
JFP 29, e10, 14 pages, 2019. c© Cambridge University Press 2019 1
doi:10.1017/S0956796819000078

PhD Abstracts

G R A H A M H U T T O N
University of Nottingham, UK

(e-mail: graham.hutton@nottingham.ac.uk)

Many students complete PhDs in functional programming each year. As a service to the
community, twice per year the Journal of Functional Programming publishes the abstracts
from PhD dissertations completed during the previous year.

The abstracts are made freely available on the JFP website, i.e. not behind any paywall.
They do not require any transfer of copyright, merely a license from the author. A disser-
tation is eligible for inclusion if parts of it have or could have appeared in JFP, that is, if it
is in the general area of functional programming. The abstracts are not reviewed.

We are delighted to publish thirteen abstracts in this round and hope that JFP readers
will find many interesting dissertations in this collection that they may not otherwise have
seen. If a student or advisor would like to submit a dissertation abstract for publication in
this series, please contact the series editor for further details.

Graham Hutton
PhD Abstract Editor

https://doi.org/10.1017/S0956796819000078 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000078
mailto:graham.hutton@nottingham.ac.uk
https://doi.org/10.1017/S0956796819000078


2 G. Hutton

Data-Driven Refactorings for Haskell

STEPHEN ADAMS
University of Kent, UK

Date: August 2017; Advisor: Simon Thompson
URL: https://tinyurl.com/y236dprt

Agile software development allows for software to evolve slowly over time. Decisions
made during the early stages of a program’s lifecycle often come with a cost in the form
of technical debt. Technical debt is the concept that reworking a program that is imple-
mented in a naive or “easy” way, is often more difficult than changing the behaviour of
a more robust solution. Refactoring is one of the primary ways to reduce technical debt.
Refactoring is the process of changing the internal structure of a program without chang-
ing its external behaviour. The goal of performing refactorings is to increase code quality,
maintainability, and extensibility of the source program. Performing refactorings manually
is time consuming and error-prone. This makes automated refactoring tools very useful.
Haskell is a strongly typed, pure functional programming language. Haskell’s rich type
system allows for complex and powerful data models and abstractions. These abstractions
and data models are an important part of Haskell programs. This thesis argues that these
parts of a program accrue technical debt, and that refactoring is an important technique to
reduce this type of technical debt. Refactorings exist that tackle issues with a program’s
data model, however these refactorings are specific to the object-oriented programming
paradigm. This thesis reports on work done to design and automate refactorings that help
Haskell programmers develop and evolve these abstractions. This work also discussed
the current design and implementation of HaRe (the Haskell Refactorer). HaRe now sup-
ports the Glasgow Haskell Compiler’s implementation of the Haskell 2010 standard and
its extensions, and uses some of GHC’s internal packages in its implementation.

https://doi.org/10.1017/S0956796819000078 Published online by Cambridge University Press

https://tinyurl.com/y236dprt
https://doi.org/10.1017/S0956796819000078


PhD Abstracts 3

Quantitative Aspects and Generation of
Random Lambda and Combinatory Logic Terms

MACIEJ BENDKOWSKI
Jagiellonian University, Poland

Date: November 2017; Advisor: Marek Zaionc and Katarzyna Grygiel
URL: https://tinyurl.com/y4oyo44c

We present a quantitative analysis of lambda-calculus in the de Bruijn notation and
combinatory logic under various combinator bases. Both classes of computational models
are shown to share the fixed subterm property – for an arbitrary fixed term T , asymp-
totically almost all terms contain T as a subterm. In consequence, both models exhibit
similar quantitative properties with respect to normalisation and typeability. Specifically,
asymptotically almost no term is either strongly normalising or typeable. Furthermore,
asymptotically almost no normalising term is simultaneously strongly normalising.

Concerning combinator-specific results, we provide a complete syntactic characterisa-
tion of normalising SK-combinators by means of a constructive hierarchy of unambiguous
regular tree grammars. As an application, we present an algorithmic technique of finding
asymptotically significant fractions of normalising SK-combinators. Utilising our system-
atic approach, we show that the asymptotic density of normalising combinators cannot
be less than 34%. We discuss the limits of our method and, based on super-computer
experimental results, discuss the asymptotic density and average complexity of normal-
ising combinators, arguing that the asymptotic density of normalising combinators is
approximately equal to 85%.

Finally, we discuss the effective generation of random lambda-terms and combinators,
focusing on the set of closed and typeable lambda-terms. We provide effective Boltzmann
samplers for several classes of interesting lambda-terms including the restricted class of
so-called closed h-shallow lambda-terms, i.e. closed lambda-terms in which de Bruijn
indices are bounded by h. Combining Boltzmann models and logic programming tech-
niques available in modern Prolog systems, we give a sampling scheme for closed typeable
lambda-terms and discuss the intriguing challenges blocking effective sampling of large
closed typeable lambda-terms.

https://doi.org/10.1017/S0956796819000078 Published online by Cambridge University Press

https://tinyurl.com/y4oyo44c
https://doi.org/10.1017/S0956796819000078


4 G. Hutton

Disjoint Intersection Types: Theory and Practice

XUAN BI
University of Hong Kong

Date: December 2018; Advisor: Bruno Oliveira
URL: https://tinyurl.com/y4foktdw

Programs are hard to write. It was so 50 years ago at the time of the so-called software
crisis; it still remains so nowadays. Over the years, we have learned—the hard way—that
software should be constructed in a modular way, i.e., as a network of smaller and loosely
connected modules. To facilitate writing modular code, researchers and software practi-
tioners have developed new methodologies; new programming paradigms; stronger type
systems; as well as better tooling support. Still, this is not enough to cope with today’s
needs. Several reasons have been raised for the lack of satisfactory solutions, but one
that is constantly pointed out is the inadequacy of existing programming languages for
the construction of modular software. This thesis investigates disjoint intersection types,
a variant of intersection types. Disjoint intersections types have great potential to serve
as a foundation for powerful, flexible and yet type-safe and easy to reason OO languages,
suitable for writing modular software. On the theoretical side, this thesis shows how to sig-
nificantly increase the expressiveness of disjoint intersection types by adding support for
nested composition, along with parametric polymorphism. Nested composition extends
inheritance to work on a whole family of classes, enabling high degrees of modularity and
code reuse. The combination with parametric polymorphism further improves the state-of-
art encodings of extensible designs. However, the extension with nested composition and
parametric polymorphism is challenging, for two different reasons. Firstly, the subtyping
relation that supports these features is non-trivial. Secondly, the syntactic method used to
prove coherence for previous calculi with disjoint intersection types is too inflexible. This
thesis addresses the first problem by adapting and extending the well-known BCD subtyp-
ing with records, universal quantification and coercions. To address the second problem,
this thesis proposes a powerful proof method to establish coherence. Hence, this thesis puts
disjoint intersection types on a solid footing by thoroughly exploring their meta-theoretical
properties.

https://doi.org/10.1017/S0956796819000078 Published online by Cambridge University Press

https://tinyurl.com/y4foktdw
https://doi.org/10.1017/S0956796819000078


PhD Abstracts 5

Compiling with Dependent Types

WILLIAM J. BOWMAN
Northeastern University, USA

Date: May 2019; Advisor: Amal Ahmed
URL: https://tinyurl.com/y3d9s5zt

Dependently typed languages have proven useful for developing large-scale fully ver-
ified software, but we do not have any guarantees after compiling that verified software.
A verified program written in a dependently typed language, such as Coq, can be type
checked to ensure that the program meets its specification. Similarly, type checking pre-
vents us from importing a library and violating the specification declared by its types.
Unfortunately, we cannot perform either of these checks after compiling a dependently
typed program, since all current implementations erase types before compiling the pro-
gram. Instead, we must trust the compiler to not introduce errors into the verified code, and,
after compilation, trust the programmer to never introduce errors by linking two incompati-
ble program components. As a result, the compiled and linked program is not verified—we
have no guarantees about what it will do.

In this dissertation, I develop a theory for preserving dependent types through com-
pilation so that we can use type checking after compilation to check that no errors are
introduced by the compiler or by linking. Type-preserving compilation is a well-known
technique that has been used to design compilers for non-dependently typed languages,
such as ML, that statically enforce safety and security guarantees in compiled code. But
there are many open challenges in scaling type preservation to dependent types. The key
problems are adapting syntactic type systems to interpret low-level representations of
code, and breaking the complex mutually recursive structure of dependent type systems
to make proving type preservation and compiler correctness feasible. In this dissertation,
I explain the concepts required to scale type preservation to dependent types, present a
proof architecture and language design that support type preservation, and prove type
preservation and compiler correctness for four early-stage compiler translations of a real-
istic dependently typed calculus. These translations include an A-normal form (ANF), a
continuation-passing style (CPS), an abstract closure conversion, and a parametric closure
conversion translation.

https://doi.org/10.1017/S0956796819000078 Published online by Cambridge University Press

https://tinyurl.com/y3d9s5zt
https://doi.org/10.1017/S0956796819000078


6 G. Hutton

Abstracting Control with Dependent Types

YOUYOU CONG
Ochanomizu University, Japan

Date: March 2019; Advisor: Kenichi Asai
URL: https://tinyurl.com/yyegepx3

Dependent types are a powerful tool for ensuring safety. By interacting with terms,
dependent types are able to precisely encode program specifications, guaranteeing the
absence of runtime errors and other unexpected behaviours. Meanwhile, control operators
have been extensively used to increase expressiveness. By talking about the surroundings
of programs, control operators enable sophisticated manipulation of control flow, yielding
a wide range of practical applications.

The two language ingredients are however known to pose various difficulties when
mixed up together. Intuitively, the disharmony stems from their contrasting nature: depen-
dent types are used for reasoning purposes and thus must be determined statically,
whereas control operators are used to implement dynamic, non-local behaviours. To make
their combination meaningful, previous work has imposed a purity restriction on type
dependency, that is, types may depend only on effect-free terms.

In this thesis, we build a dependently typed, effectful language called Dellina. Dellina
has support for essential features from the mainstream proof assistants, as well as the
delimited control operators shift and reset. Similarly to existing studies, we restrict types
to depend only on pure terms, but additionally, we impose two constraints on the type of
contexts surrounding effectful terms, in order to cope with the flexibility of the control
operators. These restrictions make the resulting language type sound. We also define a
selective CPS translation of the language, and prove that the translation preserves typing.
Our key observation is that, in a dependently typed setting, selective translations not only
yield efficient programs, but simplify the proof of the type preservation property.

Dellina is the first non-toy language where dependent types and control operators co-
exist. As an application, we show an implementation of a type-safe evaluator that uses
shift, reset, and dependent types all in a non-trivial manner. Our result further opens the
door to integrating shift and reset into proof assistants. We discuss how we should extend
the “proofs-as-programs” view to a language with delimited control, and what we can
prove with the control operators.

https://doi.org/10.1017/S0956796819000078 Published online by Cambridge University Press

https://tinyurl.com/yyegepx3
https://doi.org/10.1017/S0956796819000078


PhD Abstracts 7

Model Construction, Evolution, and Use in Testing of Software Systems

PABLO LAMELA SEIJAS
University of Kent, UK

Date: July 2018; Advisor: Simon Thompson
URL: https://tinyurl.com/y6hquyaf

The ubiquity of software places emphasis on the need for techniques that allow us to
ensure that software behaves as we expect it to behave. The most widely-used approach to
ensuring software quality is unit testing, but this is arguably not a very efficient solution,
since each test only checks that the software behaves as expected in one single scenario.

There exist more advanced techniques, like property-based testing, model-checking, and
formal verification, but they usually rely on properties, models, and specifications. One
source of friction faced by testers that want to use these advanced techniques is that they
require the use of abstraction and, as humans, we tend to find it more difficult to think of
abstract specifications than to think of concrete examples.

In this thesis, we study how to make it easier to create models that can be used for testing
software. In particular, we research the creation of reusable models, ways of automating
the generalisation of code and models, and ways of automating the generation of models
from legacy unit tests and execution traces.

As a result, we provide techniques for generating tests from state machine models,
techniques for inferring parametrised state machines from code, and refactorings that
automate the introduction of abstraction for property-based testing models and code in
general. All these techniques are illustrated with concrete examples and with open-source
implementations that are publicly available.

https://doi.org/10.1017/S0956796819000078 Published online by Cambridge University Press

https://tinyurl.com/y6hquyaf
https://doi.org/10.1017/S0956796819000078


8 G. Hutton

Tools and Techniques for the Verification of Modular Stateful Code

MÁRIO JOSÉ PARREIRA PEREIRA
Université Paris-Saclay, France

Date: December 2018; Advisor: Jean-Christophe Filliâtre
URL: https://tinyurl.com/y3jc4xr8

This thesis is set in the field of formal methods, more precisely in the domain of deduc-
tive program verification. Throughout this thesis, the Why3 verification framework is used,
on one hand, as a working environment to experiment and validate our research and, on the
other hand, as the direct target of certain contributions of this thesis. Why3 features an ML-
like language called WhyML, which is both a programming and a specification language.
An important aspect of WhyML is the presence of ghost code, i.e. programming elements
that are introduced exclusively for specification and proof purposes. In order to get an exe-
cutable code, ghost code must be eliminated via an automated translation called extraction.
One of the main contributions of this thesis is the formalization and implementation of an
extraction mechanism for Why3.

The new extraction mechanism for Why3 is successfully used to generate several
correct-by-construction OCaml modules, in the scope of a larger research project aim-
ing at building a formally verified general-purpose library of efficient data structures and
algorithms. This thesis also contributes to the development of a formal specification lan-
guage for OCaml. We use this language to equip the library API with a specification, and
we use our extraction mechanism to provide verified implementations.

While building this verified library, we were naturally confronted with the proof of
idiomatic OCaml features which are beyond the scope of Why3. This led to three other
contributions of this thesis. The first is a systematic technique for the verification of
pointer-based data structures, building on explicit memory models and local reasoning
on delimited portions of the heap. Using that technique, we were able to provide a fully
automated proof of a union-find implementation. The second is an approach to extract
functorial code from verified WhyML programs. This allows us to extract OCaml func-
tors for different implementations of parameterized data structures. Last, we propose a
general and modular way to specify programs performing iteration, independently of the
underlying implementation paradigm. Several cursors and higher-order iterators have been
specified and verified using such an approach.

https://doi.org/10.1017/S0956796819000078 Published online by Cambridge University Press

https://tinyurl.com/y3jc4xr8
https://doi.org/10.1017/S0956796819000078


PhD Abstracts 9

Polymorphic Set-Theoretic Types for Functional Languages

TOMMASO PETRUCCIANI
Università di Genova, Italy and Université Sorbonne Paris Cité, France

Date: March 2019; Advisor: Giuseppe Castagna and Elena Zucca
URL: https://tinyurl.com/yxgjtxkl

We study set-theoretic types: types that include union, intersection, and negation con-
nectives. Set-theoretic types, coupled with a suitable subtyping relation, are useful to type
several programming language constructs including conditional branching, pattern match-
ing, and function overloading very precisely. We define subtyping following the semantic
subtyping approach, which interprets types as sets and defines subtyping as set inclu-
sion. Our set-theoretic types are polymorphic, that is, they contain type variables to allow
parametric polymorphism.

We extend previous work on set-theoretic types and semantic subtyping by showing
how to adapt them to new settings and apply them to type various features of functional
languages. More precisely, we integrate semantic subtyping with three important language
features.

In Part I we study implicitly typed languages with let-polymorphism and type inference
(previous work on semantic subtyping focused on explicitly typed languages). We describe
an implicitly typed lambda-calculus and a declarative type system for which we prove
soundness. We study type inference and prove results of soundness and completeness.
Then, we show how to make type inference more precise when programs are partially
annotated with types.

In Part II we study gradual typing. We describe a new approach to add gradual typing
to a static type system; the novelty is that we give a declarative presentation of the type
system, while previous work considered algorithmic presentations. We first illustrate the
approach on a Hindley-Milner type system without subtyping. We describe declarative
typing, compilation to a cast language, and sound and complete type inference. Then, we
add set-theoretic types, defining a subtyping relation on set-theoretic gradual types, and we
describe sound type inference for the extended system.

In Part III we consider non-strict semantics. The existing semantic subtyping systems are
designed for call-by-value languages and are unsound for non-strict semantics. We adapt
them to obtain soundness for call-by-need. To do so, we introduce an explicit representa-
tion for divergence in the types, allowing the type system to distinguish the expressions
that are already evaluated from those that are computations which might diverge.

https://doi.org/10.1017/S0956796819000078 Published online by Cambridge University Press

https://tinyurl.com/yxgjtxkl
https://doi.org/10.1017/S0956796819000078


10 G. Hutton

Automatic Generation of Proof Terms in
Dependently Typed Programming Languages

FRANCK SLAMA
University of St Andrews, UK

Date: September 2018; Advisor: Edwin Brady
URL: https://tinyurl.com/y29r8ns8

Dependent type theories are a kind of mathematical foundations investigated both for
the formalisation of mathematics and for reasoning about programs. They are the theo-
ries of many proof assistants and programming languages with proofs (Coq, Agda, Idris,
Dedukti, Matita, etc). Dependent types allow to encode elegantly and constructively the
universal and existential quantifications of higher-order logics and are therefore adapted
for writing logical propositions and proofs. However, their usage is not limited to the area
of pure logic. Indeed, some recent work has shown that they can also be powerful for
driving the construction of programs. Using more precise types not only helps to gain
confidence about the program built, but it can also help its construction, giving rise to
a new style of programming called Type-Driven Development. However, one difficulty
with reasoning and programming with dependent types is that proof obligations arise nat-
urally once programs become even moderately sized. The need for these proofs comes,
in intensional type theories (like CIC and ML) from the fact that in a non-empty context,
the propositional equality allows us to prove as equal (with the induction principles) terms
that are not judgementally equal, which implies that the typechecker can’t always obtain
equality proofs by reduction. As far as possible, we would like to solve such proof obliga-
tions automatically, and we absolutely need it if we want dependent types to be used more
broadly, and to become one day the standard in functional programming. In this thesis, we
show one way to automate these proofs by reflection in the dependently typed program-
ming language Idris. However, the method that we follow is language independent. We
present an original type-safe reflection mechanism, where reflected terms are indexed by
the original Idris expression that they represent, and show how it allows to easily construct
and manipulate proofs. We build a hierarchy of correct-by-construction tactics for prov-
ing equivalences in semi-groups, monoids, commutative monoids, groups, commutative
groups, semi-rings and rings. We also show how each tactic reuses those from simpler
structures, thus avoiding duplication of code and proofs. Finally, and as a conclusion, we
discuss the trust we can have in such machine-checked proofs.

https://doi.org/10.1017/S0956796819000078 Published online by Cambridge University Press

https://tinyurl.com/y29r8ns8
https://doi.org/10.1017/S0956796819000078


PhD Abstracts 11

Executable Formal Specification of
Programming Languages with Reusable Components

L. THOMAS VAN BINSBERGEN
Royal Holloway, UK

Date: April 2019; Advisor: Adrian Johnstone and Elizabeth Scott
URL: https://tinyurl.com/y24xdyvm

Writing a formal definition of a programming language is cumbersome and maintaining
the definition as the language evolves is tedious and error-prone. But programming lan-
guages have commonalities that can be captured once and for all and used in the formal
definition of multiple languages, potentially easing the task of developing and maintain-
ing definitions. Languages often share features, even across paradigms, such as scoping
rules, function calls, and control operators. Moreover, some concrete syntaxes share pat-
terns such as repetition with a separator, delimiters around blocks, and prefix and infix
operators.

The PLanCompS project has established a formal and component-based approach to
semantics intended to reduce development and maintenance costs by employing the
software engineering practices of reuse and testing. This thesis contributes further, tak-
ing advantage of the advanced features of the Haskell programming language to define
executable and reusable components for specifying both syntax and semantics.

The main theoretical contributions of this thesis are: a data structure for representing
the possibly many derivations found by a generalised parser which significantly simpli-
fies the specification of generalised parsing algorithms, a purely functional description
of GLL parsing based on this data structure, a novel approach to combinator parsing
that incorporates generalised parsing algorithms such as GLL in their implementation,
and a novel and lightweight framework for developing modular rule-based semantic
specifications (MRBS). This thesis shows how languages with Homogeneous Generative
Meta-Programming facilities are formalised within the presented approach.

The main practical contributions of this thesis are: a combinator library for component-
based descriptions of context-free grammars from which GLL parsers are generated, a
compiler and interpreter for executing operational semantic specifications written in CBS
(the meta-language developed by the PLanCompS project), an interpreter for an intermedi-
ate meta-language (IML) based on MRBS, and a translation from CBS specifications into
IML that gives an operational semantics to CBS. A language definition written with these
tools is executable so that a prototype implementation of the language can be generated
from its definition.

The practicality of the presented tools is evaluated through case studies.

https://doi.org/10.1017/S0956796819000078 Published online by Cambridge University Press

https://tinyurl.com/y24xdyvm
https://doi.org/10.1017/S0956796819000078


12 G. Hutton

Verifying Information Flow Control Libraries

MARCO VASSENA
Chalmers University of Technology, Sweden

Date: February 2019; Advisor: Alejandro Russo
URL: https://tinyurl.com/y5steb99

Information Flow Control (IFC) is a principled approach to protecting the confiden-
tiality and integrity of data in software systems. Intuitively, IFC systems associate data
with security labels that track and restrict flows of information throughout a program in
order to enforce security. Most IFC techniques require developers to use specific pro-
gramming languages and tools that require substantial efforts to develop or to adopt.
To avoid redundant work and lower the threshold for adopting secure languages, IFC
has been embedded in general-purpose languages through software libraries that promote
security-by-construction with their API.

This thesis makes several contributions to state-of-the-art static (MAC) and dynamic
IFC libraries (LIO) in three areas: expressive power, theoretical IFC foundations and pro-
tection against covert channels. Firstly, the thesis gives a functor algebraic structure to
sensitive data, in a way that it can be processed through classic functional programming
patterns that do not incur in security checks. Then, it establishes the formal security guaran-
tees of MAC, using the standard proof technique of term erasure, enriched with two-steps
erasure, a novel idea that simplifies reasoning about advanced programming features,
such as exceptions, mutable references and concurrency. Secondly, the thesis demon-
strates that the lightweight, but coarse-grained, enforcement of dynamic IFC libraries (e.g.,
LIO) can be as precise and permissive as the fine-grained, but heavyweight, approach
of fully-fledged IFC languages. Lastly, the thesis contributes to the design of secure
runtime systems that protect IFC libraries, and IFC languages as well, against internal-
and external-timing covert channels that leak information through certain runtime system
resources and features, such as lazy evaluation and parallelism.

The results of this thesis are supported with extensive machine-checked proof scripts,
consisting of 12,000 lines of code developed in the Agda proof assistant.

https://doi.org/10.1017/S0956796819000078 Published online by Cambridge University Press

https://tinyurl.com/y5steb99
https://doi.org/10.1017/S0956796819000078


PhD Abstracts 13

Revealing Behaviours of Concurrent
Functional Programs by Systematic Testing

MICHAEL STEWART WALKER
University of York, UK

Date: March 2019; Advisor: Colin Runciman
URL: https://tinyurl.com/yxqgu9ow

We aim to make it easier for programmers to write correct concurrent programs and
to demonstrate that concurrency testing techniques, typically described in the context
of simple core languages, can be successfully applied to languages with more complex
concurrency. In pursuit of these goals, we develop three lines of work:

Testing concurrent Haskell We develop a library for testing concurrent Haskell pro-
grams using a typeclass abstraction of concurrency, which we give a formal semantics.
Our tool implements systematic concurrency testing, a family of techniques for determin-
istically testing concurrent programs. Along the way we also tackle how to soundly handle
daemon threads, and how to usefully present complex execution traces to a user. We not
only obtain a useful tool for Haskell programs, but we also show that these techniques
work well in languages with rich concurrency abstractions.

Randomised concurrency testing We propose a new algorithm for randomly testing con-
current programs. This approach is fundamentally incomplete, but can be suitable in cases
where systematic concurrency testing is not. We show that our algorithm performs as well
as a pre-existing popular algorithm for a standard set of benchmarks. This pre-existing
algorithm requires the use of program-specific parameters, but our algorithm does not. We
argue that this makes use and implementation of our algorithm simpler.

Finding properties of programs We develop a tool for finding properties of sets of con-
currency functions operating on some shared state, such as the API for a concurrent data
type. Our tool enumerates Haskell expressions and discovers properties by comparing exe-
cution results for a variety of inputs. Unlike other property discovery tools, we support
side effects. We do so by building on our tool for testing concurrent Haskell programs. We
argue that this approach can lead to greater understanding of concurrency functions.

https://doi.org/10.1017/S0956796819000078 Published online by Cambridge University Press

https://tinyurl.com/yxqgu9ow
https://doi.org/10.1017/S0956796819000078


14 G. Hutton

Safely Exposing Haskell’s Hidden Powers

THOMAS WINANT
KU Leuven, Belgium

Date: November 2018; Advisor: Frank Piessens and Dominique Devriese
URL: https://tinyurl.com/y5ghr6oa

Haskell is a very influential functional programming language with an advanced type
system that is capable of detecting many bugs. In this dissertation, we are interested in
situations where the Glasgow Haskell Compiler (GHC), the de facto standard compiler
of Haskell, is more powerful than the Haskell programming language itself: it has the
capability to do things programmers cannot do using the language. Very often, these capa-
bilities are not made available to programmers or only in restricted forms, because doing
so would be unsafe, i.e. it would potentially break safety properties of Haskell or internal
invariants of the compiler. Unfortunately, such compromises mean that useful functional-
ity is unavailable to Haskell programmers for safety reasons. We refer to this functionality
as Haskells hidden powers.

In this work, we expose the following three hidden powers to Haskell programmers in
a safe way. These features were previously unavailable or only available with less safety
guarantees. The first feature is partial type signatures, which exposes the hidden power of
unification variables. Secondly, coherent explicit dictionary application exposes the hidden
power of the type class dictionaries. Finally, the third feature is expressive and strongly
type-safe code generation, which safely exposes more of the hidden power of compile-
time code generation. All three features were previously available only in unsafe or less
expressive forms. We propose their design, provide formal correctness arguments and have
implemented them (in at least a prototype form) for the GHC compiler.

https://doi.org/10.1017/S0956796819000078 Published online by Cambridge University Press

https://tinyurl.com/y5ghr6oa
https://doi.org/10.1017/S0956796819000078

	PhD Abstracts

