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Abstract. This paper discusses a division of one-dimensional cellular automata into
classes which seem to correspond to different types of behaviour.

1. Introduction
We are interested in classifying cellular automata according to their behaviour, and
we suggest an approach for linear automata (i.e. one-dimensional cellular automata).

The preface to [3] contains a general discussion of cellular automata and their
applications. Linear automata are denned as follows: Let 5 be a finite alphabet of
size s > 1 and X = Sz the set of all maps from the integers to S. X is a compact
metric space with metric d(x, y) = 2~", n = inf {\i\: x(i) ^ y(i)}. Linear automata are
induced by arbitrary maps F: S2r+1 -* S where r is any non-negative integer. The
automaton/induced by F is defined by f(x) = y with y(i) = F{x(i-r),..., x(i+r)).
In this situation we say / has range r. For example the (right) shift, a, is the
automaton of range 1 induced by F(a, b, c) = a. Linear automata are the continuous
self-maps of X commuting with a [7, theorem 3.4].

Let / be a linear automaton. Pick a probability distribution on 5 such that each
a e S has positive probability, and let /J. be the corresponding product measure on
X. Wolfram [9], [10] has observed on the basis of extensive computer simulation
that/may behave differently with different arguments; but if the argument is chosen
at random, then the probability is high that the behaviour of / will be confined to
one of four classes. We are thus led to consider linear automata in conjunction with
a fixed measure, fi. In contrast to the usual situation in ergodic theory, / need not
preserve p.

We divide linear automata into three classes. Automata in class si are equicon-
tinuous on a set of measure 1. Automata in class 38 satisfy a stochastic analogue
of equicontinuity, and those in class % satisfy a stochastic analogue of expansiveness.
Class si is independent of the choice of /A, but 38 and <€ may vary if fj. changes.

The definitions of our classes are given in § 3. § 4 shows that the classes are
invariant under certain transformations, while § 5 analyzes the dynamic behaviour
of linear automata and makes a connection with Wolfram's classes. The connection
might be stronger if we knew a way to decide membership of si, 38, c€.

I would like to thank the Institute for Advanced Study for its hospitality while
this paper was being written.
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106 R. H. Gilman

2. Notation and preliminary results
Keep the notation of the introduction: 5 is a finite alphabet,/is a linear automaton
on X = Sz, d is the metric on X, and /t is a product measure induced by assigning
each a e S a positive probability. F: 52 r + 1 -» S is a map inducing f, and / has range
r. Also a is the right shift on X.

Z is the integers, ÎJ the positive integers, and M0 = Nu{0}. Intervals of integers
are denoted [i,j], (-°°, k), etc.

A word is a sequence of letters in S. A word may be finite, infinite to either the
left or right, or infinite in both directions. We distinguish between a word and a
map from an interval of Z to S. The words corresponding to the restriction o f x e X
to an interval are written x[i,j~\, x(—oo, k), etc. The maps obtained by restricting x
are x\UJ], x^-^^ , etc. For any azS define xaeX by xa{i) = a, ieZ. Thus xa[i,;]
is a sequence of j - i+1 a's. The length of any word w is \w\. The product of two
words w and u is wv, their concatenation (as long as w is not infinite to the right
nor v to the left).

Let Ta be the set of all xeX which have dense forward and backward orbits
under <r. An element x is in 7^ if and only if every finite word is obtained as x[i, j]
for some i,j e Z with 0 < i < j and also for some i,j e Z with i < j < 0. X - TCT is first
category and ^{T^) = 1.

A cylinder is a set C{i,j, w) = {xeX: x[i,j] = w} where |w|=j —i+1. Cylinders
are open and closed. The open disk of radius 2~" around x is Cn(x) =
C(-n, n, x[-n, n]), nefH,.

The metric d is non-archimedean; that is, d(x,y)^max{d(x, z), d(z, y)}. Con-
sequently of any two disks Cm(x), Cn(y), either one contains the other or they
intersect trivially. For fixed neM0 the relation x ~ y if d{x, y) < 2'" is an equivalence
relation with equivalence classes {Cn(x)}. Likewise

x**y iff VieN0,d(f(x),fi(y))<2-"

is an equivalence relation, and we write Bn(x) for the equivalence class of x.

Bn(x) is the set of y for which (f\y))[-n,n] = (f(x))[-n,n], ieN0. If we
visualize the behaviour of ( / with argument) x as an array (aj)7) with entry atJ =
( / ' (x))0) in row i and column j , then Bn(x) is the set of all y whose behaviour
agrees with that of x on the infinite vertical strip under the interval [—n, n]. More
generally we will say that y has behaviour Bn(x) on [ — n + k, n + k] if cr~k(y) e Bn(x).

Insight into linear automata has been gained by studying with a computer finite
portions of the array (atj) defined above. Our division of linear automata into
classes is based on the analysis of the sets Bn(x), which correspond to certain infinite
subarrays of (atj). Bn(x) is ultimately periodic if the sequence of words x[-n, n],
(f(x))[-n, n], (/2(x))[-n, « ] , . . . is ultimately periodic. For any xe X, Ox is the
(forward) orbit of x under / Ox is the closure of Ox, and w(x) is the set of limit
points of Ox. For any Y c X, Y° is the interior of Y.

LEMMA 2.1. IfxeXandneN0,then:
(i) Bn(x) is closed;
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(Hi) f is equicontinuous at x if and only if xe Bm(x)° for all meN0;
(iv) the restriction of f to Ox is equicontinuous if and only if Bm(x) is ultimately

periodic for all meM0.

Proof. Parts (i)-(iii) are immediate from the continuity of / and the relevant
definitions.

If f\o~x is equicontinuous, pick 5>0 such that for y, ze Ox, d(y, z)<8 implies
d(fi(y),f(z))<2~m, ie^o- As C£ is compact, there exist j,keN0, j<k, with
d(f(x),fk(x))<8; and taking y =fJ(x), z=/fc(x) yields that Bm(x) is ultimately
periodic.

Conversely suppose that for all m e No, Bm(x) is ultimately periodic. The sequence
of words . . . (f'(x))[-m, m]... has period p=p(m) when i> i(m), and it suffices
to show that every y e Ox satisfies the same condition. It is enough to prove
(fi(y),fi+p(y))<2~m if isi'(m). We are done if y<=Ox, so assume yeu>(x) and
let z =f(y). Pick fc> i{m) with d(fk(x), z)<2~m~pr. From the way in which / i s
induced by F it follows that d(fk+p(x),f(z)) < 2~m and, by choice of k, d(fk(x),
fk+p(x)) < 2~m. As d is non-archimedean, d(f(z), z) < 2"m as desired. •

Recall the array (a,,,) which we used above to represent the behaviour of x. If/ has
range r and if we know {au) on two vertical strips of width at least r and if we
know the top row of {au) between the two strips, then the part of (au) between
the two strips is uniquely determined. We have the following consequence.

LEMMA 2.2. Iff has range r and:
(i) xea-'iB^yVno-JiB^z));
(ii) 2« + l>r;
(iii) 0<m<i,y<p;

then
cr-'iB^y)) n o-j(Bn(z)) n Cp(x) c Bm{x).

An arbitrary array (au) with entries in S will represent the behaviour of its first
row if each au with i > 1 is the value of F on (aj_ l 7_ r , . . . a^ J+r). Thus if n > r
and (au) agrees with the array for some element y when 7 < n and if it agrees with
the array for z when j^-n, then it is the array representing the behaviour of its
top row. We use this observation below.

LEMMA 2.3. Suppose n>r and i<-n,n <_/. Let X = XiX2X3 be the product decompo-
sition with factors corresponding to intervals (—00,1), [i,j], (j, 00). Use n to denote the
product measure on the factors as well as on X. For any word w of length j-i+l, let
w, be the initial segment of length n-i+l and let w2 be the terminal segment of length
j+n + l. For anyxeX there is a product decomposition C(i,j,w)nBn(x) = DlD2D3.
Here Dx is the projection of C(i, n, w,) n Bn(x) to Xt and D3 is the projection of
C(-n,j, w2)nBn(x) to X3. D2 is the singleton corresponding to w; i.e. D2 = {_y|[i>j]}
for any yeC(i,j,w). Further fi(D2) = fi(C(i,j,w)) and fi(C(i,j,w)nBn(x)) =

Proof. Let Y = C(i,j, w)nBn(x), and define D, as above. If ye Y, then y[i,j] = w,
and it is evident that the projection of y to X, lies in Dt. Consequently Yc DXD2D3.
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Conversely pick any yx eC{i, n, w,) n Bn(x) and y3 e C(-n,j, w2) n Bn(x). Define
zeX by z(i) = y1(i) if i < n and z(i) = y2(i) if i > - n . As ^ i . ^ e Bn(x), z is well
defined; and by the discussion before the lemma, z € Bn(x). By construction z[i,j] =
w, so z e Y and the projection of z to X2 is in D2. Likewise z and yt have the same
projection on X,, i = l, 3. Thus y ^ D i D 2 D 3 . The part of lemma 2.3 involving
measure follows easily from Y = D^D^^. •

Next we develop a measure-theoretic analogue of the interior of a set. For any
measurable set E define

p(Cn(x)nE)

,)) = A - a i )

LEMMA 2.4 (Lebesgue). For almost all xe E, pE{x) = 1.

Proo/ Let £ m be the set of x in E for which lim inf,,^ /n(Cn(x) n £)//u.(Cn(x)) >
1-1/m. If/u,(£m) = fi(E) for all m, we are done; so assume /u.(£m)</x(£) for some
m. Replacing E by E-Em yields that fJ.(E)>0 and for each x e £

x)) (2.2)

for infinitely many n e No. As /JL is regular [8, theorem 6.1] we may replace £ by a
closed subset and assume £ is compact. For any e > 0, £ is covered by a finite
union of disks, C, = Cfci(y,), with fi(E)>ldfi(Ci)-efi(E). Thus

(2.3)

Pick e so that 1/(1+ e ) > 1 — \/m. Since if two C/s intersect non-trivially, one
contains the other, we may assume Ct n Cj = 0 , i ̂ j. For each i and xeQn E pick
n > fc, so that (2.2) holds. A finite number of these Cn(x)'s are pairwise disjoint and
cover E. As each Cn(x) lies in a C,, (2.2) yields ^ ( £ ) < ( 1 - l / m ) £ At(C1,) contrary
to (2.3). D

LEMMA 2.5. For an>> measurable set E c X fer

F.' = {xe£:pCTi(E)(o-I(x)) = l , ( € Z } ,

vv/iere p w defined by (2.1). For any measurable subsets E, Fs X:
(i)

(ii)
(iii) ifE^F, thenE'cF';
(iv) F n F ' c ( £ n F ) ' ;

(v) i /£ = C(U, w ) . then E' = £ -

Proo/ As a- is measure preserving, lemma 2.4 yields (i); and (ii) and (v) are clear
from the definition of E'. For (iii) note that pE{x) = 1 and E s F imply pF(x) = 1,
and likewise for (iv) pE(x) = pF(x) = 1 implies pEoF(x) = 1. •

Our final result concerns equicontinuous maps. It is well-known that if h: Y-* Y is
an equicontinuous homeomorphism of the compact metric space Y to itself, then
the closure of each (Zi)-orbit can be given the structure of a compact topological
group in such a way that the action of h becomes rotation by a group element. In
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Classes of linear automata 109

general the restriction of h to Cl{h), the set of non-wandering points, is always
an equicontinuous homeomorphism [2, theorems 4 and 8] and there is a useful
projection from Y to Cl(h).

LEMMA 2.6. Let h:Y-*Ybean equicontinuous map of a compact metric space.
(i) The restriction ofh to fl(/j) is an equicontinuous homeomorphism of Cl(h) onto

itself;
(ii) there is a unique continuous projection p: Y^il(h) such that the distance

between h"(y) and h"{p(y)) goes to zero uniformly in y as n goes to infinity. This
projection commutes with every continuous map commuting with h.

Proof. From the reference given above we have that ft(/i) = {JyeY <»(y) and that (i)
holds. By [5, theorem 8.7] y is proximal to some y'e w(y). Because h is equicon-
tinuous, y is forwardly asymptotic to y'; and since an equicontinuous homeomorph-
ism is distal, y' is the unique point in il{h) to which y is forwardly asymptotic.

Define p(y) = y', Our conditions imply that p is the identity on il(h). Likewise
it follows in a straightforward way that p is continuous and that the distance between
hn(y) and h"(p(y)) goes to zero uniformly in y. If />a is another projection with
these properties, then for every ye Y, y is forwardly asymptotic to Pi(y) whence
Pi(y) — p(y)- Also if g is continuous and commutes with h, then the distance between
g(h"(y)) and g(h"(p(y))) goes to zero as n goes to infinity; and g(y) is forwardly
asymptotic to g(p(y)). As g must map il(h) to itself, g(p(y))ed(h), and we
conclude g(p{y)) = p(g(y)) as desired. •

3. Definitions and examples
In this section we divide linear automata into three classes and give examples of
automata in each class. Recall the notation and results of § 2 and let / be a fixed
linear automaton on X = Sz. For e > 0 and x e X let D(x, e) be the set of all y such
that d{f'(x),f'(y)) < e for all i e No. Recall that / is equicontinuous at x if for all
e > 0 there is «ef^0 such that Cn(x), the open ball of radius 2~", lies in D(x, e);
and / is expansive if there is 5>0 such that for all x D(x, 8) = {x}. We use the
product measure, ju., to define stochastic analogues of equicontinuity and expansive-
ness, and then we define the classes of automata.

Definition 3.1. / is almost equicontinuous at x if for all e > 0

n^co fl(Cn{x))

Definition 3.2. / is almost expansive if there is 5 > 0 such that for all x e X,
/i(D(x,8))=0.

Definition 3.3. Define classes of linear automata as follows:
(i) fe si if / is equicontinuous at some xeX;
(ii) fe 8ft if/ is almost equicontinuous at some x e X but /<£ si;
(iii) fe % if/ is almost expansive.

The following propositions give some information about the classes si, 38, %, and
in particular imply that these classes form a partition of linear automata.
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Let / have range r. Recall that the behaviour of ( / with argument) x may be
visualized as an array (aUj) with au = (f'(x))(j) and that Bn(x) is the class of all
y e X whose behaviour agrees with that of JC on the infinite subarray given by | j | ^ n.
Thus Bn(x) = D(x, 2~"), and there are equivalent versions of definitions 3.1 and 3.2
with Bn(x) in place of D(x, e) and D(x, S). TCT is the set of xeX with dense forward
and backward orbit under the shift a.

PROPOSITION 3.4. The following are equivalent:

(ii) f is equicontinuous at some x e X;
(iii) f is equicontinuous on a set of measure 1;
(iv) f is equicontinuous on T^\
(v) for some n > ( r -1) /2 there is a class Bn(x) with Bn(x)V 0 ;

(vi) for all n >0 there is a class Bn{x) with Bn(x)°9i0.

Proof. By definition of si (i) is equivalent to (ii), and the implications (iv)=»(iii)=>
(ii)=>(vi)=>(v) are immediate from § 2. To show (v)=>(iv) pick Bn(x) as in (v). If
y e Ta, then for any meN there are i,ja m with cr'(y)e Bn(x)°, o-~J(y)e Bn(x)°. As
a is a homeomorphism, ye o-~i(Bfl(x))°ncr'(Bn(x))c. By lemma 2.2, yeBm{y)°;
and as m is arbitrary, / is equicontinuous at y. •

PROPOSITION 3.5. The following are equivalent:
(i) /e^uSS;
(ii) f is almost equicontinuous at some x e X;
(iii) f is almost equicontinuous on a set of measure 1;
(iv) for some n > ( r - l ) / 2 tfiere is a class Bn(x) with fi(Bn{x))>0;
(v) for all n > 0 f/iere is a cZass Bn(x) wif/i fi(Bn(x)) > 0.

Proo/ It is easy to check that (i) and (ii) are equivalent and that (iii)=»(ii)=>(v)=>
(iv). Pick Bn(x) as in (iv) and let Y be the set of y e X whose forward and backward
orbits intersect Bn(x)' infinitely often. By lemma 2.5, fi(Bn(x)') = ju.(Bn(x))>0. As
Y is (a-)-invariant, fi(Y) = l by ergodicity. To prove that (iii) holds it suffices
to show that for all ye Y and meN, yeBm(y)'. Use lemma 2.5 and argue as
in the preceding proof with Bn(x)', Bm(y)' and Y in place of Bn(x)°, Bm(y)°
and Ta. •

PROPOSITION 3.6. The following are equivalent:
(i) /e «;
(ii) f is almost expansive;
(iii) f is almost expansive with S = 2°~r)/2;
(iv) there is neN0 such that fi(Bn(x)) = 0 for all xeX;
(v) foralIn>(r-l)/2 andallxeX, /*(Bn(x)) = 0.

Proof By definitions 3.2 and 3.3, (i), (ii) and (iv) are equivalent. Also (v)=>(iii)=>(ii).
Finally (iv)=>(v) by proposition 3.5. •

It might seem that si u 98 is a natural class to study, but automata in si and 58
behave differently. For example if fe si and xe Tv, then/'(y) will stay arbitrarily
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close to/ ' (x) if y is close enough to x, but the following proposition shows that if
fe 98, then the probability that f'(y) will diverge a distance at least 2(1"r)/2 from
f(x) is always positive.

PROPOSITION 3.7. Iffe 38, then for allxeX and n e No, n(Cn(x) n D(x, 2( w ) / 2)) <

Proof. Let m be the least integer not less than ( r - l ) / 2 ; then D(x, 2°~r>/2) =
D(x, 2~m) = Bm(x). If the inequality above fails, then /i(Cn(x) n Bm(x)) = ^(Cn(x))
for some ne!^J0 and xeX. As Cn(x) is open and Bm(x) closed, Cn(x)-Bm(x) is
open of measure 0 and hence empty. By proposition 3.4(v), fe si. D

We know that if fe si and x e Ta, then x e J3n(x)° for all n € No. Thus Ck(x) c Bn(x)
for some fceN0. In other words the approximate behaviour of x (i.e. the behaviour
on the interval [-«,«]) is determined by a finite amount of information about x,
namely x(i), |'|—fc Proposition 3.7 says that if fe 98 and xeX, no finite amount
of information about x determines Bn(x) when n > ( r - l ) / 2 . Examples show that
B n (x )V0 is possible for/g si if n < ( r - l ) / 2 .

The rest of this section is devoted to examples. By definition 3.3 every expansive
linear automaton, for example the shift, lies in <€. An automaton / has finite order
if f" = /" for some m<n. Linear automata of finite order are easily seen to be
equicontinuous at all xeX and so lie in si. (Using lemma 2.1 one can show that
linear automata equicontinuous at all xe X have finite order.) By [7, theorem 6.13]
every finite group is embeddable in the monoid of linear automata, so there are
many linear automata of finite order.

Take an alphabet 5 = {0,1} and l e t / be induced by F:S3^S, F ( l , l , l ) = l,
F(a, b, c) = 0 otherwise. In the notation of §2, Ci(x0) c B0(x0) whence fe si by
proposition 3.4(v). It is easy to see that limn^oo/"(x) = x0 except for x = X!. Thus
si has members which are not equicontinuous at all xeX.

It is somewhat more difficult to find / e 93. Take 5 = {0,1,2} and define F:S3^S
as indicated below.

*00 *01 *02 *10 *11 *12 *20 *21 *22
0 1 0 0 1 0 2 0 2

Here * stands for any ae S. Visualize the array (aKj), aUj = (f'(x))(j) and consider
0 as a background element. In passing from one row of (au) to the row below l's
move to the left, 2's move straight down, and a 1 and 2 which collide annihilate
each other. It is straightforward to show that if x(j) = 2, this 2 is annihilated at
generation i (i.e. atJ = 0, a,_1;=2) if and only if the word x[j,j+k] has more 2's
than l's if 0 s k < i and an equal number when k = i.

We connect the behaviour of/with a random walk on the integers (for a similar
connection in the analysis of another linear automaton see [6]). Let p(a) be the
probability assigned to a e S in defining n, and consider a random walk with p(l),
p{2), p(0) the probabilities of moving left, moving right, and remaining stationary
respectively. If x(0) = 2, then the probability that this 2 is never annihilated equals
the probability of no return to 0 starting at 1 in the random walk. It can be shown
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[4, chapter 14.9, problem 1] that this probability is positive if and only if p(2)> p(l).
Thus p{2)>p{\) implies fi(B0(x2))>0 whence /e.stfu5§ by proposition 3.5(iv).
On the other hand for any n e No if x(j) = 0 for ally > n, then (f'(x))(0) is eventually
0 or 2, while x(j) = l, j>n, implies that (f'(x))(0) is eventually 1. From the
discussion after proposition 3.7, we conclude f & sd.

By pursuing the connection with the random walk one can show/e % if p( 1) > p(2)
and so obtain / E <# with / not expansive.

4. Factors
We show that the classes si, 98, ̂  defined in § 3 are invariant in certain ways. Keep
the notation of § 2 and le t / , i - 1,2 be linear automata defined on X, = Sf. Use <T
to denote the shift on both Xl and X2 and d for both metrics. Say that f2 is a factor
of/ if there is a continuous surjection TT : X, -> X2 such that/27r = irfx , and OTT = TTO\
We will show that if/ e J^, then f2 e ^ . The key to this result is that IT is semi-open
by which we mean that the image of every open set has non-empty interior. Also
every linear automaton is semi-open relative to its image (i.e. as a map/: X -»/(X)).
The term semi-open is due to R. Adler and B. Marcus [1, page 7].

In preparation for the next lemma let g: X! -» X2 be continuous with go- = erg. By
uniform continuity there is reN0 such that d(x, y)<2~r implies d(g(x), g(y))< 1.
Thus x[-r, r] determines (g(x))(0) according to some map G:S2ir+1-+S2. As ga =

(4.1)
For any word w of length |w| > 2r+1 in the letters Si, applying G to the succession
of subwords of length 2r+1 yields a word G(w) of length |vv| -2 r in the letters S2.
Let the head of w, |w|s2r, be the initial subword of length 2r, and let the tail of
w be the terminal subword of the same length. If the tail of w>! matches the head
of w2 and w is obtained by identifying the head and tail, then G(w) = G(W1)G(H'2).

Recall that C(i,j, w) = {x: x[i,j] = w}. From (4.1)

g(C(i,j,w))cC(i + r,j-r,G(w)) |w|>2r+l. (4.2)

LEMMA 4.1. Let g:Xl-*X2 be as above, then:
(i) g 15 semi-open with respect to g(X,);

(ii) ifxeT^nU, U open in Xj, then g(x) e g( U)°, the interior of g( U).

Proof. Pick a word Wj in the letters S2 so that {v: G(v) = w,} is non-empty and has
minimum number of distinct tails. Let t be one of the tails which occur.

If G(u) = w'wt, then u may be chosen to have tail t. (4.3)

Indeed if (4.3) failed, then replacing wl by vv'wj would contradict our choice of w,.
Likewise choose w2 so that {v: G(v) = vv2} is non-empty and has minimum number
of distinct heads. Let h be one of the heads.

Clearly (ii) implies (i). Suppose x is as in (ii). Every finite word occurs as x[i,j]
for i>0 and for j<0. It follows that we can choose i and/ so that x[i,j] = vxvv2,
\v\ > 1, v-i has tail t, G{vx) = w1, v2 has head h, and G(v2) = w2. Further we can pick
i and j so that C(iuju tvh) c U where i s i, <_/, < j and xt i j , / ] = fwh.
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Let Y = g(X1) and w = G(tvh); we have G(v1vv2) = wxww2. It suffices to show

U g(C(i,j, v[vv'2)) = C(i+r,j-r, wlWw2)n Y, (4.4)

where the union is over all v[ with tail t and G(v'1) = wi and all v2 with head h and
G(v'2) = w2. (4.2) yields inclusion from left to right, so pick y in the righthand set
of (4.4). We have y[i + r,j — r] = w1ww2 and y = g(z) for some z e X , . We need to
show that z can be chosen with z[i,j] = v\vv'2. Using (4.3) construct a word w,
infinite to the left, ending in some v\, and such that G(u1) = y(—<x>, i + r + |wi|).
Likewise construct u2 infinite to the right, beginning with some v2, and such
that G(u2) = y(j-r-\w2\, oo). Now « h u, and w2 may be used to define the
desired z. •

COROLLARY 4.2. ,4 /inear automaton f is semi-open as a map from X to f{X).

Proof. Take XX = X2 = X and g = / in lemma 4.1. •

PROPOSITION 4.3. Let f2 be a factor off. Iff e si, then f2 e d.

Proof. Let TT : X, -» X2 be as in the definition of factor at the beginning of this section,
and let /2 have range r. By uniform continuity d(ir(x), ir(y))<2~r if d(x,y)<2~"
for some neN0. It follows from irf[=fi

2'ir, ieN0, that ir(Bn(x))c Br(v(x)). Take
B n ( x ) V 0 by proposition 3.4(vi). By lemma 4.1 Br(7r(x))°^0 whence f2esi by
proposition 3.4(v). D

There is an analogue of proposition 4.3 which applies to the union of classes
Recall the notation at the beginning of this section and let /Xj be the product measure
for Xj. Say that (f2, /A2) is a factor of (f, /ii) if/2 is a factor of/j and /J-ITT"1 = /J,2.

PROPOSITION 4.4. Let (f2, /J,2) be a factor of (/,, fj.^. Iff e du 38, thenf2e J ^ U 38.

Proof. Choose r and n as in the proof of proposition 4.3. Choose x such that
/u.,(Bn(x))>0 by proposition 3.5(v). Let y = ir(x); we have |t,(7r"1(Br(}'))>0
whence fi2(Br(y))>0 a n d / 2 e ^ u 38 by proposition 3.5(iv). D

Propositions 4.3 and 4.4 have the following consequence.

COROLLARY 4.5. If /A is the equiprobable measure on X and g is a bijective linear
automaton, then g preserves the classes M, 88, (€. I.e. for any linear automaton f on X,
f and gfg~* are in the same class.

Proof. It follows from [7, theorem 5.4] that g is measure-preserving. •

5. Video dynamics
We are interested in what properties of the array (atJ), atJ = (f'(x))(j) are determined
by the class of a linear automaton / If / e si<u 88, then certain parts of the array
will repeat with fixed frequency independent of x for almost all x, while if fe c€,
they will not. If x is changed on an interval, then only a finite number of additional
columns of (aKj) will be affected when fesd, but if fe 38 u % infinitely many
columns may change. We will also show that if fesd, then almost all x behave
asymptotically like rotations of a group.
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Keep the notation of § 2 and suppose fe M u 55. By proposition 3.5 for any n e No

there is Bn(x) with n(Bn(x))>0.

PROPOSITION 5.1. Suppose fe si u 98 and for each n e No, Bn(xx „), Bn(x2n),... are
the countably many classes Bn(x) with fj.(Bn(x))>0; then:

(i) the probability that x has behaviour Bn(xin) on a given interval [j -n,j+ n] is

(ii) there is a (a)-invariant set Y of measure 1 such that for xeY the behaviour

of x on every interval [j — n,j+n] is some Bn(xin); and the frequency with which a

given Bn(xitn) appears is asymptotic to /i(Bn(x1>n)).

Proof. Part (i) is clear. For (ii) use proposition 3.5 to pick Yo of measure 1 such
that/ is almost equicontinuous on Yo. For each Bn(xin) the ergodic theorem yields
y,,n, At(^,n) = l such that for xe Yin, Bn(x,n) occurs with limiting frequency
/j.(Bn(xin)) in both directions. Choose Y to be a (cr)-invariant subset of measure 1
of P| Yi,n- Because / commutes with a; it suffices to prove the first assertion of (ii)
for j = 0; and this case follows from the definition of almost equicontinuity. •

The next proposition gives more information for fe si and in particular implies
that when/e si the classes with yu,(Bn(x)) > 0 are the ones with non-empty interior.

PROPOSITION 5.2. Suppose fe si and for each n GN0, Bn(yln), Bn(y2,n),. • • are the
countably many classes Bn(x) with Bn(x)°^0. Then:

(i) each Bn(yin) is ultimately periodic;
(ii) ifx€ T^, then the behaviour ofx on every interval [j-n,j+n] is some Bn{yin);

and each Bn(yin) appears infinitely often;
(iii) if xeTa, then the restriction of f to Ox is equicontinuous, and f behaves

asymptotically like a rotation of a compact group.

Proof. To prove (i) note that since periodic points (periodic with respect to the shift)
are dense, Bn(y,;„) contains a periodic point z. If z has period p, then so does/J'(z),
and it follows that for some; < k,f(z) =fk(z). Hence, z,/(z),/2(z), . . . is ultimately
periodic, and so Bn(z) = Bn(yin) is too.

The second part of (ii) holds because the forward and backward orbits of x under
(cr) are dense. It suffices to prove the first part of (ii) for; = 0. By proposition 3.4(iv)
/ is equicontinuous at x whence xeBn(x)°. But then Bn(x) = Bn(yin) for
some i.

The first part of (iii) follows from (i), (ii), and lemma 2.1(iv). The last part is
lemma 2.6. •

We pause to make some observations. First we note that in the situation of proposi-
tion 5.2(iii) / is equicontinuous at x by proposition 3.4, but examples show that /
need not be equicontinuous at/(x).

Suppose fe <£ and n > (r-1)/2 (recall that / has range r). By proposition 3.6,
/j.(Bn(x)) = 0 for all x. As there are only countably many ultimately periodic
behaviours, the probability that a random x has ultimately periodic behaviour on
any interval [j — n,j+n] is 0. However, ultimately periodic behaviour can occur
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with positive probability if « < ( r - l ) / 2 . This fact may account for the reducible
automata of [9, § 3].

As we mentioned in the introduction, we do not have an algorithm for deciding
membership in the classes sd, 2ft, <€. We might try to distinguish between si u 38
and <€ as follows: Choose x at random and view a finite vertical strip (au), 0 < i < i1,
- r < j < r. Repeat this procedure several times and count the frequency with which
different strips occur. If fe siu 98 and p = supxix(Br(x)) then, by proposition 5.1,
p > 0. In this case we expect to see some strips occurring with frequency about p
or more no matter how large i, is. On the other hand if / e *#, then /x(Br(x)) = 0
for all x and we expect the frequencies to go to zero as i, increases. Thus we may
guess whether or not /6 sd^jSft based on the observed frequencies. Since there are
only finitely many linear automata with range r and fixed alphabet of size s, we
may let p(r, s) be the minimum of p as / ranges over all such automata in M u 2k.
We have p(r, s) > 0, and if p(r, s) were computable one might be able to make the
heuristic test above reliable.

It is worth noting that to view a vertical strip of (au) we must compute a triangle
containing the strip. The reason for this is that if we know

x(j) -h^j^h,
we can compute only

(f(x))(j)
and

(f(x))U)
etc. Most computer simulations of linear automata seem to avoid this difficulty by
assuming that x has period 2/i + l. This procedure changes the sample space from
which the inputs are drawn, but on the basis of a few computer experiments it does
not seem to affect the appearance of the computer display as long as j \ is suitably
large.

Now we resume our study of (atJ) and consider what happens when x is changed
at random on an interval /. We will find that propagation of changes is different
for each of the classes M, 2k, c€. These differences can be used to create a heuristic
test for membership like the one discussed above.

We assume that / is never equal to all of Z. If a change on / produces a change
in aKj for some i, we say that site j is affected. It is clear from the way / is induced
by F that if no site in an interval / of length r is affected, then the change does
not propagate beyond (i.e. affect any site beyond) J. By a random change on / we
mean random with respect to the product measure on the factor of X corresponding
to /.

For a given x and interval / let p, be the probability that a random change on /
affects a site a distance greater than t from /. 1 -p0 is the probability that the change
does not propagate beyond /. As p,^pt+i, l im,^ p, exists and is the probability of
infinite propagation.

Suppose that / is infinite to the right. Shift x so that / begins at j +1 for some
j s r. Since a preserves n and commutes with /, the probabilities p, are not changed
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by the shift. Replace x by its shift, apply lemma 2.3, and obtain:

I - (j, °°> a nd j > r
)nBr(x) = B-{x\[Kn}B+for i<-r,w = x[i,j]

PROPOSITION 5.3. IffeSft, there is a (&)-invariant set YcX of measure 1 and a
direction {left or right) such that for all xe Y:

(i) p,<\ for all t;
(ii) for any infinite interval lim^^p, = 0;

(iii) for any interval infinite in the distinguished direction, pt>0 for all t.

Proof. Pick Y to be the same as in proposition 5.1 (ii)- If / is finite, then with positive
probability a random change on / leaves x unchanged whence (i) holds. If / is
infinite (say to the right), then because Y is (o-)-invariant, we may shift x so that
(5.1) holds with i = -r,j = r. 1 -po~ /i,(B+)>0; and as p, >/>,+1, (i) is proved.

Let E = Br(X|J in the notation of proposition 5.1 and set

qm{y> n(Cm(y)) '
By lemma 2.4, lim^^, qm{y) = 1 for almost all y e E. By Egoroff's theorem qm(y) -> 1
uniformly on some Eoc. E with ^i(£0)>0. Replace Y by its subset of elements
whose positive and negative orbits under (a) intersect Eo infinitely often. With this
change Y still satisfies the hypothesis and (i) still holds.

To prove (ii) let / be an infinite interval. Assume / is infinite to the right (the
other case is similar). Given e > 0 we need om./ find t with p, < E. By choice of Y
we can shift x so (5.1) holds with i = -j, j arbitrarily large, and x e Eo. As qm(y) -» 1
uniformly on Eo, we pick j large enough so that qj(y) > 1 - e, y e Eo. In particular,
qj(x) >l~e.AsxeE0,xe Br{xx) whence J3r(x) = Br(xi). Now as C(-j,j, x[-j,j]) =
Cj(x), we have by (5.1)

whence pj-r = 1 - fx(B+) < e as desired.
Suppose (iii) fails; then we can find xe Y and a right-infinite interval of x with

p, = 0 for all (>(0. Shift x so that xe Eo and (5.1) holds with i = -r, a n d ; - r > t0.
In particular Br(x) = Br{xln). Conclude from lemma 2.3 that the projection of
Br{*\,n) <~> C(-r,j, x[-r,j]) onto the factor of X corresponding to the interval (j, oo)
has measure 1. Repeat the argument with rig*ht replaced by left and obtain the
corresponding result for the projection of Br(xhn) n C(i, r, y[i, r]) to the factor of
X corresponding to (-oo, i). Here i' + r< -t0 and ye Yn Eo. Form a word w from
y[i, r] and x[-r,j] by identifying y[-r, r] and x[—r, r]. Lemma 2.3 now yields that
C(i,j,w)- Br(xUn) is an open set of measure 0 whence C(i,j, w)c Br(xUn). But
then fe M by lemma 3.4(v), not the case. •

Notice that the choice of direction in proposition 5.3(iii) is necessary. The example
fe S3 of § 3 has no propagation of changes to the right at all.
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Next we analyze propagation of changes for fe si.

PROPOSITION 5.4. If fe si and xe Ta, then
(i) p,<\forallt;
(ii) there is t0 such that p, = 0, t>t0, and in fact no change propagates a distance

greater than t0 from the interval I.

Proof. The proof of proposition 5.3(i) is valid for/e si so (i) holds. For (ii) assume
/ is finite; the other cases are done similarly. Pick a cylinder C = C(i,j, w) contained
in the class Br(y\,n) of proposition 5.2. Note that i< — r and j > r. As xe Ta, there
are translates C\ = C(ii,jl,w) and C2 = (C(i2,j2, w) of C such that xeClnC2

and the intervals [ii,ji], [i2,j2~\ lie on each side of / and do not intersect it. It
follows that any change of x on / does not affect the behaviour of x on some
subinterval of width 2r+l in [ii,ji] and likewise for [i2,j2]. Thus no change on /
propagates beyond these intervals and (ii) is proved. D

PROPOSITION 5.5. Iffe % then there is a set Y^X of measure 1 and a direction
such that for any interval infinite in the distinguished direction p, = l for all t. In
particular the probability that a random change will propagate forever is 1.

Proof. Consider XR, the set of all xeX such that for every interval [i-r, i+r]
shifting x so that this interval moves to [—r, r] and applying the decomposition of
(5.1) with i = -r,j = r yields n(B+) = 0. We claim p, = 1 for any teN0, xeXR, and
right-infinite interval in x. Indeed po= 1 by (5.1). If j> r in (5.1), lemma 2.3 says
that B+ is a projection of a subset of the B+ obtained for j = r, and it follows that
Pj-r = 1 for all j > r.

If fJ.{XR) = 1 or if the analogue of XR for left-infinite intervals has measure 1,
then we are done. As both these sets are (o-)-invariant, we may assume they have
measure 0. Thus for almost every xeX there is an interval [ 1 — r, i+ r] which gives
fi{B~)>0 and another interval [j-r,j+r] which yields /x(B+)>0. As there are
only countably many possibilities for the pair (i,j), there is a choice i = i0, j=j0

for which the set Yo of x satisfying the above condition has positive measure. As
almost all x have infinitely many translates under (a-) in Yo, we may assume
i + r<0<j-r. Using lemma 2.2 we conclude n(Br(x))>0 for xe Yo whence fe 38,
not the case. •

We end with a discussion of the connection between our classes and the four classes
of Wolfram. Wolfram's classes have the following qualitative characterizations for
a random input [10, Introduction]:

(1) Tends to a spatially homogeneous state.
(2) Yields a sequence of simple stable or periodic structures.
(3) Exhibits chaotic aperiodic behaviour.
(4) Yields complicated localized structures, some propagating.

They are also distinguished by the effect of changing the input on a small interval.
(1) No changes in final state.
(2) Changes only over a region of finite size.
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(3) Changes over a region of ever-increasing size.
(4) Irregular changes.

Classes 1 and 2 have ultimately periodic behaviour and so lie in si u 58. We raise
the question of whether every fe 33 has ultimately periodic behaviour on every
interval [-«,«] for x in a set of measure 1. If so, then class 3 would be in <€. This
correspondence is consistent with the propagation of changes in class 3 automata
if we assume that changes on finite and infinite intervals have similar effects. (This
assumption is supported by some computer experiments.) Likewise the way in which
changes are propagated in class 4 automata suggests that they cannot be in si or
<£ and so must be in 53.
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