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Abstract

Let F2 denote the free group on two generators a and b. For any measure-preserving system
(X,X , µ, (Tg)g∈F2 ) on a finite measure space X = (X,X , µ), any f ∈ L1(X), and any n > 1,
define the averaging operators

An f (x) :=
1

4× 3n−1

∑
g∈F2 :|g|=n

f (T−1
g x),

where |g| denotes the word length of g. We give an example of a measure-preserving system X and
an f ∈ L1(X) such that the sequence An f (x) is unbounded in n for almost every x , thus showing
that the pointwise and maximal ergodic theorems do not hold in L1 for actions of F2. This is despite
the results of Nevo–Stein and Bufetov, who establish pointwise and maximal ergodic theorems in
L p for p > 1 and for L log L respectively, as well as an estimate of Naor and the author establishing
a weak-type (1, 1) maximal inequality for the action on `1(F2). Our construction is a variant of a
counterexample of Ornstein concerning iterates of a Markov operator.

2010 Mathematics Subject Classification: 37A30 (primary)

1. Introduction

Let F2 denote the free non-Abelian group on two generators a and b. Define a
reduced word to be a word with letters in the alphabet {a, b, a−1, b−1

} in which
a, a−1 and b, b−1 are never adjacent, and for each g ∈ F2, define the word length
|g| of g to be the length of the unique reduced word that produces g. We let F2

2
denote the index 2 subgroup of F2 consisting of g ∈ F2 with even word length.
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Define an F2-system to be a quadruple (X,X , µ, (Tg)g∈F2), where (X,X , µ) is
a measure space with 0 < µ(X) < ∞, and Tg : X → X is a family of measure-
preserving maps on X for g ∈ F2, with T1 the identity and TgTh = Tgh for all
g, h ∈ F2; in particular, Tg are bimeasurable with T−1

g = Tg−1 . One can of course
normalize such systems to have total measure 1 by dividingµ byµ(X), but (as we
will eventually be gluing several systems together) it will be convenient not to
always insist on such a normalization. As the free group F2 has no relations, such
a system can be prescribed by specifying two arbitrary invertible bimeasurable
measure-preserving maps Ta, Tb : X → X , and then defining Tg for all other
g ∈ G in the obvious manner.

We say that an F2-system is F2-ergodic if all F2-invariant measurable sets either
have zero measure or full measure, and F2

2 -ergodic if the same claim is true for
F2

2 -invariant measurable sets. For any f ∈ L1(X) = L1(X,X , µ) and any n > 1,
we define the averaging operators

An f (x) :=
1

4× 3n−1

∑
g∈F2:|g|=n

f (T−1
g x);

note that 4× 3n−1 is the number of reduced words of length n. One can of course
use symmetry to replace T−1

g by Tg if desired.
The pointwise convergence of the operators An was studied by Nevo and

Stein [10] and Bufetov [3], who (among other things) proved the following result.

THEOREM 1 (Pointwise ergodic theorem). Let (X,X , µ, (Tg)g∈F2) be an F2-
system. If

∫
X | f | log(2 + | f |) dµ < ∞, then A2n f converges pointwise almost

everywhere (and in L1(X) norm) to an F2
2 -invariant function. In particular, if

(X,X , µ, (Tg)g∈F2) is F2
2 -ergodic, then A2n f converges pointwise almost

everywhere and in L1 to the constant (1/µ(X))
∫

X f dµ.

The restriction to even averages A2n , and the use of F2
2 instead of F2, can be

seen to be necessary by considering the simple example in which X is a two-
element set {0, 1} (with uniform measure) and Ta and Tb interchange the two
elements 0 and 1 of this set. The original paper of Nevo and Stein [10] established
this theorem for f ∈ L p(X) for some p > 1, by modifying the methods of
Stein [14]. The subsequent paper of Bufetov [3] used instead the ‘Alternierende
Verfahren’ of Rota [13] to cover the L log L case. Both arguments also extend
to several other group actions (see for example [6, 8, 11]), but for simplicity of
exposition we shall focus only on the F2 case. Furthermore, we remark that both
arguments also give bounds on the associated maximal operator f 7→ supn An| f |.
See also [1, 2] for an alternate approach to pointwise ergodic theorems in L p and
L log L .
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In [10] the question was posed as to whether the above pointwise ergodic
theorem extended to arbitrary L1(X) functions. The main result of this paper
answers this question in the negative.

THEOREM 2 (Counterexample). There exist an F2-system (X,X , µ, (Tg)g∈F2)

and a nonnegative function f ∈ L1(X) such that supn |A2n f (x)| = ∞ for almost
every x ∈ X. In particular, A2n f (x) fails to converge to a finite limit as n →∞
for almost every x ∈ X.

As such, there is no pointwise ergodic theorem or maximal ergodic theorem in
L1 for actions of the free group F2. Our construction also applies to free groups Fr

on r generators for any r > 2; we leave the modification of the arguments below to
this more general case to the interested reader. This result stands in contrast to the
situation for the regular action of F2 on `1(F2), for which a weak-type (1, 1) for
the maximal operator was established by Naor and the author [9, Theorem 1.5].
Note that the estimate for `1(F2) does not transfer to arbitrary F2-systems due to
the nonamenability of the free group F2.

Because the sphere {g ∈ F2 : |g| = n} is a positive fraction of the ball {g ∈ F2 :

|g| 6 n}, the above result also holds if the average over spheres is replaced
with an average over balls, or with regard to other minor variations of the
spherical averaging operator such as 1

2An +
1
2An+1. This negative result for

averaging on balls stands in contrast with the situation for amenable groups,
for which pointwise and maximal ergodic results in L1 are established for
suitable replacements of balls, such as tempered Følner sets; see [7]. On the
other hand, if one considers the Cesàro means (1/N )

∑
n6N An of spherical

averages on F2-systems, then pointwise and maximal ergodic theorems in L1

were established in [10]. Combining these theorems with Theorem 2, we see that
the averages A2n f (x) do not diverge to infinity almost everywhere (because their
averages converge almost everywhere to a finite limit), but simply do not have a
limit at all. See also [4–6] for further ergodic theorems for Cesàro means in other
groups than the free group.

Our construction is inspired by a well-known counterexample of Ornstein [12]
demonstrating the failure of the maximal ergodic theorem in L1 for iterates Pn of a
certain well-chosen self-adjoint Markov operator. Roughly speaking, the function
f in Ornstein’s example consists of many components fi , each of which comes
with a certain ‘time delay’ that ensures that the dynamics of Pn fi only become
significant after a considerable period of time—in particular, long enough for
the dynamics of other components of the function to have achieved ‘mixing’ in
the portion of X where the most interesting part of the dynamics of Pn fi takes
place, allowing the amplitude of fi to be slightly smaller than would otherwise
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have been necessary to make supn Pn f large. To adapt this construction to the
setting of F2-systems, we need to glue together various F2-systems that have
the capability to produce such a ‘time delay’. We will be able to construct such
systems by basically taking an ‘infinitely large ball’ in F2, gluing the boundary
of that ball to itself, and redefining the shift maps on the boundary appropriately.
Somewhat ironically, the positive results in Theorem 1 play a helpful supporting
role in establishing the negative result in Theorem 2, by establishing the ‘mixing’
referred to previously, which is an essential part of Ornstein’s construction.

2. Initial reductions

We begin by reducing Theorem 2 to the following more quantitative statement.

THEOREM 3 (Quantitative counterexample). Let α, ε > 0. Then there exist an
F2-system (X,X , µ, (Tg)g∈F2) and a nonnegative function f ∈ L∞(X), such that

‖ f ‖L1(X) 6 αµ(X)

but such that
sup

n
A2n f (x) > 1− ε

for all x ∈ X outside of a set of measure at most εµ(X).

Let us see how Theorem 3 implies Theorem 2. By dividing µ by µ(X) we may
normalize µ(X) = 1 in Theorem 3. Applying the above theorem with α = ε =
2−m , we can thus find for each natural number m, an F2-system (Xm,Xm, µm,

(Tg,m)g∈F2) with µm(Xm) = 1, and a nonnegative function fm ∈ L∞(Xm) such
that

‖ fm‖L1(Xm ) 6 2−m

and
sup

n
A2n fm(x) > 1− 2−m

outside of a set of measure 2−m .
Let (X,X , µ, (Tg)g∈F2) be the product system; thus X is the Cartesian product

X :=
∏

m Xm with product σ -algebra X :=
∏

m Xm , product probability measure
µ :=

∏
m µm , and product action Tg :=

⊎
m Tg,m . Each fm ∈ L∞(Xm) then lifts to

a function f̃m ∈ L∞(X) with

‖ f̃m‖L1(X) 6 2−m

and
sup

n
A2n f̃m(x) > 1− 2−m > 1/2
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outside of a set of measure 2−m . If we then set f :=
∑

m m f̃m , then f ∈ L1(X),
and from the pointwise inequality

sup
n
A2n f (x) > m0 sup

n
A2n f̃m(x)

for all m > m0 and the Borel–Cantelli lemma we see that supn A2n f (x) is larger
than m0/2 for almost every x and any given m0, which yields the claim.

It remains to prove Theorem 3. In order to adapt the arguments of Ornstein [12],
we would like to interpret the averaging operators An as powers Pn of a
Markov operator P . This is not true as stated, since we do not quite have the
semigroup property AnAm = An+m (although AnAm does contain a term of the
form 3

4An+m). However, as observed by Bufetov [3], we can recover a Markov
interpretation forAn by lifting X up to a four-fold cover X̃ that tracks the ‘outward
normal vector’ for the sphere. More precisely, given an F2-system (X,X , µ,
(Tg)g∈F2), we define the lifted measure space (X̃ , X̃ , µ̃) to be the product of
(X,X , µ) and the four-element space {a, b, a−1, b−1

} with the uniform
probability measure; in particular, µ̃(X̃) = µ(X). Let π : X̃ → X be the
projection operator π(x, s) := x ; this induces a pushforward operator π∗ : L1(X̃)
→ L1(X) and a pullback operator π∗ : L1(X)→ L1(X̃) by the formulas

π∗ f̃ (x) :=
1
4

∑
s∈{a,b,a−1,b−1}

f̃ (x, s)

and
π∗ f (x, s) := f (x)

for f ∈ L1(X) and f̃ ∈ L1(X̃). We also define the Markov operator P : L1(X̃)→
L1(X̃) by

P f̃ (x, s) :=
1
3

∑
s′∈{a,b,a−1,b−1}:s′ 6=s−1

f̃ (T−1
s x, s ′).

One can view P as the Markov operator associated with the Markov chain that for
each unit time, moves a given point (x, s) of X̃ to one of the three points (T−1

s x,
s ′) with s ′ ∈ {a, b, a−1, b−1

}\{s−1
}, chosen uniformly at random; the adjoint of

this chain (which controls how P f propagates the support of f ) maps (x, s) to
(Ts′x, s ′) with s ′ ∈ {a, b, a−1, b−1

}\{s−1
} drawn uniformly at random. By writing

the elements of {g ∈ F2 : |g| = n} as reduced words of length n, one can easily
verify the identity

An f = π∗Pnπ∗ f

for any f ∈ L1(X) and n > 1. It thus suffices to show the following theorem.
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THEOREM 4 (Quantitative counterexample, again). Let α, ε > 0. Then there exist
an F2-system (X,X , µ, (Tg)g∈F2) and a nonnegative function f̃ ∈ L∞(X̃), such
that

‖ f̃ ‖L1(X̃) 6 αµ(X)

but such that
sup

n
π∗P2n f̃ (x) > 1− ε

for all x ∈ X outside of a set of measure at most εµ(X).

Indeed, by setting f := 4π∗ f̃ , and noting the pointwise bound f̃ 6 π∗ f and the
identity ‖ f ‖L1(X) = 4‖ f̃ ‖L1(X̃), we obtain Theorem 3 (after replacing α by α/4).

For inductive reasons, we will prove a technical special case of Theorem 4,
in which the F2-system is of a certain ‘good’ form, and the sequence (Pn f̃ )n>0

is part of an ‘ancient Markov chain’ ( f̃n)n∈Z that extends to arbitrarily negative
times as well as arbitrarily positive times. More precisely, let us define a good
system to be an F2-system (X,X , µ, (Tg)g∈F2), which admits a decomposition
X = Xa ∪ Xb ∪ X0 into three disjoint sets Xa, Xb, X0 admitting the following
(somewhat technical) properties:

(i) (Measure) One has µ(Xa) = µ(Xb) =
1
4µ(X) and µ(X0) =

1
2µ(X).

Furthermore, for any 0 6 κ 6 µ(Xb), one can find a measurable subset
of Xb of measure exactly equal to κ .

(ii) (Invariance) One has Ta Xa = Xa and Tb Xb = Xb. In addition, one has the
inclusions Ta Xb ⊂ Tb Xa ∪ T−1

b Xa ⊂ X0.

(iii) (Ergodicity) One can partition Xa into finitely many Ta-invariant components
Xa,1, . . . , Xa,m of positive measure, such that T 2

a is ergodic on each of the
components Xa,i ; that is, the only T 2

a -invariant measurable subsets of Xa,i

have measure either 0 or µ(Xa,i).

(iv) (Generation) One has X =
⋃

g∈F2
Tg Xa,i up to null sets for each i = 1,

. . . ,m.

Note that relatively few conditions are required on the dynamics on Xb; in
particular, the ergodicity hypotheses on the system are located in the disjoint
region Xa . This will allow us to easily modify the dynamics on Xb in order to
‘glue’ two good systems together in Section 4.

See Figure 1. We will construct good systems in subsequent sections. For now,
we record one useful property of such systems.
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Figure 1. A somewhat schematic depiction of a good system. Only part of the
action of Ta and Tb is displayed.

LEMMA 5 (Pointwise ergodic theorem for good systems). Every good system
(X,X , µ, (Tg)g∈F2) is F2

2 -ergodic. In particular (by Theorem 1), for any f ∈
L∞(X), the averages A2n f converge pointwise almost everywhere and in L1

norm to (1/µ(X))
∫

X f dµ. Furthermore, for any f̃ ∈ L∞(X̃), P2n f̃ converges
pointwise almost everywhere and in L1 norm to (1/µ(X))

∫
X̃ f̃ dµ̃.

Proof. Let f ∈ L∞(X) be an F2
2 -invariant function; to establish F2

2 -ergodicity, it
will suffice to show that f is constant almost everywhere. As f is T 2

a -invariant,
we see from Property (iii) that f is constant almost everywhere on each Xa,i .
Since F2 = F2

2 ∪ F2
2 a, we see from Property (iv), the Ta-invariance of Xa,i , and

the F2
2 -invariance of f that f is constant almost everywhere on X , as required.

The final claim does not quite follow from Theorem 1, but is immediate from
[3, Proposition 1].

For any α > 0, let P(α) denote the following claim.

CLAIM 6 (P(α)). For any ε > 0, there exist a good system (X,X , µ, (Tg)g∈F2)

with associated decomposition X = Xa∪ Xb∪ X0, and a sequence of nonnegative
functions f̃n ∈ L∞(X̃) for n ∈ Z with the following properties:

(v) (Ancient Markov chain) f̃n+1 = P f̃n for all n ∈ Z. Equivalently, one
has f̃n+m = Pm f̃n for all n ∈ Z and m ∈ N. In particular, ‖ f̃n‖L1(X̃) is
independent of n.

(vi) (Size) One has ‖ f̃n‖L1(X̃) = αµ(X) for some n ∈ Z (and hence for all
n ∈ Z).
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(vii) (Early support) f̃n is supported in X̃0 for all negative n. Furthermore, there
exists a finite A > 0 such that f̃n is supported in a set of measure at most
A3nµ(X) for all negative n.

(viii) (Large maximum function) We have

sup
n∈Z

π∗ f̃2n(x) > 1− ε

for all x ∈ X outside of a set of measure at most εµ(X).

Note that our sequence f̃n is ancient in the sense that it extends to arbitrary
negative times n → −∞ as well as to arbitrary positive times n →∞. This will
be essential in order to set up suitable ‘time delays’ in our arguments in later
sections. One can informally think of f̃n as the (normalized) distribution at time
n of an ancient Markov process that starts from an infinitely small location deep
inside X̃0 at infinite negative time n = −∞, and only escapes X̃0 at or after time
n = 0, and which covers most of X with density roughly 1 or more at some point
in time (but crucially, different regions of X may be covered in this manner at
different times).

Observe that if P(α) holds for an arbitrarily small set of α > 0, and ε > 0 is
arbitrary, then from Properties (vii) and (viii), one has for any N that

sup
n>−N

π∗ f2n(x) > 1− ε

for all x ∈ X outside of a set of measure at most (ε +
∑

n<−N A3−2n)µ(X).
Taking N large enough (depending on ε and A) and setting f̃ := f̃−2N , we obtain
Theorem 4 (after adjusting ε as necessary). It thus suffices to show that P(α)
holds for arbitrarily small α > 0. This will be accomplished using the following
two key theorems (the second of which is a variant of [12, Lemma 4]).

THEOREM 7 (Initial construction). The claim P(1) is true.

THEOREM 8 (Iteration step). Suppose that P(α) holds for some 0 < α 6 1. Then
P(α(1− α/4)) is true.

From Theorems 7 and 8 we see that the infimum of all 0 < α 6 1 for which
P(α) holds is zero, and the claim follows. Thus it suffices to establish Theorems 7
and 8. This will be accomplished in the following two sections.

3. The initial construction

We now prove Theorem 7. We will in fact construct an example of a good
system (X,X , µ, (Tg)g∈F2) and functions f̃n , which witness P(1) for all ε > 0 at
once.
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We begin by constructing an appropriate measure space (X,X , µ). For each
integer n, let Yn denote the space of half-infinite reduced words (sm)m>n =

snsn+1sn+2 . . . , in which each of the si terms is drawn from the alphabet {a,
b, a−1, b−1

}, and a, a−1 and b, b−1 are never adjacent. We give this space the
product σ -algebra Yn (that is, the minimal σ -algebra for which the coordinate
maps (sm)m6n 7→ sm are all measurable). By the Kolmogorov extension theorem,
we may construct a probability measure µn on Yn such that each finite reduced
subword sn . . . sn+k for k > 0 occurs as an initial segment with probability
1/(4× 3k); one can view this measure as the law of the random half-infinite
reduced word constructed by choosing sn uniformly at random from {a, b,
a−1, b−1

} and then recursively selecting sn+i+1 for i = 0, 1, 2, . . . to be drawn
uniformly from {a, b, a−1, b−1

}\{s−1
n+i}.

The disjoint union Y :=
⊎

n∈Z Yn of Yn admits an action (Sg)g∈F2 of F2, with the
action Ss of a generator s ∈ {a, b, a−1, b−1

} defined by setting

Ss(snsn+1sn+2 . . . ) := ssnsn+1sn+2 · · · ∈ Yn−1

for snsn+1sn+2 · · · ∈ Yn and s ∈ {a, b, a−1, b−1
}\{s−1

n }, and

Ss(snsn+1sn+2 . . .) := sn+1sn+2 · · · ∈ Yn+1

for snsn+1sn+2 · · · ∈ Yn and s = s−1
n ; thus Sg is the operation of formal left

multiplication by g, after reducing any nonreduced words. If we give Y the
measureµY :=

∑
n∈Z 3−nµn , then one can easily verify that this action is measure-

preserving. Unfortunately, µY is an infinite measure due to the contribution of the
negative n, and so this space is not quite suitable for our needs. Instead, we shall
work with a certain subquotient of Y , defined as follows.

First, we restrict Y to the space
⊎

n>0 Yn =
⊎

n>1 Yn ]Y0, which can be thought
of as a suitably rescaled limit of an ‘infinitely large ball’ in F2, with Y0 being the
‘boundary’ of this ball, and Yn lying increasingly deeper in the ‘interior’ of the
ball as n increases (see Figure 2). This makes the shift maps Ss , s ∈ {a, b, a−1,

b−1
} partially undefined on the Y0 boundary, but we will fix this later by redefining

these maps on (a quotient of) Y0. Next, we introduce a reflection operation x 7→ x
on the boundary Y0 by mapping

s0s1s2 . . . := s−1
0 s−1

1 s−2
2 . . . .

It is clear that this map preserves the measure µ0. If we then form the quotient
space Y0/∼ := {{x, x} : x ∈ Y0}, we can obtain a probability measure µ0/∼ on
Y0/∼ by pushing forward the probability measure µ0 under the quotient map.
We observe that Y0/∼ splits into two components of equal measure 1/2, namely
((SaY1 ∩ Y0) ∪ (S−1

a Y1 ∩ Y0))/∼ and ((SbY1 ∩ Y0) ∪ (S−1
b Y1 ∩ Y0))/∼, noting that
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Figure 2. A fragment of the infinite measure space Y . The centre disk represents
a portion of Y1 consisting of reduced words s1s2 . . . with initial letter s1 = a. The
remaining disks are images of this disk under shifts by various elements of F2,
and all have equal measure with respect to µY . This image should be compared
with the infinite tree that is the Cayley graph of F2.

the sets SaY1 ∩ Y0, S−1
a Y1 ∩ Y0 are disjoint reflections of each other, and similarly

for SbY1 ∩ Y0, S−1
b Y1 ∩ Y0.

We then define X to be the quotient space
⊎

n>1 Yn ] (Y0/∼) with measure
µ :=

∑
n>1 3−nµn +

1
2 (µ0/∼); thus

µ(X) =
∑
n>1

3−n
+

1
2
= 1.

We set X0 :=
⊎

n>1 Yn , Xa := ((SbY1∩Y0)∪(S−1
b Y1∩Y0))/∼, and Xb := ((SaY1∩

Y0) ∪ (S−1
a Y1 ∩ Y0))/∼. Thus
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µ(X0) =
∑
n>1

3−n
=

1
2

and µ(Xa) = µ(Xb) =
1
4 . One can think of X0 as the ‘interior’ of X , with Xa

and Xb being two equally sized pieces of the ‘boundary’ of X0. Moreover, Xa

and Xb are Cantor spaces (and µ is a Cantor measure on such spaces), and so
one can easily construct measurable subsets of Xb of arbitrary measure between
0 and µ(Xb). Thus Property (i) is satisfied. Furthermore, one can easily create a
measure-preserving invertible map T 0

a : Xa → Xa such that (T 0
a )

2 is ergodic on
Xa; this can be done for instance by identifying Xa (which is an atomless standard
probability space) as a measure space (up to null sets) with the unit circle with
Haar measure, and then setting T 0

a to be an irrational translation map.
We now define the shifts Ta : X → X and Tb : X → X as follows.

1. If x ∈ X0, then Ta x is defined to be Sa x projected onto X , and Tbx is similarly
defined to be Sbx projected onto X . (The projection is only necessary of
course if Sa x or Sbx lands in Y0.)

2. If x ∈ Xa , then Ta x := T 0
a x . If instead x ∈ Xb, Ta x is defined to be Sa x ′ ∈ Y1,

where x ′ ∈ S−1
a Y1 ∩ Y0 is the lift of x to S−1

a Y1 ∩ Y0.

3. If x ∈ Xb, then Tbx = x . If instead x ∈ Xa , Tbx is defined to be Sbx ′ ∈ Y1,
where x ′ ∈ S−1

b Y1 ∩ Y0 is the lift of x to S−1
b Y1 ∩ Y0.

One then defines Tg for the remaining g ∈ F2 in the usual manner. In particular,
one sees that for any x in the interior X0 and any s ∈ {a, b, a−1, b−1

}, Ts x is equal
to Ss x projected onto X . Informally, the shifts Ts : X → X for s ∈ {a, b, a−1, b−1

}

are inherited from the shifts Ss : Y → Y except for the boundary actions of Ta

and T−1
a on Xa and of Tb and T−1

b on Xb, which are given by T 0
a (and its inverse)

and the identity map respectively. (There is nothing special about the identity map
here; an arbitrary measure-preserving map on Xb could be substituted here for our
purposes.)

PROPOSITION 9. (X,X , µ, (Tg)g∈F2) is a good system.

Proof. It is a routine matter to verify that Ta and Tb are invertible and measure-
preserving, so that (X,X , µ, (Tg)g∈F2) is an F2-system. Property (i) was already
verified. For Property (ii), we note that Ta Xb ⊂ Y1 ⊂ (SbY0∩Y1)∪(S−1

b Y0∩Y1) =

Tb Xa ∪ T−1
b Xa , as required. We set m = 1 and Xa,1 := Xa; then Property (iii) is

true from construction. Finally, we verify Property (iv). It suffices to show that
for almost every x ∈ X , there is a group element g ∈ F2 such that Tgx ∈ Xa . This
is trivial if x ∈ Xa , and if x ∈ X0 then x ∈ Yn for some n, and the claim follows
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by choosing g to be a suitable word of length n starting with b or b−1. Finally, if
x ∈ Xb, then by applying Ta one can move x to Y1, at which point one can apply
either Tb or T−1

b to move x to Xa .

It remains to construct a sequence f̃n of nonnegative functions in L∞(X̃) for
each n ∈ Z obeying Properties (v)–(viii) with α = 1. For negative n, we define f̃n

by setting
f̃n(x, s) := 4× 3−n

whenever x ∈ X and s ∈ {a, b, a−1, b−1
} are such that x ∈ Y−n and Ss x ∈ Y−n−1,

and f̃n(x, s) = 0 otherwise. These are clearly nonnegative functions in L∞(X̃)
obeying Property (vii). It is routine to verify that f̃n+1 = P f̃n for all n 6 −2. If
we then define f̃n for nonnegative n by the formula

f̃n := Pn+1 f̃−1

then we have Property (v). For negative n we have

‖ f̃n‖L1(X̃) = 1,

which gives Property (vi) (using Property (v) to extend to nonnegative n). Finally,
from Lemma 5 we see that f̃n converges pointwise almost everywhere to 1 as n→
+∞, and so Property (viii) follows. This concludes the proof of Theorem 7.

4. The iteration step

We now prove Theorem 8. Let 0 < α 6 1 be such that P(α) holds. Inspecting
the definition of P(α) in Claim 6 (with ε replaced by ε/4), and normalizing X to
have measure 1, we may find a good system (X,X , µ, (Tg)g∈F2) with associated
decomposition X = Xa ∪ Xb ∪ X0 and measure µ(X) = 1, and a sequence of
nonnegative functions f̃n ∈ L∞(X̃) for n ∈ Z with the following properties:

(v) (Ancient Markov chain) f̃n+1 = P f̃n for all n ∈ Z.

(vi) (Size) One has ‖ f̃n‖L1(X̃) = α for all n ∈ Z.

(vii) (Early support) f̃n is supported in X̃0 for all negative n. Furthermore, there
exists a finite A > 0 such that f̃n is supported in a set of measure at most
A3n for all negative n.

(viii) (Large maximum function) We have

sup
n∈Z

π∗ f̃2n(x) > 1− ε/4

for all x ∈ X outside of a set of measure at most ε/4.

https://doi.org/10.1017/fms.2015.28 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2015.28


L1 pointwise ergodic theorem fails for F2 13

It will suffice to construct a good system (X ′,X ′, µ′, (T ′g)g∈F2) with associated
decomposition X ′ = X ′a∪ X ′b∪ X ′0, Markov operator P ′, and measure µ′(X ′) = 2,
and a sequence of nonnegative functions f̃ ′n ∈ L∞(X̃ ′) for n ∈ Z with the
following properties:

(v′) (Ancient Markov chain) f̃ ′n+1 = P ′ f̃ ′n for all n ∈ Z.

(vi′) (Size) One has ‖ f̃ ′n‖L1(X̃ ′) = α(2− α/2) for all n ∈ Z.

(vii′) (Early support) f̃ ′n is supported in X̃ ′0 for all negative n. Furthermore, there
exists a finite A′ > 0 such that f̃ ′n is supported in a set of measure at most
2A′3n for all negative n.

(viii′) (Large maximum function) We have

sup
n∈Z

π∗ f̃ ′2n(x
′) > 1− ε

for all x ′ ∈ X ′ outside of a set of measure at most 2ε.

The idea is to glue together two copies of the system X to form X ′, with
an extremely small amount of coupling between the two in order to make the
combined system X ′ ergodic. The functions f̃ ′n , for negative n, will consist of one
copy of f̃n (situated in the first copy of X ) and one copy of (1−α/2) f̃n+M (situated
in the second copy of X ), where M is an extremely large ‘time delay’, designed
so that the dynamics of the copy (1− α/2) f̃n+M only becomes ‘interesting’ long
after the dynamics of the copy of f̃ ′n has achieved convergence to its average on
X ′, which will be α/2. It is this latter convergence to the average that allows one
to place the crucial factor of (1 − α/2) in the second component of f̃ ′n , which
leads to the gain of α to α(1− α/4) in Theorem 8.

We turn to the details of the construction. First, from Property (viii) and
Egorov’s theorem, we may find a natural number N such that

sup
−N6n6N

π∗ f̃2n(x) > 1− ε/3 (1)

for all x ∈ X outside of a set of measure at most ε/3. We let 0 < κ < 1/4 be a
small quantity depending on ε, N and the f̃n to be chosen later. We will construct
the good system (X ′,X ′, µ′, (T ′g)g∈F2) to be two copies of (X,X , µ, (Tg)g∈F2)

glued together by a small amount of coupling, with the κ parameter measuring
the amount of coupling. More precisely, we define the measure space (X ′,X ′,
µ′) to be the product of (X,X , µ) with the two-element set {1, 2} with counting
measure. Next, using Property (i), we can find a subset E of Xb of measure
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exactly κ . We now define the ‘shift’ maps T ′a, T ′b : X ′ → X ′ as follows. The
map T ′a is a trivial lift of Ta; thus

T ′a(x, i) := (Ta x, i)

for x ∈ X and i ∈ {1, 2}. The map T ′b is an almost trivial lift of Tb. Namely, we
define

T ′b(x, i) := (Tbx, i)

for x ∈ X\E and i ∈ {1, 2}, but define

T ′b(x, i) := (Tbx, 3− i)

for x ∈ E and i ∈ {1, 2}; see Figure 3. Finally, we partition X ′ = X ′a ∪ X ′b ∪ X ′0,
where X ′a := Xa × {1, 2}, X ′b := Xb × {1, 2} and X ′0 := X0 × {1, 2}. We then
define T ′g for the remaining g ∈ F2 in the usual manner.

PROPOSITION 10 (Good system). If κ is sufficiently small, then (X ′,X ′, µ′,
(T ′g)g∈F2) is a good system with µ′(X ′) = 2.

Proof. Properties (i) and (ii) are easily verified, so we focus on verifying
Properties (iii) and (iv).

By Property (iii) for X , Xa is partitioned into finitely many Ta-invariant
components Xa,1, . . . , Xa,m of positive measure, each of which is T 2

a -ergodic.
This induces a partition of X ′a into the 2m components Xa,1×{1}, . . . , Xa,m×{1},
Xa,1 × {2}, . . . , Xa,m × {2}, and each of these components is clearly T 2

a -ergodic.
Now we verify Property (iv). We need to show that X ′ =

⋃
g∈F2

T ′g(Xa,i × { j})
up to null sets for each i = 1, . . . ,m and j = 1, 2. Denote the right-hand side
by Y ; thus Y is F2-invariant and contains Xa,i × { j}. On the other hand, by
Property (iv) for X and the pigeonhole principle, there exists g ∈ F2 such that
Tg Xa,i intersects E in a set of positive measure. We may assume that the word
length |g| of g is minimal among all g with this property; thus Th Xa,i ∩ E is
null whenever |h| < |g|. From this we see that T ′g(Xa,i × { j}) intersects E × { j}
in a set of positive measure (since the dynamics of T ′ are just a trivial lift of the
dynamics of T outside of E×{1, 2}). From the construction of T ′b , this implies that
T ′bg(Xa,i×{ j}) intersects Tb E×{3− j} ⊂ Xb×{3− j} in a set of positive measure,
and hence by Property (ii) the union of T ′b−1abg(Xa,i × { j}) and T ′babg(Xa,i × { j})
intersects Xa × {3 − j} in a set of positive measure; in particular, Y intersects
Xa × {3 − j} in a set of positive measure. As Y is (T ′a)

2-invariant, we conclude
from Property (iii) that Y contains Xa,i ′ × {3− j} up to null sets for some i ′ = 1,
. . . ,m.

Next, by another appeal to Property (iv) and the pigeonhole principle, we can
find gi,i ′ ∈ F2 such that Tgi,i ′

Xa,i ′ and Xa,i intersect in a set of positive measure.
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Figure 3. The good system (X ′,X ′, µ′, (T ′g)g∈F2), which is formed by gluing
together two barely interacting copies of (X,X , µ, (Tg)g∈F2).

Note that as there are only m choices for i ′, the word length of gi,i ′ can be
bounded above, and the measure of Tgi,i ′

Xa,i ′ ∩ Xa,i bounded below, by quantities
independent of κ . Because of this, we see that if κ (and hence E) is small enough,
then T ′gi,i ′

(Xa,i ′ × {3 − j}) and Xa,i × {3 − j} also intersect in a set of positive
measure; thus Y must intersect Xa,i × {3 − j} in a set of positive measure, and
hence by the T 2

a -ergodicity of Xa,i , Y contains Xa,i×{3− j} up to null sets. Since
Y already contained Xa,i×{ j}, we have Xa,i×{1, 2} contained in Y up to null sets.

Now for any (x, j ′) ∈ X ′, we have from Property (iv) that x = Tg y for some
y ∈ Xa,i and g ∈ F2. This implies that (x, j ′) = T ′g(y, j ′′) for some j ′′ ∈ {1, 2},
and hence (x, j ′) ∈ Y for almost every (x, j ′) ∈ X , which gives Property (iv) for
X ′ as required.
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We let M be a large natural number, depending on all previous quantities
(in particular, depending on κ), to be chosen later. The functions f̃ ′n ∈ L1(X̃ ′)
will be defined for negative n by the formulas

f̃ ′n(x, 1, s) := f̃n(x, s)

and
f̃ ′n(x, 2, s) :=

(
1−

α

2

)
f̃n−2M(x, s)

for any x ∈ X and s ∈ {a, b, a−1, b−1
}. Informally, f̃ ′n is two copies of f̃ ′n , one over

X×{1} and one over X×{2}, with the latter experiencing a significant time delay
and also a slight reduction in amplitude; the point is that we can delay the X×{2}
dynamics until the dynamics of X × {1} have mixed almost completely, so that
half of the mass of the X × {1} component is spread out almost uniformly over
X ×{2}, allowing for the crucial amplitude reduction for the X ×{2} component.
The idea behind this construction is due to Ornstein [12, Lemma 4].

Clearly, Property (vii′) is a consequence of Property (vii) (we allow the constant
A′ to depend on M). For functions supported on X̃ ′0, the Markov operator P ′ is
a trivial lift of the Markov operator P , so (from Property (vii′)) one sees that
f̃ ′n+1 = P ′ f̃ ′n for all n 6 −2. We now define f̃ ′n for nonnegative n by setting

f̃ ′n := (P
′)n+1 f̃ ′

−1,

so that Property (v′) holds. Clearly f̃ ′n are nonnegative and in L∞, and direct
calculation shows that Property (vi′) holds for all negative n, and hence for all
n thanks to Property (v′).

The only remaining task is to show Property (viii′). By the union bound, it
suffices to show the bounds on X × {1} and X × {2} separately. More precisely,
we will show (for suitable choices of the κ and M parameters) that

sup
n∈Z

π∗ f̃ ′2n(x, 1) > 1− ε (2)

for all x ∈ X outside of a set of measure at most ε, and

sup
n∈Z

π∗ f̃ ′2n(x, 2) > 1− ε (3)

for all x ∈ X outside of a set of measure at most ε.
We split

f̃ ′n = f̃ ′n,1 + f̃ ′n,2, (4)

where for negative n, f̃ ′n,i is the restriction of f̃ ′n to X ×{i}× {a, b, a−1, b−1
}, and

for nonnegative n, f̃ ′n,i is propagated by P ′:

f̃ ′n,i := (P
′)n+1 f̃ ′

−1,i .
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Observe (by induction on n in the nonnegative case) that the f̃ ′n,1 component of
f̃ ′n is nonnegative and does not depend on M , and the f̃ ′n,2 component is related to
the f̃ ′n,1 component by the formula

f̃ ′n,2(x, i) =
(

1−
α

2

)
f̃ ′n−M,1(x, 3− i). (5)

We first prove a bound on f̃ ′n,1:

PROPOSITION 11 (Bound on f̃ ′n,1). If κ is sufficiently small (depending on ε, N,
and f̃n , but without any dependence on M), we have

sup
−N6n6N

π∗ f̃ ′2n,1(x, 1) > 1− 2ε/3

for all x ∈ X outside of a set of measure at most 2ε/3.

Proof. By construction, we have

f̃ ′n,1(x, 1, s) = f̃n(x, s)

for negative n, all x ∈ X , and s ∈ {a, b, a−1, b−1
}. Now we turn to nonnegative n.

Note that as P is a contraction on L∞, f̃n for nonnegative n are uniformly bounded
in L∞ by some quantity B independent of κ . A routine induction then shows that∫

X̃
max( f̃n(x, s)− f̃ ′n,1(x, 1, s), 0) dµ̃(x, s) 6 CB,nκ

for all nonnegative n and some quantity CB,n that depends on B, n but not on
κ; this is basically because on X × {1} × {a, b, a−1, b−1

}, the Markov process
associated with P ′ only differs from that associated with P on the set E × {1} ×
{b}∪Tb E×{1}∪{b−1

}, which has measure κ/2. Applying π∗ and then the triangle
inequality, we conclude that∫

X
max( sup

−N6n6N
π∗ f̃2n(x)− sup

−N6n6N
π∗ f̃ ′2n,1(x, 1), 0) dµ(x) 6 C ′B,Nκ

for some C ′B,N independent of κ; in particular, from Markov’s inequality we see
(for κ small enough) that

sup
−N6n6N

π∗ f̃2n(x)− sup
−N6n6N

π∗ f̃ ′2n,1(x, 1) 6 ε/3

for all x ∈ X outside of a set of measure at most ε/3. Combining this with (1),
we obtain the claim.
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Henceforth we take κ small enough so that Proposition 11 holds; note crucially
that we do not need κ to depend on M so that M is still free to be arbitrarily large;
in particular, we may take M to be larger than any given function of κ .

From (4) we have the pointwise bound

π∗ f̃ ′2n(x, 1) > π∗ f̃ ′2n,1(x, 1)

and so the desired bound (2) follows from Proposition 11.
It remains to establish (3). From (5) and Proposition 11, we have

sup
M−N6n6M+N

π∗ f̃ ′2n,2(x, 2) > 1−
α

2
− 2ε/3 (6)

for all x ∈ X outside of a set of measure at most 2ε/3 (we have discarded the
small additional term of αε/3 on the right-hand side).

This by itself is not yet enough to establish (3). However, from Lemma 5, we
see that f̃ ′n,1 converges pointwise almost everywhere as n→∞ to the constant

1

µ(X̃ ′)

∫
X̃ ′

f̃ ′
−1,1 dµ̃′ =

1
2

∫
X

f̃−1 dµ̃ =
α

2
.

In particular, π∗ f̃ ′n,1 converges pointwise almost everywhere to α/2. Thus, by
Egorov’s theorem, and assuming M sufficiently large (depending on previous
quantities such as ε, κ , and f̃n , but without any circular dependency of M on
itself) we have

inf
n>M−N

π∗ f̃ ′2n,1(x, 2) >
α

2
−
ε

3
(7)

for all x ∈ X outside of a set of measure at most ε/3. Adding this to (6) and using
(4), we obtain (3) as required.

The proof of Theorem 8, and thus Theorem 2, is now complete.
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