3.3(iv), we get $n\alpha + m\beta \in \Psi_u$ for $n, m \ge 1$ such that $n\alpha + m\beta \in \Phi$. Thus $\mathbf{G}^*_{\Psi_u}$ is normalised by \mathbf{G}_{Ψ_s} .

Since Ψ_s is closed and symmetric, it is a root subsystem by 3.3.4. Let Π_s be its basis corresponding to the positive subsystem $\Psi_s \cap \Phi^+$. Note that \mathbf{G}_{Ψ_s} is already generated by **T** and \mathbf{U}_{α} such that $\alpha \in \pm \Pi_s$; indeed $\langle \mathbf{U}_{\alpha}, \mathbf{U}_{-\alpha} \rangle$ contains a representative of s_{α} by 2.3.1(iii), thus \mathbf{G}_{Ψ_s} contains W_{Ψ_s} , and every root of Ψ_s is in the orbit of Π_s by 2.2.8, whence the result by the remark above 2.3.3. We show now that $\mathbf{G}_{\Psi_s} = \mathbf{U}_{\Psi_s^+} W_{\Psi_s} \mathbf{TU}_{\Psi_s^+}$. For that it is enough to show that the right-hand side is a group. Since it is stable by left translation by **T** and by any \mathbf{U}_{α} for $\alpha \in \Psi_s^+$ it is enough to see it is stable by left translation by $\mathbf{U}_{-\alpha}$ for $\alpha \in \Pi_s$. Decomposing $\mathbf{U}_{\Psi_s^+} = \mathbf{U}_{\Psi_s^+-\{\alpha\}}\mathbf{U}_{\alpha}$, and using that by 2.3.1(vii) $\mathbf{U}_{-\alpha}$ normalises $\mathbf{U}_{\Psi_s^+-\{\alpha\}}$ since α is simple, it is enough to see that $\mathbf{U}_{\alpha}W_{\Psi_s}\mathbf{TU}_{\Psi_s^+}$ is stable by left translation by $\mathbf{U}_{-\alpha} \rightarrow \mathbf{U}_{\alpha} \mathbf{T} \cup \mathbf{U}_{\alpha}s_{\alpha}\mathbf{TU}_{\alpha}$ shows that $\mathbf{U}_{-\alpha}\mathbf{U}_{\alpha} \subset \mathbf{U}_{\alpha}\mathbf{T} \cup \mathbf{U}_{\alpha}s_{\alpha}\mathbf{TU}_{\alpha}$. We just need to consider the second term

$$\mathbf{U}_{\alpha}s_{\alpha}\mathbf{T}\mathbf{U}_{\alpha}W_{\Psi_{s}}\mathbf{T}\mathbf{U}_{\Psi_{s}^{+}}=\bigcup_{w\in\Psi_{s}}\mathbf{U}_{\alpha}s_{\alpha}\mathbf{U}_{\alpha}w\mathbf{T}\mathbf{U}_{\Psi_{s}^{+}}.$$

If $w^{-1}(\alpha) \in \Psi^+$, then $\mathbf{U}_{\alpha}w\mathbf{T} = w\mathbf{T}\mathbf{U}_{w^{-1}(\alpha)}$ and the term has the right form. Otherwise, letting $\beta = -w^{-1}(\alpha) \in \Psi_s^+$ we get

$$\begin{aligned} \mathbf{U}_{\alpha} s_{\alpha} w \mathbf{T} \mathbf{U}_{w^{-1}(\alpha)} \mathbf{U}_{\Psi_{s}^{+}} &= \mathbf{U}_{\alpha} s_{\alpha} w \mathbf{T} \mathbf{U}_{-\beta} \mathbf{U}_{\beta} \mathbf{U}_{\Psi_{s}^{+} - \{\beta\}} \\ &\subset \mathbf{U}_{\alpha} s_{\alpha} w \mathbf{T} (\mathbf{U}_{\beta} \cup \mathbf{U}_{\beta} s_{\beta} \mathbf{U}_{\beta}) \mathbf{U}_{\Psi_{s}^{+} - \{\beta\}} \\ &= \mathbf{U}_{\alpha} s_{\alpha} w \mathbf{T} \mathbf{U}_{\Psi_{s}^{+}} \cup \mathbf{U}_{\alpha} s_{\alpha} w \mathbf{T} \mathbf{U}_{\beta} s_{\beta} \mathbf{U}_{\Psi_{s}^{+}}. \end{aligned}$$

We just need to consider the rightmost term. Since $s_{\alpha}wU_{\beta}T = s_{\alpha}U_{-\alpha}wT = U_{\alpha}s_{\alpha}wT$ we get the result.

Let us now show that Ψ_s is quasi-closed. Let γ be such that $\mathbf{U}_{\gamma} \subset \mathbf{G}_{\Psi_s}$; since $\Psi_s = -\Psi_s$, we may assume $\gamma \in \Phi^+$, thus $\mathbf{U}_{\gamma} \subset \mathbf{B}$. As each term $\mathbf{U}_{\Psi_s^+} w \mathbf{T} \mathbf{U}_{\Psi_s^+}$ is in a unique Bruhat cell of **G**, we must have $\mathbf{U}_{\gamma} \subset \mathbf{T} \mathbf{U}_{\Psi_s^+}$. By Lemma 3.3.14 Ψ_s^+ is quasi-closed, thus $\gamma \in \Psi_s^+$.

We have seen that \mathbf{G}_{Ψ} has a semi-direct product decomposition $\mathbf{G}_{\Psi_{u}}^{*} \rtimes \mathbf{G}_{\Psi_{s}}$. It follows that Ψ is quasi-closed since if $\alpha \notin \Psi_{u}$ and $\mathbf{U}_{\alpha} \subset \mathbf{G}_{\Psi}$ then \mathbf{U}_{α} maps isomorphically to the quotient $\mathbf{G}_{\Psi_{s}}$ thus $\alpha \in \Psi_{s}$.

Conversely any quasi-closed subset of Φ is closed apart from some exceptions in characteristics 2 and 3; see Borel and Tits (1965, 3.8). This can be shown by proving that in other characteristics the group $\langle \mathbf{U}_{\alpha}, \mathbf{U}_{\beta} \rangle$ contains all $\mathbf{U}_{n\alpha+m\beta}$ for $n,m \in \mathbb{N}$ such that $n\alpha + m\beta \in \Phi$, using the explicit values of the coefficients in the proof of 2.3.1(vii). For a combinatorial description of quasi-closed subsets in these characteristics, see Malle and Testerman (2011, Corollary 13.7).

3.4 Parabolic Subgroups and Levi Subgroups

Proposition 3.4.1 The parabolic subgroup $\mathbf{P}_I = \mathbf{B}W_I\mathbf{B}$ (see 3.2.3) has a Levi decomposition $\mathbf{P}_I = R_u(\mathbf{P}_I) \rtimes \mathbf{L}_I$ where $R_u(\mathbf{P}_I) = \mathbf{U}_{\Phi^+-\Phi_I}$ and $\mathbf{L}_I = \langle \mathbf{T}, \{\mathbf{U}_{\alpha}\}_{\alpha \in \Phi_I} \rangle$ is reductive. We have $\mathbf{P}_I = N_{\mathbf{G}}(R_u(\mathbf{P}_I))$.

Proof The set $\Psi = \Phi^+ \cup \Phi_I$ is quasi-closed since it is closed by Proposition 3.3.8. The proposition is then a consequence of 3.3.12 if we show that $\mathbf{P}_I = \mathbf{G}_{\Psi}$. We have $\mathbf{P}_I \supset \mathbf{G}_{\Psi}$ since $\mathbf{P}_I \supset \mathbf{U}_{\alpha}$ for $\alpha \in \Phi^+$ since $\mathbf{P}_I \supset \mathbf{B}$, and by 3.2.7 \mathbf{P}_I contains all \mathbf{U}_{α} for $\alpha \in \Phi^-$ which change sign by some element of W_I , thus contains all \mathbf{U}_{α} for $\alpha \in \Phi_I^-$. Conversely \mathbf{G}_{Ψ} contains \mathbf{U}_{α} and $\mathbf{U}_{-\alpha}$ for all $\alpha \in \Pi_I$, hence \mathbf{G}_{Ψ} contains a representative of s_{α} in $\langle \mathbf{U}_{\alpha}, \mathbf{U}_{-\alpha} \rangle$ hence \mathbf{G}_{Ψ} contains W_I , thus contains \mathbf{P}_I .

Finally, $N_{\mathbf{G}}(R_u(\mathbf{P}_I))$ contains \mathbf{P}_I thus \mathbf{B} , thus is some parabolic subgroup \mathbf{P}_J . If $J \supseteq I$ we have $R_u(\mathbf{P}_J) = \mathbf{U}_{\Phi^+ - \Phi_J} \subseteq R_u(\mathbf{P}_I)$ which contradicts that \mathbf{P}_J normalises $R_u(\mathbf{P}_I)$ since $R_u(\mathbf{P}_J)$ is the largest normal connected unipotent subgroup of \mathbf{P}_J .

We will say that P_I (resp. L_I) is a **standard** parabolic subgroup (resp. Levi subgroup) of **G**.

Proposition 3.4.2 Let **P** be a parabolic subgroup of **G** containing **T**.

- (i) *There is a unique Levi subgroup of* **P** *containing* **T**.
- (ii) Two Levi subgroups of **P** are conjugate by a unique element of $R_u(\mathbf{P})$.

Proof The existence of a Levi subgroup containing **T** results from 3.4.1, since **P** is conjugate to some **P**_I and all maximal tori of **P**_I are conjugate in **P**_I. Conversely, we may assume **P** = **P**_I; any Levi subgroup of **P**_I containing **T** is a **G**_{Ψ} for some $\Psi \subset \Phi^+ \cup \Phi_I$ by Proposition 3.3.10. Since any **U**_{α} where $\alpha \in \Phi^+ - \Phi_I$ is in $R_u(\mathbf{P}_I)$, we must have $\Psi \subset \Phi_I$, thus **L** \subset **L**_I, thus there must be equality.

Two Levi subgroups \mathbf{L}, \mathbf{L}' of \mathbf{P} are conjugate in \mathbf{P} , since by (i) an element which conjugates a maximal torus \mathbf{T} of \mathbf{L} into \mathbf{L}' conjugates \mathbf{L} to \mathbf{L}' . Modulo \mathbf{L} , we can choose the conjugating element u in $R_u(\mathbf{P})$. The unicity of u is equivalent to $R_u(\mathbf{P}) \cap N_{\mathbf{P}}(\mathbf{L}) = 1$. Assume $u \in R_u(\mathbf{P}) \cap N_{\mathbf{P}}(\mathbf{L})$; then for any $l \in \mathbf{L}$ we have $[u, l] \in R_u(\mathbf{P}) \cap \mathbf{L} = 1$, thus $u \in C_{\mathbf{P}}(\mathbf{L})$; but $C_{\mathbf{P}}(\mathbf{L}) \subset C_{\mathbf{G}}(\mathbf{T}) = \mathbf{T}$ thus u = 1.

Proposition 3.4.3 The G-conjugacy classes of Levi subgroups of parabolic subgroups of G are in bijection with the W-orbits of subsets of S, which are themselves in bijection with the W-conjugacy classes of parabolic subgroups of W.

Proof Since all parabolic subgroups are conjugate to a \mathbf{P}_I , we may assume that we consider a Levi subgroup of some \mathbf{P}_I . Since by 3.4.2 such a Levi subgroup is **G**-conjugate to \mathbf{L}_I , the question becomes that of finding when \mathbf{L}_J is **G**-conjugate to \mathbf{L}_I for two subsets I and J of S. If $\mathbf{L}_J = {}^{g}\mathbf{L}_I$ for some $g \in \mathbf{G}$, then, since ${}^{g^{-1}}\mathbf{T}$ and \mathbf{T} are two maximal tori of \mathbf{L}_I , there exists $l \in \mathbf{L}_I$ such that ${}^{g^{-1}}\mathbf{T} = {}^{l}\mathbf{T}$ and $gl \in N_{\mathbf{G}}(\mathbf{T})$ also conjugates \mathbf{L}_I to \mathbf{L}_J ; so the **G**-conjugacy classes of \mathbf{L}_I are the same as the $W(\mathbf{T})$ -conjugacy classes. Since $\mathbf{L}_I = \mathbf{G}_{\Phi_I}$, the element $w \in W$ conjugates \mathbf{L}_I to \mathbf{L}_J if and only if ${}^{w}\Phi_I = \Phi_J$. Since any two bases of Φ_I are conjugate by an element of W_I (see 2.2.6), we may assume that ${}^{wI}I = J$ whence the first part of the statement. To see the second part it is enough to see that if $w \in N_W(W_I)$ then ${}^{w}\Phi_I = \Phi_I$. This results from Lemma 3.3.7.

The proof above shows that $N_{\mathbf{G}}(\mathbf{L}_I)/\mathbf{L}_I$ is isomorphic to $N_W(W_I)/W_I$.

Proposition 3.4.4 Let **L** be a Levi subgroup of a parabolic subgroup **P**. Then $R(\mathbf{P}) = R_u(\mathbf{P}) \rtimes R(\mathbf{L})$.

Proof The quotient $\mathbf{P}/(R(\mathbf{L})R_u(\mathbf{P}))$ is isomorphic to $\mathbf{L}/R(\mathbf{L})$, so is semisimple. So $R(\mathbf{P}) \subset R(\mathbf{L})R_u(\mathbf{P})$. But $R(\mathbf{L})R_u(\mathbf{P})$ is connected, solvable and normal in \mathbf{P} as the inverse image of a normal subgroup of the quotient $\mathbf{P}/R_u(\mathbf{P}) \simeq$ \mathbf{L} , whence the reverse inclusion.

We will now characterise parabolic subgroups in terms of roots.

Proposition 3.4.5 A closed subgroup **P** of **G** containing **T** is parabolic if and only if $\mathbf{P} = \mathbf{G}_{\Psi}$ for some parabolic subset Ψ .

Proof We have seen that a parabolic subset Ψ is conjugate under W to $\Phi^+ \cup \Phi_I$; thus \mathbf{G}_{Ψ} is conjugate under W to \mathbf{P}_I . Conversely, assume that \mathbf{P} is a parabolic subgroup. It contains a Borel subgroup containing \mathbf{T} , thus up to conjugacy by W it contains \mathbf{B} (see Proposition 2.3.3), thus is of the form \mathbf{P}_I .

We now give an important property of Levi subgroups.

Proposition 3.4.6 Let **L** be a Levi subgroup of a parabolic subgroup of **G**; then $\mathbf{L} = C_{\mathbf{G}}(Z(\mathbf{L})^0)$.

Proof We may assume that $\mathbf{L} = \mathbf{L}_I$. Then by 2.3.4(i) the group $Z(\mathbf{L})$ is the intersection of the kernels of the roots in Φ_I . The group $C_{\mathbf{G}}(Z(\mathbf{L})^0)$ is connected as it is the centraliser of a torus $-Z(\mathbf{L})^0$ is diagonalisable by 1.2.1(ii) and is a torus by 1.2.3(i) thus 1.3.3(iii) applies. It is normalised by **T** because it contains **T**, hence by 2.3.1(iv) it is generated by **T** and the \mathbf{U}_{α} it contains. If $\mathbf{U}_{\alpha} \subset C_{\mathbf{G}}(Z(\mathbf{L})^0)$ then α is trivial on $(\bigcap_{\alpha \in \Phi_I} \operatorname{Ker} \alpha)^0$. This identity component has finite index in $\bigcap_{\alpha \in \Phi_I} \operatorname{Ker} \alpha$, hence some multiple $n\alpha$ of α is trivial on $(\bigcap_{\alpha \in \Phi_I} \operatorname{Ker} \alpha)^0$. This identity as $n\alpha \in (\langle \Phi_I \rangle_{\mathbf{T}}^{\perp})_{X(\mathbf{T})}^{\perp}$. But $(\langle \Phi_I \rangle_{\mathbf{T}}^{\perp})_{X(\mathbf{T})}^{\perp}/\langle \Phi_I \rangle$ is a torsion group (see 1.2.13). This implies that $\alpha \in \langle \Phi_I \rangle \otimes \mathbb{Q}$, which in turn yields $\alpha \in \Phi_I$ by the definition of Φ_I . This proves that $C_{\mathbf{G}}(Z(\mathbf{L})^0) \subset \mathbf{L}$. The reverse inclusion is obvious.

The next proposition is a kind of converse.

Proposition 3.4.7 For any torus **S**, the group $C_{\mathbf{G}}(\mathbf{S})$ is a Levi subgroup of some parabolic subgroup of **G**.

Proof Let **T** be a maximal torus containing **S**. As the group $C_{\mathbf{G}}(\mathbf{S})$ is connected by 1.3.3(iii) and contains **T**, by 2.3.1(iv) we have $C_{\mathbf{G}}(\mathbf{S}) = \langle \mathbf{T}, \mathbf{U}_{\alpha} | \mathbf{U}_{\alpha} \subset C_{\mathbf{G}}(\mathbf{S}) \rangle$. As **S** acts by α on \mathbf{U}_{α} (see 2.3.1(i)), we have

$$\mathbf{U}_{\alpha} \subset C_{\mathbf{G}}(\mathbf{S}) \Leftrightarrow \alpha|_{\mathbf{S}} = 0,$$

where 0 is the trivial element of $X(\mathbf{S})$. Let us choose a total order on $X(\mathbf{S})$; that is, a structure of ordered \mathbb{Z} -module. As $X(\mathbf{S})$ is a quotient of $X(\mathbf{T})$ (see 1.2.4) there exists a total order on $X(\mathbf{T})$ compatible with the chosen order on $X(\mathbf{S})$; that is, such that for $x \in X(\mathbf{T})$ we have $x \ge 0 \Rightarrow x|_{\mathbf{S}} \ge 0$. This implies that the set $\Psi = \{\alpha \in \Phi \mid \alpha > 0 \text{ or } \alpha|_{\mathbf{S}} = 0\}$ is also equal to $\{\alpha \in \Phi \mid \alpha|_{\mathbf{S}} \ge 0\}$. This last definition implies that Ψ is closed, so (see 3.3.13 and 3.3.10) Ψ is also the set of α such that $\mathbf{U}_{\alpha} \subset \mathbf{G}_{\Psi}$. Since Ψ is parabolic, it follows then from 3.4.5 that \mathbf{G}_{Ψ} is a parabolic subgroup, of which $C_{\mathbf{G}}(\mathbf{S})$ is a Levi complement. \Box

We now study the intersection of two parabolic subgroups. First note that by 3.1.4 the intersection of two parabolic subgroups always contains some maximal torus of **G**.

Proposition 3.4.8 Let **P** and **P'** be two parabolic subgroups of **G** and let **L** and **L'** be respective Levi subgroups of **P** and **P'** containing the same maximal torus **T** of **G**. Let $\mathbf{U} = R_u(\mathbf{P})$ and $\mathbf{U}' = R_u(\mathbf{P}')$. Then

- (i) The group (P ∩ P').U is a parabolic subgroup of G which has the same intersection as P' with L, and it has L ∩ L' as a Levi subgroup.
- (ii) The group P ∩ P' is connected, as well as L ∩ L' and we have the Levi decomposition

$$\mathbf{P} \cap \mathbf{P}' = ((\mathbf{L} \cap \mathbf{U}').(\mathbf{L}' \cap \mathbf{U}).(\mathbf{U} \cap \mathbf{U}')) \rtimes (\mathbf{L} \cap \mathbf{L}')$$

where the right-hand side is a direct product of varieties – the decomposition of an element of $\mathbf{P} \cap \mathbf{P}'$ as a product of four terms is unique. On the right-hand side the last factor is a Levi subgroup of $\mathbf{P} \cap \mathbf{P}'$ and the first 3 factors form a decomposition of $R_u(\mathbf{P} \cap \mathbf{P}')$.

Proof Let Φ be the roots of **G** with respect to **T** and define subsets $\Psi, \Psi' \subset \Phi$ by $\mathbf{P} = \mathbf{G}_{\Psi}$ and $\mathbf{P}' = \mathbf{G}_{\Psi'}$.

Let us show first that for any $\alpha \in \Phi$, either \mathbf{U}_{α} or $\mathbf{U}_{-\alpha}$ is in the group $(\mathbf{P} \cap \mathbf{P}') \cdot \mathbf{U}$ (it is a group since \mathbf{P} normalises \mathbf{U}). By the remarks before 3.3.11 and by 3.3.12 we have $(\mathbf{P} \cap \mathbf{P}')^0 \cdot \mathbf{U} = \mathbf{G}_{\Psi \cap \Psi'} \cdot \mathbf{G}^*_{\Psi_u}$, with the notation of 3.3.12. If neither α nor $-\alpha$ is in Ψ_u , they are both in Ψ in which case since one of them is in Ψ' , one of them is in $\Psi \cap \Psi'$. Hence $(\Psi \cap \Psi') \cup \Psi_u$ is a parabolic set; indeed, this set is closed as the sum of an element of Ψ and an element of Ψ_u which is a root is in Ψ_u – see the beginning of the proof of 3.3.13. Proposition 3.4.5 then shows that $(\mathbf{P} \cap \mathbf{P}')^0 \cdot \mathbf{U}$ is a parabolic subgroup of \mathbf{G} , equal to $\mathbf{G}_{(\Psi \cap \Psi') \cup \Psi_u}$. Then $(\mathbf{P} \cap \mathbf{P}')\mathbf{U}$, containing a parabolic subgroup is connected, hence equal to $(\mathbf{P} \cap \mathbf{P}')^0 \cdot \mathbf{U}$.

Now $(\mathbf{P} \cap \mathbf{P}').\mathbf{U} = (\mathbf{P} \cap \mathbf{P}').\mathbf{G}^*_{\Psi_u - \Psi'}$ since $\Psi' \cap \Psi_u \subset \Psi \cap \Psi'$. The set $\Psi_u - \Psi'$ is closed as the intersection of the closed subsets Ψ_u and the complement $-\Psi'_u$ of Ψ' , hence the product $(\mathbf{P} \cap \mathbf{P}').\mathbf{G}^*_{\Psi_u - \Psi'}$ is a direct product of varieties as the intersection is a unipotent subgroup normalised by **T** containing no \mathbf{U}_α , see 2.3.1(v). As the product is connected, each term is. Thus $\mathbf{P} \cap \mathbf{P}'$ is connected equal to $\mathbf{G}_{\Psi \cap \Psi'}$. The groups $(\mathbf{P} \cap \mathbf{P}').\mathbf{U}$ and $\mathbf{P} \cap \mathbf{P}'$ have both $(\mathbf{L} \cap \mathbf{L}')^0$ as a Levi subgroup since $((\Psi \cap \Psi') \cup \Psi_u)_s = (\Psi \cap \Psi')_s = \Psi_s \cap \Psi'_s -$ indeed if $\alpha \in \Psi_u$ then $-\alpha \notin \Psi$ thus $-\alpha \notin (\Psi \cap \Psi') \cup \Psi_u$.

The decomposition $\Psi \cap \Psi' = (\Psi_s \cap \Psi'_s) \coprod (\Psi_s \cap \Psi'_u) \coprod (\Psi_u \cap \Psi'_s) \coprod (\Psi_u \cap \Psi'_u)$ shows that $\mathbf{P} \cap \mathbf{P}' = \langle \mathbf{L} \cap \mathbf{L}', \mathbf{L} \cap \mathbf{U}', \mathbf{L}' \cap \mathbf{U}, \mathbf{U} \cap \mathbf{U}' \rangle$. Using that $\mathbf{U} \cap \mathbf{U}'$ is normal in $\mathbf{P} \cap \mathbf{P}'$, then that $\mathbf{L} \cap \mathbf{L}'$ normalises $\mathbf{L} \cap \mathbf{U}'$ and $\mathbf{L}' \cap \mathbf{U}$, we get

$$\mathbf{P} \cap \mathbf{P}' = (\mathbf{L} \cap \mathbf{L}').\langle \mathbf{L} \cap \mathbf{U}', \mathbf{L}' \cap \mathbf{U} \rangle.(\mathbf{U} \cap \mathbf{U}').$$

Further, the commutator of an element of $L \cap U'$ with an element of $L' \cap U$ is in $U \cap U'$, thus

$$\mathbf{P} \cap \mathbf{P}' = (\mathbf{L} \cap \mathbf{L}').(\mathbf{L} \cap \mathbf{U}').(\mathbf{L}' \cap \mathbf{U}).(\mathbf{U} \cap \mathbf{U}'),$$

Write now $x = lu'uv \in \mathbf{P} \cap \mathbf{P'}$, where $l \in \mathbf{L} \cap \mathbf{L'}$, $u' \in \mathbf{L} \cap \mathbf{U'}$, $u \in \mathbf{L'} \cap \mathbf{U}$, $v \in \mathbf{U} \cap \mathbf{U'}$. Then lu' is the image of x by the projection $\mathbf{P} \to \mathbf{L}$ and l (resp. u) is the image of lu' (resp. uv) by the morphism $\mathbf{P'} \to \mathbf{L'}$. Thus the decomposition of x is unique, and the product map $(\mathbf{L} \cap \mathbf{L'}) \times (\mathbf{L} \cap \mathbf{U'}) \times (\mathbf{U} \cap \mathbf{U'}) \to \mathbf{P} \cap \mathbf{P'}$ is an isomorphism of varieties; the four terms are connected since the product is. In particular $\mathbf{L} \cap \mathbf{L'}$ is connected.

Proposition 3.4.9

- (i) Let P and P' be two parabolic subgroups of G such that P' ⊂ P, then R_u(P') ⊃ R_u(P) and for any Levi subgroup L' of P', there exists a unique Levi subgroup L of P such that L ⊃ L'.
- (ii) Let L be a Levi subgroup of a parabolic subgroup P of G and L' be a closed subgroup of L. Then the following are equivalent:
 - (a) \mathbf{L}' is a Levi subgroup of a parabolic subgroup of \mathbf{L} .
 - (b) \mathbf{L}' is a Levi subgroup of a parabolic subgroup of \mathbf{G} .

Proof Let us prove (i); given a maximal torus **T** of **L**' there is by 3.4.2(i) a unique Levi subgroup **L** of **P** containing **T**. Then by 3.4.8(ii) the group $\mathbf{L}' \cap \mathbf{L}$ is a Levi subgroup of $\mathbf{P}' = \mathbf{P} \cap \mathbf{P}'$ thus $\mathbf{L} \cap \mathbf{L}' = \mathbf{L}'$. Also $R_u(\mathbf{P})$ is contained in all Borel subgroups of **P**, thus in **P**', whence $R_u(\mathbf{P}) \subset R_u(\mathbf{P}')$.

Let us show (ii); if L' is a Levi subgroup of the parabolic subgroup $\mathbf{P}_{\mathbf{L}}$ of L, then $\mathbf{P}_{\mathbf{L}}R_u(\mathbf{P})$ is a parabolic subgroup of G; indeed it is a group since L, thus $\mathbf{P}_{\mathbf{L}}$, normalises $R_u(\mathbf{P})$ and it clearly contains either \mathbf{U}_{α} or $\mathbf{U}_{-\alpha}$ for any $\alpha \in \Phi$. Thus L' is a Levi subgroup of $\mathbf{P}_{\mathbf{L}}R_u(\mathbf{P})$, since $R_u(\mathbf{P}_{\mathbf{L}}).R_u(\mathbf{P})$ is unipotent normal in $\mathbf{P}_{\mathbf{L}}.R_u(\mathbf{P})$. We have shown that (a) implies (b).

Conversely, let \mathbf{P}' be a parabolic subgroup of \mathbf{G} with \mathbf{L}' as a Levi subgroup. By 3.4.8(ii) we have $\mathbf{P} \cap \mathbf{P}' = \mathbf{L}'.(\mathbf{L} \cap \mathbf{U}').(\mathbf{U} \cap \mathbf{U}')$ thus $(\mathbf{L} \cap \mathbf{U}') \rtimes \mathbf{L}'$ is a Levi decomposition of $\mathbf{L} \cap \mathbf{P}'$, and this last group is a parabolic subgroup of \mathbf{L} by 3.4.5.

When L is a Levi subgroup of some parabolic subgroup of G we will say (improperly) "L is a Levi subgroup of G" which is justified by statement (ii) of 3.4.9.

Proposition 3.4.10 Let **H** be a closed connected reductive subgroup of **G** of maximal rank. Then:

- (i) The Borel subgroups of H are the B ∩ H where B is a Borel subgroup of G containing a maximal torus of H.
- (ii) The parabolic subgroups of **H** are the $\mathbf{P} \cap \mathbf{H}$, where **P** is a parabolic subgroup of **G** containing a maximal torus of **H**.
- (iii) If **P** is a parabolic subgroup of **G** containing a maximal torus of **H**, the Levi subgroups of $\mathbf{P} \cap \mathbf{H}$ are the $\mathbf{L} \cap \mathbf{H}$ where **L** is a Levi subgroup of **P** containing a maximal torus of **H**.

Proof Let **T** be a maximal torus of **H**; by assumption, it is also a maximal torus of **G**. Let **B** be a Borel subgroup of **G** containing **T**, and let **B** = **U**.**T** be the corresponding semi-direct product decomposition. The Borel subgroup **B** defines an order on the root system Φ (resp. $\Phi_{\mathbf{H}}$) of **G** (resp. **H**) with respect to **T**. The group $\mathbf{U} \cap \mathbf{H}$ is normalised by **T**, so is connected and equal to the product of the \mathbf{U}_{α} it contains, that is those \mathbf{U}_{α} such that α is positive and in $\Phi_{\mathbf{H}}$, so $(\mathbf{U} \cap \mathbf{H}).\mathbf{T} = \mathbf{B} \cap \mathbf{H}$ is a Borel subgroup of **H**. This gives (i) since all Borel subgroups of **H** are conjugate under **H**.

Let us prove (ii). If **P** is a parabolic subgroup of **G** containing **T**, it contains a Borel subgroup **B** containing **T**, so its intersection with **H** contains the Borel subgroup **B** \cap **H** of **H** and thus is a parabolic subgroup. Conversely, let **Q** be a parabolic subgroup of **H** containing **T**, and let *x* be a vector of $X(\mathbf{T}) \otimes \mathbb{Q}$ defining **Q** as in 3.3.8(ii). Then *x* defines a parabolic subgroup **P** of **G**. It remains to show that $\mathbf{P} \cap \mathbf{H} = \mathbf{Q}$. The group $\mathbf{P} \cap \mathbf{H}$ is a parabolic subgroup of **H** by the first part. It is generated by **T** and the \mathbf{U}_{α} it contains. But $\mathbf{U}_{\alpha} \subset \mathbf{P} \cap \mathbf{H}$ if and only if $\alpha \in \Phi_{\mathbf{H}}$ and $\langle \alpha, x \rangle \geq 0$; that is, if and only if $\mathbf{U}_{\alpha} \subset \mathbf{Q}$ by definition of *x*.

Similarly, the Levi subgroup of **Q** containing **T** is the intersection of the Levi subgroup of **P** containing **T** with **H**, as it is generated by **T** and the U_{α} with $\alpha \in \Phi_{\mathbf{H}}$ orthogonal to *x*, whence (iii).

3.5 Centralisers of Semi-Simple Elements

Proposition 3.5.1 Let $s \in \mathbf{G}$ be a semi-simple element, and let \mathbf{T} be a maximal torus containing s and Φ be the set of roots of \mathbf{G} relative to \mathbf{T} ; then

- (i) The identity component C_G(s)⁰ is generated by **T** and the U_α for α ∈ Φ such that α(s) = 1. It is a connected reductive subgroup of **G** of maximal rank.
- (ii) $C_{\mathbf{G}}(s)$ is generated by $C_{\mathbf{G}}(s)^0$ and the elements $n \in N_{\mathbf{G}}(\mathbf{T})$ such that ${}^{n}s = s$.

Proof (i) is an immediate consequence of 2.3.1(iv), and of the fact that the corresponding set of α is closed and symmetric – see 3.3.12 and 3.3.13.

Let us prove (ii). Let $\mathbf{B} = \mathbf{U} \rtimes \mathbf{T}$ be the Levi decomposition of a Borel subgroup of \mathbf{G} and let $g \in C_{\mathbf{G}}(s)$; by Lemma 3.2.7 the element g has a unique decomposition g = unv with $n \in N_{\mathbf{G}}(\mathbf{T})$, $u \in \mathbf{U}$ and $v \in \mathbf{U}_w$ where w is the image of n in $W(\mathbf{T})$. As s normalises \mathbf{U} , \mathbf{U}_w and $N_{\mathbf{G}}(\mathbf{T})$, this decomposition is invariant under conjugation by s, so each of u, n and v also centralises s. Writing again a unique decomposition of the form $u = \prod_{\alpha>0} u_{\alpha}$ we see that the α must satisfy $\alpha(s) = 1$ so $u \in C_{\mathbf{G}}(s)^0$, and the same argument applies to v. Thus we get (ii).

Remark 3.5.2 The Weyl group $W^0(s)$ of $C_{\mathbf{G}}(s)^0$ is thus the group generated by the reflections s_{α} for which $\alpha(s) = 1$. It is a normal subgroup of the Weyl group of $C_{\mathbf{G}}(s)$ which is $W(s) = \{w \in W(\mathbf{T}) \mid {}^{w}s = s\}$. The quotient $W(s)/W^0(s)$ is isomorphic to the quotient $C_{\mathbf{G}}(s)^0$.

Proposition 3.5.3 If x = su is the Jordan decomposition of an element of **G**, where *s* is semi-simple and *u* unipotent, then $x \in C_{\mathbf{G}}(s)^{0}$.

Proof Let $\mathbf{B} = \mathbf{U} \rtimes \mathbf{T}$ be a Levi decomposition of a Borel subgroup containing x, where \mathbf{T} is a maximal torus of \mathbf{B} containing s, and write $u = \prod u_{\alpha}$ (with $u_{\alpha} \in \mathbf{U}_{\alpha}$ where $\mathbf{U} = \prod \mathbf{U}_{\alpha}$). Then for any root α such that $u_{\alpha} \neq 1$, we have $\alpha(s) = 1$ which implies that $\mathbf{U}_{\alpha} \subset C_{\mathbf{G}}(s)^0$, whence the result as $s \in \mathbf{T} \subset C_{\mathbf{G}}(s)^0$. \Box

Examples 3.5.4

- (i) All centralisers in \mathbf{GL}_n are connected. Indeed, the centraliser in the variety of all matrices is an affine space, thus its intersection with \mathbf{GL}_n is an open subspace of an affine space, which is always connected.
- (ii) In the group \mathbf{SL}_n , centralisers of semi-simple elements are connected. Indeed such an element is conjugate to an element $s = \text{diag}(t_1, \ldots, t_n)$ of the torus **T** of diagonal matrices where we may assume, in addition, that equal t_i are grouped in consecutive blocks, thereby defining a partition π of n. The elements of $W(\mathbf{T})$ (permutation matrices) which centralise s are products of generating reflections s_α which centralise s; that is, $W(s) = W^0(s)$ showing that the centraliser of s is connected.
- (iii) We finish with an example of a semi-simple element whose centraliser is not connected. Let $s \in \mathbf{PGL}_2$ be the image of $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$; in characteristic different from 2, $C_{\mathbf{PGL}_2}(s)$ has two connected components, consisting respectively of the images of the matrices of the form $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ and of the form $\begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix}$.

Notes

A classic reference about (B,N)-pairs is Bourbaki (1968, Chapter IV). A detailed study of closed and quasi-closed subsets and reductive and parabolic subgroups is in Borel and Tits (1965). A detailed study of the centralisers of semi-simple elements can be found in, for example, Deriziotis (1984).