SOME EXAMPLES OF NORMAL MOORE SPACES

MARY ELLEN RUDIN AND MICHAEL STARBIRD

1. Introduction. A normal Moore space is non-metrizable only if it fails to be λ-collectionwise normal for some uncountable cardinal $\lambda[\mathbf{1}]$.

For each uncountable cardinal λ we present a class \mathscr{S}_{λ} of normal, locally metrizable Moore spaces and a particular space S_{λ} in \mathscr{S}_{λ}. If there is any space of class \mathscr{S}_{λ} which is not λ-collectionwise normal, then S_{λ} is such a space. The conditions for membership in \mathscr{S}_{λ} make a space in \mathscr{S}_{λ} behave like a subset of a product of a Moore space with a metric space. The class \mathscr{S}_{λ} is sufficiently large to allow us to prove the following. Suppose Y is a locally compact, 0 -dimensional Moore space (not necessarily normal) with a basis of cardinality λ and M is a metric space which is 0 -dimensional in the covering sense. If there is a normal, not λ-collectionwise normal Moore space X where $X \subset Y \times M$, then S_{λ} is a normal, not λ-collectionwise normal Moore space.

It is consistent with the usual axioms of set theory that there exist, for each uncountable cardinal λ, a normal, not λ-collectionwise Hausdorff Moore space [3]. It follows from the results quoted above that it is consistent that each S_{λ} be a normal, non-metrizable Moore space.

We also present, for each uncountable cardinal λ, a locally metrizable Moore space T_{λ} related to S_{λ}. If there is a first-countable, normal, not λ-collectionwise normal space, then T_{λ} also fails to be λ-collectionwise normal. P. Nyikos has shown that T_{λ} is normal if and only if it is metrizable, so T_{λ} itself cannot be an example of a normal, non-metrizable Moore space.

Both S_{λ} and T_{λ} are purely set theoretic in nature, being built from families of subsets of λ.

Either a proof that some S_{λ} is not collectionwise normal or a proof that it is consistent that all T_{λ} are collectionwise normal (or, equivalently, normal) would settle the normal Moore space conjecture.
2. The class \mathscr{S}_{λ} and the normality lemma. The class \mathscr{S}_{λ} was defined as a result of investigation of normal Moore spaces which are subsets of a product of a Moore space with a metric space. Theorem 1 below gives a description of some of the spaces of this type which are in \mathscr{S}_{λ}. The conditions listed for membership in \mathscr{S}_{λ} are those which allow our proof of normality to work.

[^0]Suppose that λ is an uncountable cardinal. The class \mathscr{S}_{λ} will contain all Moore spaces S for which the following hold.
(1) There is a discrete family $\left\{C_{\alpha}\right\}_{\alpha \in \lambda}$ of closed sets in S.
(2) $D=S-\bigcup_{\alpha \in \lambda} C_{\alpha}$ is discrete.
(3) If $A \subset \lambda$, there are disjoint open sets U and V in S with $\cup_{\alpha \in A} C_{\alpha} \subset U$ and $\cup_{\beta \in \lambda-A} C_{\beta} \subset V$.
(4) There is a metric space M and, for each $\alpha \in \lambda$, a subspace M_{α} of M and homeomorphism h_{α} from M_{α} onto C_{α}.
(5) There is a clopen basis \mathscr{B} for M such that $\mathscr{B}=\bigcup_{i \in \omega} \mathscr{B}_{i}$ where each \mathscr{B}_{i} is a discrete open cover of M; and, for each $i \in \omega$, there is a (discrete) family $\left\{O_{B} \mid B \in \mathscr{B}_{i}\right\}$ of open sets in S such that $h_{\alpha}\left(B \cap M_{\alpha}\right) \subset O_{B}$ and $\left(\bar{O}_{B} \cap C_{\alpha}\right) \subset h_{\alpha}\left(\bar{B} \cap M_{\alpha}\right)$ for each α in λ. (Note that $\bar{B}=B$ and $\bar{O}_{B}=O_{B}$. It is written in the preceding form for future reference.)

If there is a normal, non-metrizable Moore space, there is one which has properties (1)-(3) above. If there is a locally metrizable, normal, non-metrizable Moore space, there is one which has properties (1)-(4) above. Property (5) is a contrived assumption which makes a space in \mathscr{S}_{λ} look enough like a subset of a product so that our proofs of normality and Theorem 3 below work.
A somewhat larger class of spaces could be obtained by weakening (5) by assuming only that \mathscr{B} is an open, rather than clopen, basis for M and that each \mathscr{B}_{i} is a discrete family of open sets which may not cover M. The proof below suffices to show that any space in this larger class is still normal.

Normality Lemma. If S is in class \mathscr{S}_{λ}, then S is normal.
Proof. First note that it is sufficient to show that every pair of disjoint closed sets which lie in $\bigcup_{\alpha \in \lambda} C_{\alpha}$ can be separated by disjoint open sets.

Let H and K be disjoint closed subsets of $\cup_{\alpha \in \lambda} C_{\alpha}$. We show that H and K can be separated by producing two countable collections $\left\{U_{i}\right\}_{i \in \omega}$ and $\left\{V_{i}\right\}_{i \in \omega}$ of open sets such that $H \subset \cup_{i \in \omega} U_{i}, K \subset \cup_{i \in \omega} V_{i}$, and, for each $i \in \omega, \bar{U}_{i} \cap K=$ \emptyset and $\bar{V}_{i} \cap H=\emptyset$.

Using \mathscr{B} as described in (5), for each $B \in \mathscr{B}$ let

$$
H_{B}=\left\{\alpha \in \lambda \mid h_{\alpha}\left(B \cap M_{\alpha}\right) \cap H \neq \emptyset \quad \text { but } \quad h_{\alpha}\left(\bar{B} \cap M_{\alpha}\right) \cap K=\emptyset\right\} .
$$

Similarly let $K_{B}=\left\{\alpha \in \lambda \mid h_{\alpha}\left(B \cap M_{\alpha}\right) \cap K \neq \emptyset\right.$ but $\left.h_{\alpha}\left(\bar{B} \cap M_{\alpha}\right) \cap H=\emptyset\right\}$. By (3), there are disjoint open sets X_{B} and Y_{B} in S with $\cup_{\alpha \in H_{B}} C_{\alpha} \subset X_{B}$ and $\cup_{\alpha \in \lambda-H_{B}} C_{\alpha} \subset Y_{B}$. Also there are disjoint open sets Z_{B} and W_{B} in S with $\bigcup_{\alpha \in K_{B}} C_{\alpha} \subset Z_{B}$ and $\bigcup_{\alpha \in \lambda-K_{B}} C_{\alpha} \subset W_{B}$.

Let $U_{i}=\cup_{B \in \mathscr{P}_{i}}\left(O_{B} \cap X_{B}\right)$ and $V_{i}=\cup_{B \in \mathscr{R}_{i}}\left(O_{B} \cap Z_{B}\right)$ where O_{B} is defined as in (5).

Observe that $\left\{U_{i}\right\}_{1 \in \omega}$ covers H. For suppose $p \in C_{\alpha} \cap H$. There is an $i \in \omega$ and $B \in \mathscr{B}_{i}$ such that $p \in h_{\alpha}\left(B \cap M_{\alpha}\right)$ but $h_{\alpha}\left(\bar{B} \cap M_{\alpha}\right) \cap K=\emptyset$. Thus $p \in O_{B} \cap X_{B} \subset U_{i}$. Similarly $\left\{V_{i}\right\}_{i \in \omega}$ covers K.

To show that $\bar{V}_{i} \cap H=\emptyset$, again assume $p \in C_{\alpha} \cap H$. Since $\left\{O_{B} \mid B \in \mathscr{B}_{i}\right\}$ is discrete, there is at most one $B \in \mathscr{B}_{i}$ with $p \in \bar{O}_{B}$. If $p \in h_{\alpha}\left(\bar{B} \cap M_{\alpha}\right)$, then $p \in W_{B}$ and $p \notin \bar{Z}_{B}$. Thus, since $\left(\bar{O}_{B} \cap C_{\alpha}\right) \subset h_{\alpha}\left(\bar{B} \cap M_{\alpha}\right), p \notin \bar{V}_{i}$. Similarly $K \cap \bar{U}_{i}=\emptyset$.

Thus U_{i} and V_{i} have the desired properties.
3. Some spaces in \mathscr{S}_{λ}. In the theorem below we describe a natural construction which yields spaces in \mathscr{S}_{λ} and which, in fact, helped motivate the definition of \mathscr{S}_{λ}.

Theorem 1. Let Y be a Moore space with a discrete family $\left\{C_{\alpha}{ }^{\prime}\right\}_{\alpha \in \lambda}$ of closed sets such that each $C_{\alpha}{ }^{\prime}$ is compact and 0-dimensional. Let M^{\prime} be a metric space which is 0-dimensional in the covering sense. Let X^{\prime} be a subspace of $Y \times M^{\prime}$. Let X be the space obtained from X^{\prime} by making $\left(\left(Y-\cup_{\alpha \in \lambda} C_{\alpha}\right) \times M^{\prime}\right) \cap X^{\prime}$ discrete.

Then if X is normal, X belongs to \mathscr{S}_{λ}.
Proof. Since X is a Moore space, we proceed to check that X satisfies properties (1)-(5). Each C_{α} in (1) is $\left(C_{\alpha}{ }^{\prime} \times M^{\prime}\right) \cap X$. The D in (2) equals $\left(\left(Y-\cup_{\alpha \in \lambda} C_{\alpha}{ }^{\prime}\right) \times M^{\prime}\right) \cap X$. Property (3) is guaranteed by the normality of X.

Let E be the Cantor set. Then the M of (4) is $E \times M^{\prime}$. Note that each $C_{\alpha}{ }^{\prime}$ is a compact, 0 -dimensional metric space; hence there is a subset E_{α} of E and a homeomorphism $h_{\alpha}{ }^{\prime}$ from E_{α} onto $C_{\alpha}{ }^{\prime}$. Then $h_{\alpha}{ }^{\prime \prime}=h_{\alpha}{ }^{\prime} \times \operatorname{id}_{M^{\prime}}: E_{\alpha} \times M^{\prime} \rightarrow$ $C_{\alpha}{ }^{\prime} \times M^{\prime}$ is a homeomorphism. Now M_{α} in (4) is $\left(h_{\alpha}{ }^{\prime \prime}\right)^{-1}\left(X \cap\left(C_{\alpha}{ }^{\prime} \times M_{\alpha}{ }^{\prime}\right)\right)$ and h_{α} in (4) is $h_{\alpha}{ }^{\prime \prime}$ restricted to M_{α}.

Let $\mathscr{B}^{\prime}=\bigcup_{i \in \omega} \mathscr{B}_{i}{ }^{\prime}$ be a nested basis for E so that each $\mathscr{B}_{i}{ }^{\prime}$ is a discrete open cover of E. Let $\mathscr{B}^{\prime \prime}=\bigcup_{i \in \omega} \mathscr{B}_{i}{ }^{\prime \prime}$ be such a basis for M^{\prime}. Each \mathscr{B}_{i} in (5) equals $\left\{B^{\prime} \times B^{\prime \prime} \mid B^{\prime} \in \mathscr{B}_{i}^{\prime}\right.$ and $\left.B^{\prime \prime} \in \mathscr{B}_{i}{ }^{\prime \prime}\right\}$. And $\mathscr{B}=\bigcup_{i \in \omega} \mathscr{B}_{i}$ will be the basis of $M=E \times M^{\prime}$ required in (5).

For each $i \in \omega$, let $\mathscr{B}_{i}{ }^{\prime}=\left\{B_{i j}{ }^{\prime}\right\}_{j=1}^{n_{i}}$. By the normality of X, there are disjoint open sets $\left\{O_{i j}{ }^{\prime}\right\}_{j=1}^{n_{i}}$ in X so that for each $j, \cup_{\alpha \in \lambda} h_{\alpha}\left(\left(B_{i j}{ }^{\prime} \times M^{\prime}\right) \cap M_{\alpha}\right)$ $\subset O_{i j}{ }^{\prime}$. Let $O_{B_{i j} j^{\prime} \times B^{\prime \prime}}=O_{i j}{ }^{\prime} \cap\left(Y \times B^{\prime \prime}\right)$. This collection of O^{\prime} s satisfies (5).
4. The description of S_{λ}. In this section we describe the space S_{λ} in \mathscr{S}_{λ} which is a normal, non-metrizable Moore space if any space in \mathscr{S}_{λ} is such a space. (See Theorem 3 below.)

Assume that λ is an uncountable cardinal. We think of $2^{2^{\lambda}}$ as the set of all collections of subsets of λ. We think of $\left(2^{2^{\lambda}}\right)^{\lambda}$ as the set of all functions from λ into $2^{2^{\lambda}}$. The metric space M associated with the space S_{λ} is obtained by taking the product (with the product topology) of ω copies of $\left(2^{2^{\lambda}}\right)^{\lambda}$ with the discrete topology. As a countable product of discrete spaces, $M=\left(\left(2^{2^{\lambda}}\right)^{\lambda}\right)^{\omega}$ is metrizable. A function $f: \omega \rightarrow\left(2^{2^{\lambda}}\right)^{\lambda}$ is a point of M and the nth basic open set for f is $B_{n}(f)=\{g \in M \mid g \upharpoonright n=f \upharpoonright n$ where $n=\{0,1,2, \ldots, n-1\}\}$. The
set $\mathscr{B}_{n}=\left\{B_{n}(f) \mid f \in M\right\}$ is an open cover of M by disjoint clopen sets: a discrete family in the strongest sense.

We now turn to the definition of S_{λ}.
For $\alpha \in \lambda, M_{\alpha}=\left\{f: \omega \rightarrow\left(2^{2^{\lambda}}\right)^{\lambda} \mid\right.$ if $A \subset \lambda$, then there is an $n \in \omega$ with $A \in f(n)(\alpha)\}$. Let $C_{\alpha}=\left\{\langle\alpha, f\rangle \mid f \in M_{\alpha}\right\}$ and $C=\cup_{\alpha \in \lambda} C_{\alpha}$. Then C will be the set of all nondiscrete points of S_{λ}.

The set of discrete points D is divided into ω pieces. So $D=\bigcup_{n \in \omega} D_{n}$. Each D_{n} is divided into pieces indexed by unordered pairs $\{\alpha, \beta\}$ of elements of λ. The part of D_{n} associated with $\{\alpha, \beta\}$ contains the points of potential intersection of a basic open set of a point in C_{α} with a basic open set of a point in C_{β}. The precise definition below of D_{n} is technical and the reason for its being defined as it is will not become apparent until we check that S_{λ} has property (3).

For $n \in \omega$, let $D_{n}=\{\langle\{\alpha, \beta\}, f, n\rangle \mid \alpha \in \lambda, \beta \in \lambda, f \in M$, and, if $A \in f(i)(\alpha)$ $\cap f(j)(\beta)$ for some $i<n$ and $j<n$, then $\alpha \in A$ if and only if $\beta \in A\}$. Recall that $D=\cup_{n \in \omega} D_{n}$ and that D is the set of discrete points of S_{λ}.

For each $n \in \omega$ and $\langle\alpha, f\rangle \in C$, we define the nth basic open set for $\langle\alpha, f\rangle$ to be $U_{n}(\langle\alpha, f\rangle)=\left\{\langle\alpha, g\rangle \in C_{\alpha} \mid g \upharpoonright n=f \upharpoonright n\right\} \cup\{\langle\{\alpha, \beta\}, h, m\rangle \in D \mid \beta \in \lambda, h \upharpoonright n=$ $f \mid n$ and $m \geqq n\}$.

The space S_{λ} equals $C \cup D$ topologized by using $D \cup\left\{U_{n}(\langle\alpha, f\rangle) \mid\langle\alpha, f\rangle \in C\right.$ and $n \in \omega\}$ as a basis.

We want to prove that S_{λ} is a Moore space of class \mathscr{S}_{λ}; we begin by showing that S_{λ} satisfies (1)-(5).

Certainly D is open and discrete and $\left\{C_{\alpha}\right\}_{\alpha \in \lambda}$ is a discrete family of closed sets of S_{λ}.

Define M and \mathscr{B}_{n} as in the first paragraph of this section. If we topologize M_{α} as a subspace of M, then $h_{\alpha}: M_{\alpha} \rightarrow C_{\alpha}$ defined by $h_{\alpha}(f)=\langle\alpha, f\rangle$ is a homeomorphism. Let $\mathscr{B}=\cup_{n \in \omega} \mathscr{B}_{n}$ and for $B=B_{n}(f) \in \mathscr{B}$, let $O_{B}=$ $\cup_{\alpha \in \lambda} U_{n}(\langle\alpha, f\rangle)$. Then $\left\{O_{B} \mid B \in \mathscr{B}_{n}\right\}$ is a cover of C by disjoint open (hence clopen) sets. Thus, since $h_{\alpha}\left(B \cap M_{\alpha}\right)=U_{n}(\langle\alpha, f\rangle) \cap C$ and B and O_{B} are both clopen, (5) holds.

It remains to check (3), so assume that $A \subset \lambda$. If $p=\langle\alpha, f\rangle \in C_{\alpha}$, by the definition of M_{α} there is an $n_{p} \in \omega$ such that $A \in f\left(n_{p}-1\right)(\alpha)$. Let $U=$ $\bigcup\left\{U_{n_{p}}(p) \mid p \in C_{\alpha}\right.$ and $\left.\alpha \in A\right\}$ and $V=\bigcup\left\{U_{n_{q}}(q) \mid q \in C_{\beta}\right.$ and $\left.\beta \in \lambda-A\right\}$. Certainly $\cup_{\alpha \in A} C_{\alpha} \subset U$ and $\cup_{\beta \in \lambda-A} C_{\beta} \subset V$. To check that $U \cap V=\emptyset$ assume that $\alpha \in A, \beta \in \lambda-A, p=\langle\alpha, f\rangle$, and $q=\langle\beta, g\rangle$. Suppose a point $x \in U_{n_{p}}(p) \cap U_{n_{q}}(q)$. Then $x \notin C$ so $x=\langle\{\alpha, \beta\}, h, m\rangle$ where $m \geqq n_{p}$, $m \geqq n_{q}, h \upharpoonright n_{p}=f \upharpoonright n_{p}$, and $h \upharpoonright n_{q}=g \upharpoonright n_{q}$. By definition of n_{p} and n_{q}, $A \in f\left(n_{p}-1\right)(\alpha) \cap g\left(n_{q}-1\right)(\beta)=h\left(n_{p}-1\right)(\alpha) \cap h\left(n_{q}-1\right)(\beta)$. But since $\alpha \in A$ and $\beta \in \lambda-A$, the supposed point $\langle\{\alpha, \beta\}, h, m\rangle$ does not belong to D_{m}. This proves that $U \cap V=\emptyset$ and also shows why D_{m} was defined as it was.

To see that S_{λ} is a Moore space, for each $p=\langle\alpha, f\rangle \in C_{\alpha}$ choose a $k_{p} \in \omega$ with $\{\alpha\} \in f\left(k_{p}-1\right)(\alpha)$. If $q=\langle\beta, g\rangle \in C_{\beta}$ for some $\beta \neq \alpha$, there is an $i \in \omega$ with $\{\alpha\} \in g(i-1)(\beta)$; thus $U_{i}(q) \cap U_{k_{p}}(p)=\emptyset$. Hence $\left\{U_{n}(p) \mid n>k_{p}\right\}$ is a
clopen basis for p in S_{λ} contained in the metric space $C_{\alpha} \cup D$. From this it is easy to check that S_{λ} is T_{1} and regular and that $\mathscr{G}=\cup_{n \in \omega} \mathscr{G}_{n}$ where $\mathscr{G}_{n}=$ $D \cup\left\{U_{n}(p) \mid p \in C\right\}$ is a development for S_{λ}; therefore, S_{λ} is a Moore space of class \mathscr{S}_{λ}.
5. The universality of S_{λ} in \mathscr{S}_{λ}. In this section we prove that if S_{λ} is collectionwise normal, then every space in \mathscr{S}_{λ} is collectionwise normal. The following lemma is used in the proof.

Lemma 2. Let $\left\{C_{\alpha}\right\}_{\alpha \in \lambda}$ be a family of disjoint seis in a space X. Let $C=\bigcup_{\alpha \in \lambda} C_{\alpha}$. For each n in ω let $\left\{U_{\alpha}{ }^{n}\right\}_{\alpha \in \lambda}$ be a discrete collection of open sets in X so that for each $\alpha,\left(\bar{U}_{\alpha}{ }^{n} \cap C\right) \subset C_{\alpha}$ and $C_{\alpha} \subset \cup_{n \in \omega} U_{\alpha}{ }^{n}$.

Then the C_{α} 's can be mutually separated by disjoint open sets.
Proof. For $n \in \omega$ and $\alpha \in \lambda$, let $Z_{\alpha}{ }^{n}=U_{\alpha}{ }^{n}-\bigcup\left\{\bar{U}_{\beta}{ }^{i} \mid i \leqq n\right.$ and $\left.\beta \neq \alpha\right\}$. Let $Z_{\alpha}=\cup_{n \in \omega} Z_{\alpha}{ }^{n}$. Then for each α in $\lambda, C_{\alpha} \subset Z_{\alpha}$ and the Z_{α} 's are disjoint open sets, so the lemma is proved.

Theorem 3. If S_{λ} is collectionwise normal, then every space in class \mathscr{S}_{λ} is collectionwise normal.

Proof. Let $X \in \mathscr{S}_{\lambda}$. Let $C_{\alpha}{ }^{*}, h_{\alpha}{ }^{*}, M_{\alpha}{ }^{*}, \mathscr{B}_{n}{ }^{*}$, and $O_{B}{ }^{*}$ be as described in conditions (1)-(5) for X. Assume further that for each $n \in \omega, \mathscr{B}_{n+1}{ }^{*}$ refines $\mathscr{B}_{n}{ }^{*}$. Let $C_{\alpha}, h_{\alpha}, M_{\alpha}, \mathscr{B}_{n}$, and O_{B} be the related objects for S_{λ}.

Note that it is sufficient to prove that the $C_{\alpha}{ }^{*}$'s can be mutually separated by disjoint open sets.

Since X is a Moore space and each $h_{\alpha}{ }^{*}$ is a homeomorphism, we assume that for each $\alpha \in \lambda$, and $B \in \mathscr{B}^{*}$, we have a neighborhood $N(B, \alpha)$ of $h_{\alpha}{ }^{*}\left(B \cap M_{\alpha}{ }^{*}\right)$ contained in $O_{B}{ }^{*}$ such that $\left\{N(B, \alpha) \mid B \in \mathscr{B}^{*}\right\}$ is a basis in X for the points of $C_{\alpha}{ }^{*}$ and $N(B, \alpha) \cap C_{\beta}{ }^{*}=\emptyset$ for $B \in \mathscr{B}^{*}$ and $\beta \neq \alpha$. We also assume that if $B_{1} \in \mathscr{B}^{*}, B_{2} \in \mathscr{B}^{*}$, and $B_{1} \subset B_{2}$, then $N\left(B_{1}, \alpha\right) \subset N\left(B_{2}, \alpha\right)$.

By condition (3), for each $A \subset \lambda$, there are disjoint open sets U_{A} and V_{A} in X such that $\cup_{\alpha \in A} C_{\alpha}{ }^{*} \subset U_{A}$ and $\cup_{\beta \in \lambda-A} C_{\beta}{ }^{*} \subset V_{A}$.

For $x \in C_{\alpha}{ }^{*}$ we choose a point $p_{x}=\langle\alpha, f\rangle \in C_{\alpha}$ as follows. For $n \in \omega$ and $\beta \in \lambda$, let $f(n)(\beta)=\left\{A \subset \lambda \mid N(B, \beta) \subset U_{A}\right.$ or $N(B, \beta) \subset V_{A}$ where $B \in \mathscr{B}_{n}{ }^{*}$ and $x \in N(B, \alpha)\}$. Since $\left\{N(B, \alpha) \mid B \in \mathscr{B}^{*}\right\}$ contains a basis for x, for each $A \subset \lambda$ there is an n so that $A \in f(n)(\alpha)$. Thus $f \in M_{\alpha}$ and $p_{x}=\langle\alpha . f\rangle \in C_{\alpha}$.

If S_{λ} is collectionwise normal, there is a family $\left\{W_{\alpha}\right\}_{\alpha \in \lambda}$ of disjoint open sets in S_{λ} with $C_{\alpha} \subset W_{\alpha}$ for each α. For each point p in C_{α} choose $i(p) \in \omega$ so that $U_{i(p)}(p) \subset W_{\alpha}$.

Now we can choose an integer $j(x)$ for each point x in $C_{\alpha}{ }^{*}$ as follows. Let $j(x)=i\left(p_{x}\right)$. This integer will tell us the size of the neighborhood of x which we need. Let $B(x)$ be the open set in $\mathscr{B}_{j(x)}{ }^{*}$ which contains $h_{\alpha}^{*-1}(x)$. Let $W(x)=N(B(x), \alpha)$.

For each $n \in \omega$ and $\alpha \in \lambda$, let $W_{\alpha}{ }^{n}=\bigcup\left\{W(x) \mid x \in C_{\alpha}{ }^{*}\right.$ and $\left.j(x)=n\right\}$. Note that for each $\alpha, C_{\alpha}{ }^{*} \subset \cup_{n \in \omega} W_{\alpha}{ }^{n}$. To finish the proof we will modify each
collection $\left\{W_{\alpha}{ }^{n}\right\}_{\alpha \in \lambda}$ so that the new collections will satisfy the hypotheses of Lemma 2.

First we show that $\left\{W_{\alpha}{ }^{n}\right\}_{\alpha \in \lambda}$ is a disjoint collection of open sets. To this end suppose that $x \in C_{\alpha}{ }^{*}, y \in C_{\beta}{ }^{*}, p_{x}=\langle\alpha, f\rangle, p_{y}=\langle\beta, g\rangle$, and $j(x)=j(y)=n$. We will show that $W(x) \cap W(y)=\emptyset$. If $B(x) \neq B(y)$, then $W(x)=$ $N(B(x), \alpha) \subset O_{B(x)}{ }^{*}$ and $W(y)=N(B(y), \beta) \subset O_{B(y)}{ }^{*}$, but $O_{B(x)}{ }^{*} \cap O_{B(y)}{ }^{*}=$ \emptyset so $W(x) \cap W(y)=\emptyset$.
Thus we assume that $B(x)=B(y)$. Therefore, $f \upharpoonright n=g \upharpoonright n$. Recall that $n=i\left(p_{x}\right)=i\left(p_{y}\right)$. Therefore, back in S_{λ} now, $U_{n}\left(p_{x}\right) \cap U_{n}\left(p_{y}\right)=\emptyset$. In particular, $\langle\{\alpha, \beta\}, f, n\rangle \notin U_{n}\left(p_{x}\right) \cap U_{n}\left(p_{y}\right)$. There must therefore be $r<n$, $s<n$, and $A \subset \lambda$ such that $A \in f(r)(\alpha) \cap f(s)(\beta)$ but exactly one of α and β belongs to A. Suppose $\alpha \in A$ and $\beta \in \lambda-A$. By the way we associated $\langle\alpha, f\rangle$ with x, we know that $N(B, \alpha) \subset U_{A}$ where $x \in N(B, \alpha)$ and $B \in \mathscr{B}_{r}{ }^{*}$. By the nesting properties of the $N(B, \alpha)$'s, we know that $N(B(x), \alpha) \subset U_{A}$. Similarly, $N(B(y), \beta) \subset V_{A}$. Since $U_{A} \cap V_{A}=\emptyset, W(x) \cap W(y)=\emptyset$. This shows that $\left\{W_{\alpha}{ }^{n}\right\}_{\alpha \in \lambda}$ is a disjoint set.

The final step is to modify each $W_{\alpha}{ }^{n}$ slightly in order to get a discrete set as required in Lemma 2.

For each $B \in \mathscr{B}_{n}{ }^{*}$, let $A(B)=\left\{\alpha \in \lambda \mid N(B, \alpha)=W(x)\right.$ for some $\left.x \in C_{\alpha}{ }^{*}\right\}$. Let $U_{A(B)}$ and $V_{A(B)}$ be disjoint open sets so that $\bigcup_{\alpha \in A(B)} C_{\alpha}{ }^{*} \subset U_{A(B)}$ and $\bigcup_{\beta \in \lambda-A(B)} C_{\beta}{ }^{*} \subset V_{A(B)}$. Let $Y(B)=\left(\bigcup_{\alpha \in A(B)} N(B, \alpha)\right) \cap U_{A(B)}$. Let $Z_{\alpha}{ }^{n}=$ $\left(\cup_{B \in \mathscr{O}_{n} *} Y(B)\right) \cap W_{\alpha}{ }^{n}$. The collections $\left\{Z_{\alpha}{ }^{n}\right\}_{\alpha \in \lambda}$ meet the requirements of of Lemma 2, proving the theorem.

A consequence of Theorem 3 is, of course, that if any normal, non-metrizable Moore space can be constructed as described in Theorem 1 , then an S_{λ} is a normal, non-metrizable Moore space.

Theorem 4. Let Y be a locally compact, 0-dimensional Moore space (not necessarily normal) with a basis of cardinality λ. Let M be a metric space which is 0-dimensional in the covering sense. Let X be a normal Moore space such that $X \subset Y \times M$.

Then if S_{λ} is collectionwise normal, X is collectionwise normal. (Note that X is not necessarily in \mathscr{S}_{λ}.)

Proof. Let \mathscr{G} be an open cover of Y so that for each $B \in \mathscr{G}, \bar{B}$ is compact. Let $\left\{\mathscr{D}_{n}\right\}_{n \in \omega}$ be a σ-discrete closed refinement of $\mathscr{G}[\mathbf{1}]$.

For each $n \in \omega$, let X_{n} be the space obtained from X by making the points $X \cap\left(\left(Y-\cup\left\{D \mid D \in \mathscr{D}_{n}\right\}\right) \times M\right)$ discrete .

By Theorem 1, X_{n} belongs to \mathscr{S}_{λ}. By Theorem 3, each X_{n} is collectionwise normal. We are now ready to prove that X is collectionwise normal using Lemma 2.

Let $\left\{H_{\alpha}\right\}_{\alpha \in \mu}$ be a discrete collection of closed sets in X. For each $n \in \omega$, let $\left\{U_{\alpha n}\right\}_{\alpha \in \mu}$ be a disjoint collection of open sets in X_{n} such that $H_{\alpha} \subset U_{\alpha n}$. There are open. sets $\left\{V_{\alpha n}\right\}_{\alpha \in \mu}$ in X so that for each $\alpha,\left(H_{\alpha} \cap\left(\cup_{D \in \mathscr{D}_{n}} D \times M\right)\right) \subset V_{\alpha n}$.

By the normality of X, there is a discrete family $\left\{W_{\alpha n}\right\}_{\alpha \in \mu}$ of open sets in X so that $\left(H_{\alpha} \cap\left(\cup_{D \in \mathscr{O}_{n}} D \times M\right)\right) \subset W_{\alpha n}$ for each $\alpha \in \mu$ and $\bar{W}_{\alpha n} \cap H_{\beta}=\emptyset$ for $\alpha \neq \beta$. By Lemma 2, X is collectionwise normal.
6. The consistency of S_{λ} not being collectionwise Hausdorff. It is known to be consistent with the usual axioms for set theory that any normal Moore space be collectionwise Hausdorff [2]. It is also known to be consistent that there be a normal Moore space which is not ω_{1}-collectionwise Hausdorff [3]. Thus the following theorem shows that it is consistent that $S_{\omega_{1}}$ fail to be collectionwise Hausdorff.

Theorem 5. If there is a first-countable space X which is normal but not λ-collectionwise Hausdorff, then S_{λ} is not collectionwise Hausdorff.

Proof. Let $\left\{x_{\alpha}\right\}_{\alpha \in \lambda}$ be a closed discrete set of points in X which cannot be separated by disjoint open sets. Let $\left\{N_{i}\left(x_{\alpha}\right)\right\}_{i \in \omega}$ be a nested countable basis for x_{α}.

Since X is normal, for each $A \subset \lambda$ there are disjoint open sets U_{A} and V_{A} such that $\left\{x_{\alpha} \mid \alpha \in A\right\} \subset U_{A}$ and $\left\{X_{\beta} \mid \beta \in \lambda-A\right\} \subset V_{A}$.

We will use the same notation here in referring to the parts of S_{λ} as was used in its original description in Section 4.

We choose an $f \in M$ as follows. If $n \in \omega$ and $\beta \in \lambda$, let

$$
f(n)(\beta)=\left\{A \subset \lambda \mid N_{n}\left(x_{\beta}\right) \subset U_{A} \text { or } N_{n}\left(x_{\beta}\right) \subset V_{A}\right\}
$$

Suppose that $A \subset \lambda$. If $\beta \in A$, there is an $i \in \omega$ with $N_{i}\left(x_{\beta}\right) \subset U_{A}$. If $\beta \notin A$, there is an $i \in \omega$ with $N_{i}\left(x_{\beta}\right) \subset V_{A}$. Thus for each $\beta \in \lambda$ there is an $i \in \omega$ with $A \in f(i)(\beta)$. Therefore, $f \in M_{\beta}$ for all $\beta \in \lambda$.

The subset $\{\langle\alpha, f\rangle\}_{\alpha \in \lambda}$ of S_{λ} is discrete. So, if S_{λ} is collectionwise Hausdorff, for each $\alpha \in \lambda$ there is an $i_{\alpha} \in \omega$ such that $\left\{U_{i \alpha}(\langle\alpha, f\rangle)\right\}_{\alpha \in \lambda}$ are disjoint. We claim that in this case the x_{α} 's could be separated by disjoint open sets. To see this note first that for each $n \in \omega,\left\{N_{i \alpha}\left(x_{\alpha}\right) \mid i_{\alpha}=n\right\}$ are disjoint. This is true since if $i_{\alpha}=i_{\beta}=n,\langle\{\alpha, \beta\}, f, n\rangle \notin U_{i \alpha}(\langle\alpha, f\rangle) \cap U_{i \beta}(\langle\beta, f\rangle)$. So there is an $A \subset \lambda$ such that $A \in f(n)(\alpha) \cap f(n)(\beta)$ and exactly one of α and β belongs to A. But then, if $\alpha \in A$ and $\beta \in \lambda-A, N_{n}\left(x_{\alpha}\right) \subset U_{A}$ and $N_{n}\left(x_{\beta}\right) \subset V_{A}$ so $N_{t \alpha}\left(x_{\alpha}\right) \cap N_{i \beta}\left(x_{\beta}\right)=\emptyset$.

Using the normality of X, we can find for each $n \in \omega$ a discrete collection $\left\{W_{\alpha} \mid i_{\alpha}=n\right\}$ of open sets in X so that for each α with $i_{\alpha}=n, x_{\alpha} \in W_{\alpha} \subset$ $N_{i \alpha}\left(x_{\alpha}\right)$ and for $\beta \neq \alpha, x_{\beta} \notin \bar{W}_{\alpha}$. By Lemma 2 then, the x_{α} 's can be separated by disjoint open sets.
7. A special class of neighborhoods in S_{λ}. Let $\overline{\mathscr{A}}=\{\mathscr{A} \mid \mathscr{A}$ is a finite family of subsets of $\lambda\}$. For each $\mathscr{A} \in \overline{\mathscr{A}}$ and $p=\langle\alpha, f\rangle \in C_{\alpha}$ let $n(\mathscr{A}, p)$ be the smallest integer n such that $\mathscr{A} \subset f(n-1)(\alpha)$. Let $V_{\mathscr{A}, \alpha}=\cup_{p \in C_{\alpha}} U_{n(\mathscr{A}, p)}(p)$.

One hope that S_{λ} is not λ-collectionwise normal is based on the following fact.
Theorem 5. If $\left\{\mathscr{A}_{\alpha}\right\}_{\alpha \in \lambda} \subset \overline{\mathscr{A}}$ then $\left\{V_{\mathscr{A}_{\alpha}, \alpha}\right\}_{\alpha \in \lambda}$ are not disjoint.

Proof. By a Δ-system argument [1], there are $i \leqq n<\omega$ and an infinite subset L of λ such that, for all $\alpha \neq \beta$ in L :
(a) $\mathscr{A}_{\alpha}=A_{0 \alpha}, A_{1 \alpha}, \ldots, A_{n \alpha}$;
(b) for $j<i, A_{j \alpha}=A_{j \beta}$;
(c) for $i \leqq j \leqq n, A_{j \alpha} \notin \mathscr{A}_{\beta}$;
(d) for $1 \leqq j \leqq n, \alpha \in A_{j \alpha}$ if and only if $\beta \in A_{j \beta}$.

Choose $\alpha \neq \beta$ in L arbitrarily. Choose $f \in M_{\alpha} \cap M_{\beta}$ with $\mathscr{A}_{\alpha}=f(0)(\alpha)$ and $\mathscr{A}_{\beta}=f(0)(\beta)$. Then $\langle\{\alpha, \beta\}, f, 0\rangle \in U_{1}(\langle f, \alpha\rangle) \cap U_{1}(\langle f, \beta\rangle)$. Since $n\left(\mathscr{A}_{\alpha},\langle f, \alpha\rangle\right)$ $=1=n\left(\mathscr{A}_{\beta},\langle f, \beta\rangle\right), V_{\mathscr{A}_{\alpha}, \alpha} \cap V_{\mathscr{A}_{\beta}, \beta} \neq \emptyset$.
8. The description of T_{λ}. There is a metric space M^{\prime} associated with T_{λ} obtained by taking the product (with the product topology) of ω copies of $2^{2^{\lambda}}$ with the discrete topology. That is, $M^{\prime}=\left(2^{2^{\lambda}}\right)^{\omega}$ and, if $f \in M^{\prime}$, then $B_{n}(f)=\left\{g \in M^{\prime} \mid f \upharpoonright n=g \upharpoonright n\right\}$ is the nth basic open set for f. Thus $\mathscr{B}_{n}{ }^{\prime}=$ $\left\{B_{n}(f) \mid f \in M^{\prime}\right\}$ is an open cover of M^{\prime} by disjoint clopen sets.

For each $\alpha \in \lambda$, let $M_{\alpha}{ }^{\prime}=\left\{f: \omega \rightarrow 2^{2^{\lambda}} \mid\right.$ if $A \subset \lambda$, there is an $n \in \omega$ with $A \in f(n)\}$. Note that $M_{\alpha}{ }^{\prime}=M_{\beta}{ }^{\prime}$ for each $\alpha, \beta \in \lambda$. Let $C_{\alpha}{ }^{\prime}=\left\{\langle\alpha, f\rangle \mid f \in M_{\alpha}{ }^{\prime}\right\}$ and $C^{\prime}=\cup_{\alpha \in \lambda} C_{\alpha}{ }^{\prime}$. The points in C^{\prime} will be the non-discrete points of T_{λ}.

For $n \in \omega$, let $D_{n}{ }^{\prime}=\left\{\langle\{\langle\alpha, f\rangle,\langle\beta, g\rangle\}, n\rangle \mid\langle\alpha, f\rangle\right.$ and $\langle\beta, g\rangle$ belong to C^{\prime} and if $A \in f(i) \cap g(j)$ for some $i<n$ and $j<n$, then $\alpha \in A$ if and only if $\beta \in A\}$. Let $D^{\prime}=\bigcup_{n \in \omega} D_{n}{ }^{\prime}$. The points in D^{\prime} will be the discrete points in T_{λ}.

For each $n \in \omega$ and $\langle\alpha, f\rangle \in C^{\prime}$ let $U_{n}(\langle\alpha, f\rangle)=\left\{\langle\alpha, g\rangle \in C^{\prime} \mid g \upharpoonright n=f \upharpoonright n\right\}$ $\cup\left\{\langle\{\langle\alpha, g\rangle,\langle\beta, h\rangle\}, m\rangle \in D^{\prime} \mid m \geqq n\right.$ and $\left.g \upharpoonright n=f \upharpoonright n\right\}$.

Let T_{λ} equal $C^{\prime} \cup D^{\prime}$ topologized by using $D^{\prime} \cup\left\{U_{n}(\langle\alpha, f\rangle) \mid n \in \omega\right.$ and $\left.\langle\alpha, f\rangle \in C^{\prime}\right\}$ as a basis.
The space T_{λ} is a Moore space which satisfies conditions (1)-(4) required for a space of class \mathscr{S}_{λ}. The same proof given for S_{λ} proves this fact. However, T_{λ} does not satisfy (5) and P. Nyikos has shown that normality of T_{λ} is equivalent to its metrizability.

However we do know the following fact.
Theorem 7. If there is any normal, first-countable space X which is not λ-collectionwise normal, then T_{λ} is not λ-collectionwise normal.

Proof. Let $\left\{C_{\alpha}{ }^{*}\right\}_{\alpha \in \lambda}$ be a discrete family of closed sets in X which cannot be separated by disjoint open sets. For each $x \in \bigcup_{\alpha \in \lambda} C_{\alpha}{ }^{*}$ let $\left\{N_{i}(x)\right\}_{i \in \omega}$ be a nested neighborhood basis for x.

Since X is normal, for each $A \subset \lambda$ there are disjoint open sets U_{A} and V_{A} in X such that $\cup_{\alpha \in A} C_{\alpha}{ }^{*} \subset U_{A}$ and $\cup_{\beta \in \lambda-A} C_{\beta}{ }^{*} \subset V_{A}$.

Recall in the description of T_{λ} the definitions of $C_{\alpha}{ }^{\prime}$ and $U_{n}(p)$ for p a point of $C_{\alpha}{ }^{\prime}$. For each $x \in C_{\alpha}{ }^{*}$ we choose $p_{x}=\langle\alpha, f\rangle \in C_{\alpha}{ }^{\prime}$ as follows. Let $f(n)=$ $\left\{A \subset \lambda \mid N_{n}(x) \subset U_{A}\right.$ or $\left.N_{n}(x) \subset V_{A}\right\}$. Since $\left\{N_{i}(x)\right\}_{i \in \omega}$ is a basis for x, for each $A \subset \lambda$ there is an $n \in \omega$ so that $N_{n}(x) \subset U_{A}$ if $\alpha \in A$ or $N_{n}(x) \subset V_{A}$ if $\alpha \notin A$. Thus f belongs to $M_{\alpha}{ }^{\prime}$ so $\langle\alpha, f\rangle$ is a point of $C_{\alpha}{ }^{\prime}$.

Suppose T_{λ} is collectionwise normal. Then there is a collection of disjoint open sets $\left\{W_{\alpha}\right\}_{\alpha \in \lambda}$ in T_{λ} so that $C_{\alpha}{ }^{\prime} \subset W_{\alpha}$ for each α.

For each $p \in C_{\alpha}{ }^{\prime}$ there is an $i(p) \in \omega$ such that $U_{i(p)}(p) \subset W_{\alpha}$. Let $W_{\alpha}{ }^{*}=$ $\bigcup_{x \in C_{\alpha}} N_{i\left(p_{x}\right)}(x)$. We will show that $\left\{W_{\alpha}^{*}\right\}_{\alpha \in \lambda}$ are disjoint and thus that $\left\{C_{\alpha}{ }^{*}\right\}_{\alpha \in \lambda}$ can be separated by disjoint open sets contrary to assumption.

To this end, assume that $\alpha \neq \beta, x \in C_{\alpha}{ }^{*}$ and $y \in C_{\beta}{ }^{*}$. Let $p=p_{x}=\langle\alpha, f\rangle$ and $q=p_{y}=\langle\beta, g\rangle$. We want to show that $N_{i(p)}(x) \cap N_{i(g)}(y)=\emptyset$.

Assume that $i(p) \leqq i(q)$. Let $f^{\prime} \in M_{\alpha}^{\prime}$ so that $f^{\prime} \upharpoonright i(p)=f \upharpoonright i(p)$ and $f^{\prime}(j)=\emptyset$ for $i(p) \leqq j<i(q)$. Recall that $U_{i(p)}(p) \cap U_{i(q)}(q)=\emptyset$. Therefore $\left\langle\left\{\left\langle\alpha, f^{\prime}\right\rangle,\langle\beta, g\rangle\right\}, i(q)\right\rangle \notin U_{i(p)}(p) \cap U_{i(q)}(q)$. Thus there must be an $A \subset \lambda$, $i<i(q)$ and $j<i(q)$ so that $A \in f^{\prime}(i) \cap g(j)$ and exactly one of α and β belongs to A. But then $i<i(p)$. So $A \in f(i) \cap g(j)$. Thus, if say $\alpha \in A$ and $\beta \in \lambda-A$, then $N_{i(p)}(x) \subset N_{i}(x) \subset U_{A}$ and $N_{i(q)}(y) \subset N_{j}(y) \subset V_{A}$. But $U_{A} \cap V_{A}=\emptyset$; hence $N_{i(p)}(x) \cap N_{i(Q)}(y)=\emptyset$.

Peter Nyikos has observed that T_{λ} is normal if and only if it is metrizable. To see this fact, let $H_{i}=\left\{\langle\alpha, f\rangle \in C^{\prime} \mid f(j)=\emptyset\right.$ for $j<i$ and $\left.f_{i} \neq \emptyset\right\}$. Then $\left\{H_{i}\right\}_{i \in \omega}$ is a countable, discrete collection of closed sets whose union is C^{\prime}. Suppose T_{λ} is normal, then there are disjoint open sets $\left\{V_{i}\right\}_{i \in \omega}$ with $H_{i} \subset V_{i}$ for every $i \in \omega$. For each $p \in C^{\prime}$, let $n(p)$ be an integer such that $U_{n(p)}(p) \subset V_{i}$ for some i. For each $f \in M^{\prime}$ define f^{+}by $f^{+}(k+1)=f(k)$ and $f^{+}(0)=\emptyset$. For each point $\langle\alpha, f\rangle \in C^{\prime}$, let $m(\langle\alpha, f\rangle)=\max \left\{n(\langle\alpha, f\rangle), n\left(\left\langle\alpha, f^{+}\right\rangle\right)\right\}$. For each $\alpha \in \lambda$ let $U_{\alpha}=\cup_{p \in G_{\alpha}} U_{m(p)}(p)$. Then $\left\{U_{\alpha}\right\}_{\alpha \in \lambda}$ is a disjoint collection of open sets which separate the $C_{\alpha}{ }^{\prime \prime}$'s making T_{λ} the discrete union of metrizable subsets, hence making T_{λ} metrizable.

Thus one cannot hope that T_{λ} itself is an example of a normal, non-metrizable Moore space; however, a proof that T_{λ} is not collectionwise normal would still be of interest since it would provide an example of a Moore space with a normalized collection of closed sets which cannot be mutually separated.

References

1. R. H. Bing, Metrization of topological spaces, Can. J. Math. 3 (1951), 175-186.
2. W. Fleissner, When normal implies collectionwise Hausdorf: consistency results, Thesis, University of California, Berkeley 1974.
3. F. Tall, Set-theoretic consistency results and topological theorems concerning the normal Moore space conjecture and related problems, Thesis, University of Wisconsin, Madison 1969.

University of Wisconsin, Madison, Wisconsin;
The University of Texas, Austin, Texas

[^0]: Received March 3, 1976 and in revised form, October 1, 1976. The research of the first author was sponsored by NSF Grant MPS-73-08825, and that of the second author was sponsored by NSF Grant MPS-75-16158.

