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Abstract

Background. Fatigue is a central feature of myalgic encephalomyelitis or chronic fatigue syn-
drome (ME/CFS), but many ME/CFS patients also report comorbid pain symptoms. It
remains unclear whether these symptoms are related to similar or dissociable brain networks.
This study used resting-state fMRI to disentangle networks associated with fatigue and pain
symptoms in ME/CFS patients, and to link changes in those networks to clinical improve-
ments following cognitive behavioral therapy (CBT).
Methods. Relationships between pain and fatigue symptoms and cortico-cortical connectivity
were assessed within ME/CFS patients at baseline (N = 72) and after CBT (N = 33) and waiting
list (WL, N = 18) and compared to healthy controls (HC, N = 29). The analyses focused on
four networks previously associated with pain and/or fatigue, i.e. the fronto-parietal network
(FPN), premotor network (PMN), somatomotor network (SMN), and default mode network
(DMN).
Results. At baseline, variation in pain and fatigue symptoms related to partially dissociable
brain networks. Fatigue was associated with higher SMN-PMN connectivity and lower
SMN-DMN connectivity. Pain was associated with lower PMN-DMN connectivity. CBT
improved SMN-DMN connectivity, compared to WL. Larger clinical improvements were
associated with larger increases in frontal SMN-DMN connectivity. No CBT effects were
observed for PMN-DMN or SMN-PMN connectivity.
Conclusions. These results provide insight into the dissociable neural mechanisms underlying
fatigue and pain symptoms in ME/CFS and how they are affected by CBT in successfully trea-
ted patients. Further investigation of how and in whom behavioral and biomedical treatments
affect these networks is warranted to improve and individualize existing or new treatments for
ME/CFS.

Introduction

Myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) is characterized by extreme
fatigue that significantly interferes with social, professional, and daily life activities. Besides
disabling fatigue symptoms, ME/CFS patients often experience high comorbidity of pain dis-
orders and hyperalgesia, such as fibromyalgia or irritable bowel syndrome (Aaron et al., 2001;
Buchwald, Pearlman, Kith, Katon, & Schmaling, 1997; Castro-Marrero et al., 2017; Krupp,
Jandorp, Coyle, & Mendelson, 1993; Surian & Baraniuk, 2020). Current treatments are
often aimed at either fatigue or pain, while it is not given that treating one symptom will
also resolve the other. However, the high comorbidity of fatigue and pain, as well as the simi-
larities in their subjective, self-reported, and multidimensional character, make it hard to pro-
vide empirical arguments to guide treatment toward one or another. At the brain level, fatigue
and pain both involve sensory, affective, and cognitive processes that are supported by distrib-
uted and overlapping neural circuits (Apkarian, Bushnell, Treede, & Zubieta, 2005; Buchel,
Geuter, Sprenger, & Eippert, 2014; Davis, 2000; Maksoud et al., 2020; Muller & Apps, 2019;
Song et al., 2021; Stephan et al., 2016). It might be possible to leverage those neural circuits
to better differentiate these symptoms experienced by ME/CFS patients. Accordingly, the cur-
rent study used resting-state functional magnetic resonance imaging (fMRI) to disentangle the
neural networks associated with pain and fatigue symptoms in ME/CFS patients and test
whether and how they are affected by cognitive behavioral therapy (CBT) for ME/CFS. The
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results of this study may provide new insights into the symptom
specific neural pathology of pain and fatigue, to ultimately better
target and individualize both medical and behavioral treatments
in ME/CFS.

Previous studies have used resting-state fMRI to investigate the
neural network characteristics of either fatigue symptoms (for a
systematic review, see Maksoud et al. (2020)) or pain symptoms
(for a systematic review see Apkarian et al. (2005)). Using various
methodological approaches (e.g. seed-based connectivity, princi-
pal component network analysis, graph theory), both fields indi-
cate remarkable overlapping involvement of sensory, motor,
prefrontal and fronto-parietal networks. Specifically, two studies
that compared seed-based connectivity between ME/CFS patients
and healthy controls (HC) report altered connectivity between the
precuneus (=posterior default mode network [DMN]) and clus-
ters in the primary motor area (precentral-gyrus), supplementary
motor area (SMA), and prefrontal cortex (superior and medial
frontal gyrus and anterior cingulate) which scaled with fatigue
severity (Boissoneault et al., 2016; Kim et al., 2015a).
Additionally, Gay et al. (2016) reported altered connectivity
between the nodes of the frontoparietal network (FPN) and
between the sensorimotor network (SMN) and cingulate cortex
in ME/CFS compared to HC. Similarly, studies comparing
chronic pain populations with HC, report differences in connect-
ivity of sensorimotor network (i.e. SMN), supplementary motor
cortex, anterior and posterior cingulate, insula, and amygdala
(Apkarian et al., 2005; Baliki, Mansour, Baria, & Apkarian,
2014; Buchel et al., 2014; Farmer, Baliki, & Apkarian, 2012;
Pfannmoller & Lotze, 2019; Sandstrom et al., 2022; Song et al.,
2021). Moreover, a review of longitudinal studies by
(Pfannmoller & Lotze, 2019) suggests that alterations in particu-
larly DMN and FPN connectivity are involved in the chronifica-
tion of pain conditions.

However, these studies did not directly compare pain and
fatigue conditions or symptoms, or took into account its
comorbidity. Accordingly, the question remains whether these
networks play specific or common roles in fatigue or pain. So
far, only a few studies did compare pain and fatigue-related con-
nectivity patterns within one patient population. Specifically,
using graph theoretical measures a recent study assessed
symptom-specific associations in patients with ankylosing spon-
dylitis and showed a partial network-level dissociation between
fatigue- and pain-related brain connectivity (Liu et al., 2020).
While functional connectivity of the DMN nodes with the rest
of the brain was associated with both pain and fatigue, connect-
ivity of the pre-central gyrus (part of the SMN) and superior
parietal gyrus were only associated with fatigue. In line with
this, two other studies in ME/CFS patients revealed that func-
tional connectivity between the sensorimotor cortex and the
SMA during preparation of effortful exertions was associated
with fatigue (van der Schaaf et al., 2018), while structural integrity
of the dorsolateral-prefrontal cortex was associated with pain and
not fatigue symptoms (van der Schaaf et al., 2017). Together, this
suggest that networks involving sensory-motor regions may play a
specific role in fatigue symptoms, networks involving dorsolateral
prefrontal cortex may play specific role in pain symptoms and that
the DMN may be involved in both pain and fatigue symptoms.

Here we build on these findings and use resting state connect-
ivity in ME/CFS patients to test the hypothesis that fatigue and
pain involve partly dissociable patterns of neural connectivity,
focusing on four networks that have previously been associated
with fatigue or pain: the FPN, (related to pain [van der Schaaf

et al., 2017]); the SMN and the premotor/supplementary motor
network (PMN) (related to fatigue [van der Schaaf et al.,
2018]), and the DMN (the most commonly reported network
to be involved in both fatigue (ME/CFS) and pain (fibromyalgia)
conditions (Fallon, Chiu, Nurmikko, & Stancak, 2016; Kim et al.,
2015a, 2015b; Kong et al., 2013; Maksoud et al., 2020; Shan et al.,
2018, 2020). To investigate this hypothesis, we first performed a
network-based analysis, using the four major networks described
above, to assess relationships between pain or fatigue symptoms
and within and between network connectivity within the ME/
CFS group, followed by post-hoc seed-based analyses to anatom-
ically qualify the network-based results. More specifically, we
hypothesize that pain symptoms are associated with connectivity
of the FPN, fatigue symptoms are associated with connectivity of
the SMN and PMN and both symptoms are associated with con-
nectivity of the DMN.

CBT for ME/CFS aims to reduce fatigue by improving the
sleep-wake cycle, regulation, gradual increase of (physical) activ-
ities and changing fatigue-related cognitions and behaviors in 12–
14 individual sessions over a period of 6 months with a trained
cognitive behavioral therapist. It has shown to successfully reduce
fatigue and pain in a substantial subgroup of treated patients
(Knoop, Bleijenberg, Gielissen, van der Meer, & White, 2007;
Malouff, Thorsteinsson, Rooke, Bhullar, & Schutte, 2008).
However, it remains unclear what neurobiological mechanisms
may underlie these clinical improvements and whether they
involve general or domain specific networks. Accordingly, we
tested whether symptom improvements in pain and fatigue after
CBT (compared to waiting list and healthy controls) were asso-
ciated with changes in neural connectivity. We hypothesize that
CBT-induced improvements in pain are associated with changes
in FPN connectivity while improvements in fatigue are associated
with changes in SMN and/or PMN connectivity. Results of this
study will provide insight into the neural mechanisms underlying
fatigue and pain symptoms and whether or not these mechanisms
are modulated by CBT.

Methods

Participants

Ninety-four female ME/CFS patients, between 18 and 65 years
old, that met U.S. Centers for Disease Control (CDC)-criteria
for ME/CFS (revised in 2003) (Fukuda et al., 1994; Reeves,
Lloyd, & Vernon, 2003) and scored ⩾40 on the subscale fatigue
of the checklist individual strength (CIS-fatigue) (Vercoulen
et al., 1994; Worm-Smeitink et al., 2017), and ⩾700 on the
Sickness Impact Profile-8 (SIP8total) (Bergner, Bobbitt, Carter,
& Gilson, 1981) and thirty gender, age and education-matched
healthy controls (HC)(<35 on CIS-fatigue, and no chronic med-
ical condition) were included. For a complete list of in- and exclu-
sion criteria see Supplement.

Procedure, randomization and intervention

Patients were informed about the study by their treating psychol-
ogists at the Expert Centre of Chronic Fatigue in Nijmegen, The
Netherlands. Eligible patients were invited for a first baseline
assessment (T0), after which they were randomly assigned to
CBT (n = 59) or waiting list (WL; n = 29) by supporting staff
who were not directly involved in the study. Six eligible patients
declined from randomization but were included in the baseline
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analysis. Six months after CBT/WL, patients were invited for the
second assessment (T1). HC were recruited through advertise-
ments and flyers. Eligible HC were also tested twice with 6
months in between, to control for test-retest effects.

CBT consisted of 12–14 individual sessions within ∼6 months
with a trained cognitive behavioral therapist and took place at the
Expert Centre of Chronic Fatigue (ECCF) in Nijmegen, The
Netherlands. CBT included goal setting, regulation of the sleep-
wake cycle, regulation/grading of physical activities while challen-
ging fatigue-related cognitions and behaviors, realization of the
prior set goals, reappraisal of fatigue and relapse prevention
(van Der Schaaf et al., 2015). Patients that were assigned to WL
did not receive any treatment or control intervention and started
CBT after the second assessment.

Clinical data

For clinical characterization fatigue severity (CIS-fatigue
[Vercoulen et al., 1994; Worm-Smeitink et al., 2017]), daily func-
tioning (SIP-total [only in ME/CFS] [Bergner et al., 1981]),
depressive symptoms (Beck depression inventory primary care
[BDI-PC]), disease duration, age and education level (Verhage,
1964) were assessed. Successful treatment was defined by a clinic-
ally significant improvement on fatigue severity, i.e. scoring lower
than 35 and a reliable change index of >1.96 on the CIS-fatigue, as
defined in our preregistration (van Der Schaaf et al., 2015).

To assess relationships with fatigue and pain, two retrospective
and two momentary outcome measures were selected. Selection of
the retrospective measures was based on its common use in the
literature. Selection of the momentary measures was based on pre-
vious results that demonstrated significant associations with
neural activity and neuroanatomy.

1) Fatigue severity over the past two weeks (CIS-fatigue)
(Vercoulen et al., 1994; Worm-Smeitink et al., 2017). This
measure is commonly used in fatigue populations, and mea-
sures retrospective self-reported fatigue over the past 2
weeks. It includes a cut-off score for severely fatigued ME/
CFS patients, which was used for patient selection in this
study (see above).

2) Pain-related disability (pain subscale of the RAND-36
[RAND-pain] [Aaronson et al., 1998]). This measure is com-
monly used in pain populations and asks retrospectively about
how much pain someone experienced in the past 4 weeks, and
how much the pain interfered with daily activities.

3) Fatigue across the testing day (average of 3 measurements of
the subscale fatigue of the profile of moods scale question-
naires (POMS-fatigue) (McNair, Lorr, & Doppleman, 1971;
Shacham, 1983). This measure was associated with neural
activity in van der Schaaf et al. (2018). It has additional
value over the CIS-fatigue as it was not used for patient selec-
tion, and it provides an overall level of fatigue during the test-
ing day.

4) Pain-occurrence (diary scores). Participants indicated the pres-
ence (yes or no) of muscle pain, joint pain, and/or headaches on
four time points of the day during 12 consecutive days. Presence
of pain was calculated as the average percentage of all time
points with pain. This measure associated with neuroanatomy
of the DLPFC in van der Schaaf et al. (2017). It has additional
value over the RAND-pain as it provides a more direct measure
of the occurrence of pain symptoms based on momentary
assessments, rather than retrospective measurements.

Neuroimaging data collection

A 5-min resting-state scan was assessed, using a multi echo
T2*-weighted, gradient-echo planar imaging (EPI) sequence
(TR = 2000 ms, TE = 9.0/19.28/29.56/39.84 ms, flip angle = 90°,
voxel size = 3.3 × 3.3 × 3.3 mm, slice thickness: 3.0 mm, 150
scans). During the scan, the room was dark and subjects were
asked to lie still with their eyes open to avoid falling asleep. The
resting-state scan was assessed at the end of a larger imaging
protocol of which the results are published elsewhere (van der
Schaaf et al., 2017; van der Schaaf et al., 2018). Resting-state
was preceded by approximately 1.5 h of functional and anatomical
imaging and a 15 min break after the first 45 min (see [van
Der Schaaf et al., 2015]). Anatomical images were obtained at
the start of the protocol, for spatial normalization purposes
using a T1-weighted magnetization-prepared rapid gradient-echo
(MP-RAGE) sequence (TR\TE: 2300\3.03 ms, flip angle = 8°, 192
sagittal slices, FoV: 256 × 256 mm, voxel size: 1 mm3, slice thick-
ness: 1 mm).

Statistical analysis

Clinical characterization of the patient population
Clinical and demographic data were compared between the ME/
CFS and HC groups at baseline using two sample t tests (except
for education, which was analyzed with a Mann–Whitney-U test)
in SPSS (version 27). Clinical changes were compared between
CBT and WL (including all participants who completed the
study), using repeated measures ANOVA with time (T0, T1) as a
within-subjects factor and randomization (CBT, WL) as between-
subjects factors, and with age and education as covariates of no
interest. A p value of <0.05 was considered significant. Pearson cor-
relation between clinical outcome variables is reported to test for
multicollinearity, which is relevant for interpreting the specificity
of brain-symptoms relationships for either pain or fatigue.

Neuroimaging analysis
Images were pre-processed and analyzed using SPM12 (Wellcome
Department of Cognitive Neurology, London), FSL (FMRIB’s
Software Library, Version 5.0.9, www.fmrib.ox.ac.uk/fsl) and
in-house matlab codes (see online Supplement). A network-based
analysis, using four major networks (see below), was done to
compare ME/CFS and HC at baseline, and to assess relationships
between connectivity and the clinical measures within the ME/
CFS group. This was followed by a comparison of changes in
network-connectivity between CBT, WL and HC groups, and
its relationships with clinical change within the CBT group.
Post-hoc seed-based analyses were used to investigate the robust-
ness of the network-based results and to examine the anatomical
specificity of the effects. If the network-level effects can also be
observed in the seed-level analysis, this shows that they are robust
to the exact ROI definition. It also allowed us to investigate if spe-
cific components of each network were driving the observed
associations.

The network analysis was based on the MIST atlas (Urchs
et al., 2017) (https://simexp.github.io/multiscale_dashboard/
index.html). The hierarchical structure of this atlas allows for
investigation of the data at different resolutions, and its independ-
ence from the test data avoids biases given differences in the
groups size. We considered four networks derived from previous
work showing the involvement of regions within those networks
in ME/CFS: (1) the fronto-parietal task control network (FPN,
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corresponding to the DLPFC seed-region reported in [van der
Schaaf et al., 2017]; 8 regions at the s36 level). (2) the somatomo-
tor network (SMN, corresponding to the S1M1 seed-region
reported in (van der Schaaf et al., 2018), 7 regions at the s7
level). (3) the premotor and supplementary motor network
(PMN, corresponding to the SMA seed-region reported in (van
der Schaaf et al., 2018), 4 regions at the s36 level) and (4) the
default mode network (DMN, 22 regions). The latter was
included because the DMN is one of the most reported networks
of which connectivity with other brain regions is altered in both
fatigue and pain conditions (Fallon et al., 2016; Kim et al.,
2015a, 2015b; Kong et al., 2013; Maksoud et al., 2020; Shan
et al., 2018, 2020). fMRI signals were extracted from 41 regions
(online Supplementary Table S1 and Fig. 1a). We implemented
post-hoc connectivity analyses on the three seed-regions identi-
fied by our previous work (van der Schaaf et al., 2017; van der
Schaaf et al., 2018), defined as 8 mm spheres located in (1) the
dorsolateral prefrontal gyrus (DLPFC; xyz =−342 631), (2) the
supplementary motor area (PMN-seed; xyz =−5,−10,67) and
(3) the somatomotor region (SMN-seed; xyz =−30,−32,50).

A general linear model (GLM) was applied on the time courses
of each voxel within each network-region or seed (Geerligs, Cam,
& Campbell, 2018; Geerligs, Tsvetanov, Cam, & Henson, 2017)
and included 32 confound and noise regressors including six
head-motion parameters, their first-order temporal, squares and
squared derivatives, and average signals in the WM and CSF
(Satterthwaite et al., 2013). Data and model regressors were
band-pass filtered (0.008–0.1 Hz), by including a discrete cosine
transform set in the GLM, ensuring that nuisance regression
and filtering were performed simultaneously. Data were pre-
whitened by inverting an autocorrelation model (Friston et al.,
2002). (see online Supplement).

For the network-analysis, Pearson’s correlation between all 41
regions was estimated from the whitened residuals of first level
model (Geerligs, Cam, & Henson, 2016). The correlation matrices
were Fisher z-transformed and reduced by averaging the values
across all regions within the four major networks. This resulted
in a correlation matrix with 4 within and 6 between network cor-
relations (10 in total). These correlation matrices were compared
between groups using regression analysis in matlab. Differences in
network connectivity between the ME/CFS and HC groups were
assessed at baseline/T0. To assess treatment effects on network
connectivity, difference-matrices were calculated (T1−T0) and
compared between CBT and WL and HC groups. To assess rela-
tionships between network-connectivity and (changes in) fatigue
and pain, regression analyses were done within the ME/CFS
group for each clinical variable separately (i.e. CIS-fatigue,
POMS-fatigue, RAND-pain and pain occurrence). When signifi-
cant, it was tested whether the relationship remained significant
when including all four clinical variables into the model. p values
were adjusted by false discovery rate (FDR), correcting for 10
comparisons and considered significant when <0.05.

When the network analysis revealed significant results, seed-
based connectivity of the corresponding seed was assessed for
the same contrast/relationship. For this, contrasts capturing cere-
bral activity associated with the seeds time series were taken to the
second level in SPM. Statistical inferences for these analyses are
based on cluster-level statistics familywise error (FWE) correction
for multiple comparisons, with cluster-forming threshold of p =
0.001 [ pwb_cluster], either at the whole brain ( pwb_fwe_cluster) or,
when whole brain analysis was not significant, small-volume cor-
rected for the voxels within the network with which where asso-
ciations were shown in the network-level analysis ( psv_fwe_cluster).
Beta-values were extracted from significant clusters for

Figure 1. Clinical outcome measures. Change between T1 and baseline (left) and score per day for (a) CIS fatigue, (b) Pain severity as measured with the RAND-36,
(c) Fatigue across the testing day as measured with the POMS-fatigue and (d) pain occurrence as measured with diary-scores. CIS, Checklist Individual Strength;
POMS, Profile of Moods State; ns, not significant, * = p < 0.05, ** = p < 0.001.
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visualization and post-hoc group comparisons and to assess rela-
tionships with (change in) fatigue and pain. Exploratory seed-
based analysis of remaining seeds is reported in the online
Supplement. For all second-level analyses age and education
were included as covariates of no interest.

Results

Participants

Resting-state data was not collected in all participants. See the
study flowchart in the online Supplement for excluded and miss-
ing data. Baseline resting state scans were available for 72 ME/CFS
patients and 29 controls. Follow-up resting state scans were avail-
able of 51 ME/CFS patients (33 CBT, 18 WL) and 25 controls.
Diary-scores and BDI were missing for 8 participants (See
Tables 1 and 2) but this did not affect the N for our main analysis.

Clinical outcome measures

ME/CFS patients and HC were matched on sex (all female), age,
and education (all p > 0.05). Following inclusion criteria, ME/CFS
patients scored higher than HC on the CIS-fatigue questionnaire.
Patients with ME/CFS also reported higher POMS-fatigue, higher
pain-occurrence, higher RAND-pain, and more depressive symp-
toms (Table 1).

CBT significantly reduced all clinical symptoms compared to
WL (all p < 0.05) except for depressive symptoms and
RAND-pain (Table 2). Out of the 33 patients that received CBT
and completed both test days, 18 (55%) were successfully treated
according to our predefined criteria (van Der Schaaf et al., 2015).
The CBT and WL groups did not differ on age, education, disease
duration or time between assessments. For HC no significant
changes were observed on CIS-fatigue (T21 =−5.818, p = 0.062),
POMS-fatigue (T23 = 0.597, p = 0.555), RAND-pain (T21 =
0.0350, p = 0.972) or BDI (T21 = 1.250, p = 0.225).

Pearson correlations within the CBT group revealed that
CIS-fatigue and POMS-fatigue were not correlated on T0 (N =

72, r = 0.145, p = 0.224). Pain-occurrence and RAND-pain were
significantly correlated on T0 (N = 67, r =−0.643, p = <0.001).
There were also correlations between CIS-fatigue and
pain-occurrence (r = 0.24, p = 0.048) and between POMS-fatigue
and RAND-pain(r = 0.28, p = 0.018). The change in CIS-fatigue,
POMS-fatigue, RAND-pain and Pain occurrence between T1
and T0 were all significantly correlated ( p < 0.03, all r between
0.27 and 0.69).

Baseline

No significant group differences were observed between the con-
nectivity matrices of ME/CFS patients and HC at baseline (Fig. 2a,
Table 3). However, regression analysis within the ME/CFS group
revealed significant correlations between network connectivity
and fatigue/pain symptoms (Fig. 2b). Higher POMS-fatigue was
associated with reduced connectivity between the SMN and
DMN (T =−2.980, pfdr = 0.021) as well as with increased connect-
ivity within the PMN (T = 2.835, pfdr = 0.021) and between the
SMN and PMN (T = 2.823, pfdr = 0.021; Fig. 2b). These effects
were specific to POMS-fatigue as they remained significant
when including CIS-fatigue, pain occurrence and RAND-pain
as covariates (SMN-DMN: T =−2.897, punc = 0.005; PMN-PMN:
T =−2.805, punc = 0.006; SMN-PMN: T =−2.584, punc = 0.012).
The relationship between fatigue and SMN-PMN connectivity
was further specified by the seed-based analysis. POMS-fatigue
symptoms were positively associated with connectivity between
the SMN-seed and the SMA (T = 3.51, xyz = 14 270, psv_fwe_cluster-
= 0.045; Fig. 2d). Note that this effect was only significant when
correcting for the PMN small volume.

Higher RAND-pain was associated with reduced connectivity
between PMN and DMN (T =−3062, pfdr = 0.031). This relation-
ship between pain and PMN-DMN connectivity was not sup-
ported by seed-based analysis from the PMN-seed. There was
also a non-significant trend for an association between
RAND-pain and connectivity between the PMN and FPN (T =
2.525, pfdr = 0.069) (Fig. 2c). Both remained when including
CIS-fatigue, POMS-fatigue and pain occurrence as covariates

Table 1. Clinical symptoms for ME/CFS and HC at baseline

ME/CFS HC

N Value (S.E.) N Value (S.E.) T/U value p Value

Baseline

CIS-fatigue 72 51.7(0.5) 29 16.9(1.3) 30.46 <0.001

POMS-fatigue 72 49.2(2.4) 29 7.0(1.2) 11.07 <0.001

Pain occurrence 67 46.6(3.8) 28 3.8(1.0) 7.27 <0.001

RAND-pain 72 54.8(3.1) 29 91.6(3.0) −6.92 <0.001

Daily functioning (SIP) 72 1725.6(69.1)

Depression (BDI-PC) 72 3.7(0.3) 29 1.0(0.3) 4.79 <0.001

Age 72 32.2(1.3) 29 33.2(2.0) −0.45 ns

Education 72 4.8(0.1) 29 5.1(0.2) 1170 ns

CIS, checklist individual strength; ME/CFS, myalgic encephalomyelitis/Chronic fatigue syndrome; HC, healthy controls; SIP, sickness impact profile; BDI-PC, Beck depression inventory-primary
care.
All outcome measures are compared using independent t tests, except for education, for which a Mann–Whitney U test was done. CIS-fatigue measures fatigue severity of the past 2 weeks.
POMS-fatigue measures fatigue across the testing day, RAND-pain measures a combination of pain severity and disability. Note that higher levels are less pain. Pain occurrence measures the
% of time one experienced pain-symptoms during the past 2 weeks using diary scores, Daily functioning was measured with the Sickness Impact Profile. Depression was measured with the
Beck depression inventory-primary care.

Psychological Medicine 5

https://doi.org/10.1017/S0033291723003690 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291723003690


(PMN-DMN: T = 2.717, punc = 0.009; PMN-FPN: T = 2.484, punc =
0.016). Exploratory seed-based analysis supported this trend for
PMN-FPN connectivity. Higher levels of both RAND-pain and
pain occurrence were associated with lower functional connectivity
between the PMN-seed and the left dorsolateral prefrontal cortex
(severity: T = 6.16, pwb_fwe_cluster <0.001, xyz =−401 632; occur-
rence: T = 4.53, pwb_fwe_cluster < 0.002, xyz =−381 432; Fig. 2e).
Note that the p values survived our correction for exploratory
whole-brain analyses. The clusters were located within the FPN,
but did not overlap with our DLPFC-seed, which was located
more anteriorly.

No significant correlations were found between the networks
and CIS-fatigue and pain occurrence (Table 4).

Treatment

CBT increased SMN-DMN connectivity compared to the WL
(T = −3.045, beta = −0.084, pfdr = 0.038) (Fig. 3a). Connectivity

was increased after CBT (T = 2.106, beta = 0.116, punc = 0.039),
decreased after the WL (T = −2.527, beta = −0.130, punc =
0.017) and did not change in the HC group (T = −0.976, beta
= −0.040, punc = 0.334). Further post hoc analysis revealed that
the CBT and WL group did not differ at baseline/T0 (all punc
> 0.2), but SMN-DMN was higher in the CBT compared to
the WL group on T1 (T = −2.697, beta = −0.062, punc =
0.010) (Table 5). These treatment-group effects were extended
by the seed-based analysis (Fig. 3b). Compared to the WL,
CBT increased connectivity between SMN-seed and the medial
prefrontal cortex (mPFC: T = 4.28, pwb_cluster < 0.001, xyz =
−14 584) and precuneus (T = 4.90, pwb_cluster < 0.001, xyz = 4,
−50,30). Seed-based connectivity was increased after CBT
(mPFC: T32 = 3.168, p = 0.003; precuneus: T32 = 2.844, p =
0.008), decreased after WL (mPFC; T17 = −4.001, p = 0.001; pre-
cuneus: T17 = −3.753, p = 0.002) and did not change in the HC
group (mPFC; T23 = −1.280, p = 0.21; precuneus: T23 = 0.625,
p = 0.54). Moreover, direct comparisons with the HC group

Table 2. Clinical symptoms for CBT and WL groups at T0, T1, and its difference (T1− T0)

CBT WL

N Value (S.E.) N Value (S.E.) T/U Value p Value

Baseline/T0

CIS-fatigue 33 50.9(0.7) 18 51.2(1.3) −0.19 ns

POMS-fatigue 33 50.2(3.6) 18 46.3(4.0) 0.70 ns

Pain-occurrence 31 50.0(5.3) 16 39.2(8.3) 1.15 ns

RAND-pain 33 55.4(4.8) 18 58.6(6.3) −0.40 ns

Daily functioning 33 1631.8(88.9) 18 1780.8(186.1) −0.82 ns

Depression 33 3.5(0.6) 18 4.1(0.6) −0.74 ns

Age 33 32.9(2.1) 18 29.6(2.5) 0.98 ns

Education 33 4.7(0.3) 18 4.9(0.2) −0.58 ns

Days between sessions 33 206.8(7.2) 18 186.6(9.6) 1.68 ns

Disease duration 33 5.3(0.3) 18 5.1(0.5) 0.46 ns

T1

CIS-fatigue 33 33.6(2.6) 18 46.1(1.7) −3.38 <0.001

POMS-fatigue 33 26.0(3.7) 18 40.7(5.0) −2.36 <0.05

Pain-occurrence 30 30.5(5.4) 17 34.9(6.9) −0.50 ns

RAND-pain 33 64.8(4.8) 18 53.5(5.4) 1.48 ns

Daily functioning 33 943.8(118.3) 18 1626.2(184.0) −3.25 <0.002

Depression 31 1.8(0.4) 18 3.6(0.6) −2.63 ns

Difference

CIS-fatigue 33 −17.3(2.7) 18 −5.1(1.6) −3.22 <0.002

POMS-fatigue 33 −24.2(3.9) 18 −5.5(3.6) −3.17 <0.003

Pain-occurrence 28 −19.7(5.1) 15 −0.2(2.7) −2.70 <0.05

RAND-pain 33 + 9.4(5.1) 18 −5.1(5.2) 1.83 ns

Daily functioning 33 −688.0(125.9) 18 −154.7(97.7) −2.87 <0.006

Depression 31 −1.8(0.6) 18 −0.6(0.5) −1.46 ns

CBT, cognitive behavioral therapy; WL, waiting list; CIS, checklist individual strength; SIP, sickness impact profile; BDI-PC, Beck depression inventory-primary care.
CIS-fatigue measures fatigue severity of the past 2 weeks. POMS-fatigue measures fatigue across the testing day, RAND-pain measures a combination of pain severity and disability. Note that
higher scores represent lower pain severity and disability. Pain occurrence measures the % of time one experienced pain-symptoms during the past 2 weeks using diary scores, Daily
functioning was measured with the sickness impact profile, Depression was measured with the Beck depression inventory-primary care.
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(group by time interactions) revealed that the increase in
SMNseed-mPFC connectivity was driven by the CBT group
(CBT v. HC: F53,1 = 7.535, p = 0.008; WL v. HC: F38,1 = 4178,

p = 0.048), while the change in SMN-seed-precuneus connectiv-
ity was driven by the WL group (WL v. HC: F38,1 = 6.428, p =
0.015; CBT v. HC: F53,1 = 1.399, p = 0.24).

Regression analysis within the CBT group on extracted data
from these mPFC and precuneus clusters revealed that reductions
in fatigue and pain were only associated with increased
SMN-seed-mPFC connectivity (ΔCIS-fatigue: R2 = 0.20, beta =
−0.46, T3,29 = −2.651, p = 0.013; ΔState-fatigue: R2 = 0.17, beta =
−0.42, T3,29 =−2.407, p = 0.023; Δpain-Occurrence: R2 = 0.20,
beta = −0.47, T3,24 =−2.328, p = 0.029; but not ΔRand-pain: R2

= 0.053, beta = 0.24, T3,29 = 1.253, p = 0.220) (Fig. 3d) and not
with changes in SMN-seed-precuneus connectivity (all p > 0.05).
These changes were not specific to either pain or fatigue: none
of the covariates remained significant when all 4 variables were
included into one model (all p > 0.05). Regression analysis within
the CBT group on data from the network analysis did not yeald
any signifIcant relationships with symptom measures (Table 6).

Discussion

This study aimed to dissociate neural networks associated with
pain and fatigue symptoms in in ME/CFS. Results revealed partly
dissociable networks, with modality specific involvement of
sensory-motor networks in fatigue (SMN-DMN) and premotor
networks in pain (PMN-DMN), and common involvement of
the DMN. CBT led to improvements in both fatigue and pain,
compared to WL, which were associated with increased prefrontal

Figure 2. Baseline results on connectivity measures. (a) Visualization of the four networks that were included in the matrix analysis (all left). Connectivity matrices
are shown for the ME/CFS group (left), HC (middle) and the difference between ME/CFS and HC at baseline (right). The lower triangle shows correlations for all
regions, the upper triangle shows the reduced matrix with the averaged correlations per network connection. No significant group differences were observed.
(b) Beta-values from the regression analysis with state fatigue across the testing day, as measured with the profile of moods state questionnaire, corrected for
age and education (upper) and visualization of the correlation between state fatigue across the testing day and SMN-DMN connectivity (lower). (c) Beta-values
from the regression analysis with pain severity corrected for age and education (upper) and visualization of the correlation between pain severity and the
PMN-DMN network. (d) Results from the seed-based analysis showing regions of which connectivity with the SMN-seed was positively correlated with state fatigue
across the testing day (T = 3.51, xyz = 14 270, pfwe_cluster = 0.045, small volume corrected for the PMN). This result replicates one of the findings shown in b. (e) Results
from the seed-based analysis showing regions of which connectivity with the PMN-seed was positively correlated with pain severity (T = 6.16, pwb_fwe_cluster < 0.001,
xyz =−401 632, no small volume correction). This result complements the trend shown in c. Clusters are shown with p < 0.001 uncorrected. ME/CFS, myalgic enceph-
alomyelitis/chronic fatigue syndrome; HC, healthy controls; SMN, Somato motor network; PMN, Premotor network; DMN, Default mode network; FPN, Fronto par-
ietal network. ** p < 0.05 fdr-corrected for multiple comparisons, * p < 0.05 uncorrected. Abbreviations of the individual regions in the matrix can be found in online
Supplementary Table S1.

Table 3. Pearson correlations (S.E.M.) within and between the four networks for
ME/CFS and HC at baseline

T0: Before CBT

ME/CFS HC t Value

Within SMN 0.458 (0.016) 0.475 (0.027) 1.00

Within DMN −0.011 (0.011) −0.047 (0.018) −1.75

Within FPN 0.039 (0.009) 0.032 (0.012) −0.60

Within PMN 0.516 (0.012) 0.491 (0.021) −0.89

SMN-DMN −0.062 (0.008) −0.073 (0.011) −0.76

SMN-FPN 0.352 (0.013) 0.327 (0.024) −0.68

SMN-PMN −0.103 (0.011) −0.114 (0.013) −0.65

DMN-FPN 0.257 (0.006) 0.241 (0.009) −1.32

DMN-PMN 0.314 (0.011) 0.306 (0.013) −0.51

FPN-PMN 0.076 (0.012) 0.042 (0.019) −1.41

SMN, somato-motor network; DMN, default mode network; FPN, fronto-parietal network;
PMN, premotor network; ME/CFS, myalgic encephalomyelitis/chronic fatigue syndrome; HC,
healthy controls.
None of the group comparisons were significant.

Table 4. Beta values of the relationships between connectivity (z scored Pearson correlation) and the four covariates of interest within the ME/CFS group at baseline

T0: Before CBT

CIS-fatigue Fatigue on testing day Pain severity Pain occurrence

Within SMN −0.008 0.014 0.010 −0.033

Within DMN 0.01 0.013 0.007 −0.006

Within FPN 0.005 0.001 −0.004 −0.013

Within PMN 0.007 0.048 ** 0.007 −0.014

SMN-DMN −0.009 −0.024 ** −0.016 0.009

SMN-FPN 0.016 0.008 −0.021 0.012

SMN-PMN 0.009 0.040 ** 0.003 −0.013

DMN-FPN −0.005 0.005 −0.003 −0.002

DMN-PMN −0.012 −0.025 * −0.034 ** 0.013

FPN-PMN 0.008 −0.015 −0.033 * 0.021

SMN, somato-motor network; DMN, default mode network; FPN, fronto-parietal network; PMN, premotor network. Fatigue on testing day was measured using the Profile of Mood State
questionnaire (POMS)
Age and education were included as covariates of no interest. ** p < 0.05 fdr corrected for multiple comparison, * p < 0.05 uncorrected.
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(i.e. mPFC within the DMN) modulation of the fatigue-related
SMN, but not of the pain-related PMN. These results progress
the ME/CFS field in several ways. First, they highlight the need
for better understanding of the differential role of these networks
in the etiology of fatigue and pain symptoms in ME/CFS, in order
to better tailor treatments to these symptoms. Second, they pro-
vide insight on the mechanisms of change in CBT-responsive
patients, but also provide new leads toward improving and indi-
vidualizing existing treatments or develop new (non-behavioral)
treatments.

Results showed that communication of the SMN with the
PMN and DMN was specifically associated with between-
participants variance in fatigue across the testing day, over and
above the contribution of variance related to pain occurrence,

pain disability and CIS-fatigue. This is in line with our hypothesis
and previous reports on sensorimotor involvement in fatigue in
multiple sclerosis (MS) (Hidalgo de la Cruz et al., 2018), stroke
(De Doncker, Dantzer, Ormstad, & Kuppuswamy, 2018;
Kuppuswamy, Rothwell, & Ward, 2015), perinatal stroke
(Wrightson, Zewdie, Kuo, Millet, & Kirton, 2020) and ankylosing
spondylitis (Liu et al., 2020) and generalize our previously
reported task-related effects of fatigue (van der Schaaf et al.,
2018) to resting-state connectivity. The lack of relationship with
CIS-fatigue may relate to the low variability in CIS-fatigue scores
as patients were selected to be severely fatigued on this score. It
may also suggest that SMN-PMN connectivity more likely reflects
the daily fatigue, rather than overall fatigue measured retrospect-
ively across 2 weeks. Daily fatigue was measured as the average

Figure 3. Treatment effects (T1 minus T0) on connectivity measures. (a) Visualization of the four networks that were included in the matrix analysis (all left).
Change in connectivity (T1 minus T0) is shown for CBT v. WL. The lower triangle shows correlations for all regions, the upper triangle shows the reduced matrix
with the averaged correlations per network connection. CBT significantly increased connectivity between SMN and DMN compared to WL (T =−3.045, beta =−0.084,
pfdr = 0.038). ** p < 0.05 fdr-corrected for multiple comparisons. (b) Confirmation of the network analysis by the seed-based analysis using the SMN-seed (left). CBT
increased connectivity in the mPFC and Precuneus compared to WL. (c) Visualization of the change in SMNseed-mPFC connectivity in the CBT, WL, and HC groups.
An increase in SMNseed-mPFC connectivity was driven by the CBT group (CBT v. HC: F53,1 = 7.535, p = 0.008), while a smaller decrease was observed for the WL
group (WL v. HC: F38,1 = 4178, p = 0.048). * = p < 0.05, ** = p < 0.01, ns, not significant. (d) Correlations between SMNseed-mPFC connectivity and the clinical measures
state fatigue across the testing day (beta =−0.42, p = 0.023) and pain occurrence (beta =−0.47, p = 0.029) within the CBT group. CBT, cognitive behavioral therapy;
WL, waiting list; SMN, somato motor network; PMN, premotor network; DMN, default mode network; FPN, fronto parietal network; mPFC, medial prefrontal cortex.
** p < 0.05 fdr-corrected for multiple comparisons, * p < 0.05 uncorrected. Abbreviations of the individual regions in the matrix can be found in online
Supplementary Table S1.
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score on the POMS-subscale fatigue across three measurements
during the test day. It was higher and more variable in ME/CFS
patients compared to HC and reduced after CBT compared to
WL. Accordingly this measure of overall fatigue during the testing
day likely also captures clinical aspects of fatigue that was inde-
pendent from patient selection.

Alterations in sensorimotor function have been linked physio-
logical fatigue after 40 min on a bicycle ergometer (Hu et al.,
2022) and effort-perception (Zenon, Sidibe, & Olivier, 2015).
Specifically, current neurobiological accounts state that fatigue
and high effort perception arise when sensory consequences of
actions (processed in sensorimotor regions) do not match the
proprioceptive prediction (i.e. the efference copy signaled by the
SMA) (Greenhouse-Tucknott et al., 2022; Kuppuswamy, 2021;

Stephan et al., 2016). Thus, when muscle performance reduces
after prolonged activity, compared to the initially planned or
desired performance, a prediction error occurs, signaling fatigue.
The observed increase in connectivity between premotor and sen-
sorimotor networks may therefore reflect altered communication
between the SMA that signals intended actions plans and
the SMN that signals the actual sensory consequence of those
actions. It might be possible that the resulting prediction errors
arise quicker in ME/CFS patients, or are not adequately resolved
by rest. This could explain the elevated sense of effort and
prolonged recovery time after exercise in ME/CFS patients
(Barhorst et al., 2020). To further investigate this, future research
could assess sensorimotor functioning during and after physical
exertions tasks.

Table 5. Change in Fisher’s z transformed correlations (S.E.M.) within and between the four networks for CBT, WL, and HC.

T1 minus T0

t value t value t value

CBT WL HC CBT v. WL CBT v. HC WL v. HC

Within SMN 0.071 (0.03) 0.081 (0.048) −0.042 (0.038) 0.241 −2.585 * −2.347 *

Within DMN −0.006 (0.019) −0.025 (0.024) 0.004 (0.021) −0.817 0.203 1.053

Within FPN 0.01 (0.013) 0.009 (0.019) 0.005 (0.015) −0.037 −0.131 −0.046

Within PMN 0.011 (0.031) −0.026 (0.04) −0.014 (0.034) −0.711 −0.313 0.238

SMN-DMN 0.027 (0.015) −0.053 (0.023) 0.001 (0.014) −3.045 ** −1.215 2.135 *

SMN–FPN 0.051 (0.026) 0.013 (0.032) 0.002 (0.029) −0.953 −1.395 −0.445

SMN–PMN 0.033 (0.016) 0.005 (0.026) 0.018 (0.017) −1.016 −0.559 0.621

DMN–FPN −0.029 (0.011) −0.002 (0.014) −0.021 (0.013) 1.758 0.406 −1.139

DMN-PMN −0.019 (0.016) 0.014 (0.029) −0.017 (0.017) 1.18 0.169 −0.952

FPN–PMN 0.009 (0.02) 0.015 (0.021) 0.001 (0.025) −0.05 −0.279 −0.192

SMN, somato-motor network; DMN, default mode network; FPN, fronto-parietal network; PMN, premotor network; ME/CFS, myalgic encephalomyelitis/chronic fatigue syndrome; HC, healthy
controls.
** p < 0.05 fdr corrected for multiple comparisons. * p < 0.05 uncorrected.

Table 6. Beta values of the relationships between the change in connectivity (z scored Pearsons correlation) and the change in the four covariates of interest within
the CBT group

T1 minus T0 (within the CBT group)

ΔCIS-fatigue Δfatigue on testing day ΔPain severity ΔPain occurrence

Within SMN 0.039 0.006 0.035 −0.205

Within DMN 0.016 0.01 0.018 −0.044

Within FPN 0.007 0.014 −0.016 −0.323

Within PMN 0.008 −0.01 0.025 −0.355

SMN-DMN −0.016 −0.004 −0.029 * −0.045

SMN-FPN 0.004 0.018 −0.006 −0.697

SMN-PMN 0.021 −0.009 0.015 −0.492

DMN-FPN 0.011 0.004 −0.023 * −0.04

DMN-PMN −0.002 0.008 −0.036 * −0.014

FPN-PMN −0.02 −0.006 −0.011 −0.502

SMN, somato-motor network; DMN, default mode network; FPN, fronto-parietal network; PMN, premotor network. Fatigue on testing day was measured using the Profile of Mood State
questionnaire (POMS)
Age and education were included as covariates of no interest. ** p < 0.05 fdr corrected for multiple comparisons, * p < 0.05 uncorrected.
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In line with our hypotheses and a previous study linking
DLPFC gray matter volume in ME/CFS to pain rather than fatigue
(van der Schaaf et al., 2017), the current study also suggests
modality specific involvement of DLPFC connectivity in pain.
There was a non-significant trend for a relationship between
pain and PMN-FPN connectivity, and seed-based analysis further
specified that SMA-DLPFC connectivity was driven by
RAND-pain and pain-occurrence and not by CIS-fatigue or
POMS-fatigue. DLPFC’s connection with premotor regions has
recently been associated with movement-evoked pain in chronic
low back pain patients (Wang et al., 2021). Moreover, a
meta-analysis linked SMA and premotor regions to pain-related
motor function, while its connection with the DLPFC is import-
ant for selecting appropriate responses to pain (de la Vega, Chang,
Banich, Wager, & Yarkoni, 2016). Accordingly, this connection
potentially relates to the motor consequences of pain symptoms,
which is consistent with the RAND-pain measure which not
only assesses pain severity, but also its impact on daily activities.

Lower connectivity of the DMN with the SMN and PMN were
associated with more fatigue and pain symptoms, respectively.
This is in line with reports of decreased DMN connectivity with
non-DMN networks in both pain and fatigue pathologies
(Davis & Moayedi, 2013; Farmer et al., 2012; Maksoud et al.,
2020). We hypothesized that CBT would also differentially modu-
late fatigue and pain related connections (i.e. DMN-SMN and
DMN-PMN, respectively), but this is not what we observed.
Instead, we observed that CBT-induced clinical improvements
in both fatigue and pain (i.e. CIS-fatigue, POMS-fatigue, and
pain occurrence) were related to increased connectivity between
the frontal DMN and the fatigue-related SMN. Direct comparison
with HC revealed that these changes of frontal DMN connectivity
(i.e. mPFC) occurred in the CBT and not the WL group.
Together, this suggests successful CBT involves frontal DMN
modulation of modality specific fatigue-related cortical networks

The DMN and vmPFC have been associated with the evalu-
ation of current and future bodily states (Gottfried, O’Doherty,
& Dolan, 2003; Hare, O’Doherty, Camerer, Schultz, & Rangel,
2008; Robinson & Berridge, 2013; Wagner, Rutgen, Hummer,
Windischberger, & Lamm, 2020) which modulates sensory per-
ception and motivated behavior, through their connections with
sensorimotor and premotor regions (Adams, Shipp, & Friston,
2013; Ashar, Chang, & Wager, 2017; Bar, 2007; Dohmatob,
Dumas, & Bzdok, 2020; Geuter, Koban, & Wager, 2017). This
makes it a central network that is particularly important for allos-
tasis i.e. the ability to control behavior (including autonomic
responses) in anticipation of homeostatic disturbances (Ashar
et al., 2017; Geuter et al., 2017; Stephan et al., 2016). The observed
reduced connectivity of the DMN with PMN and SMN in patients
with more pain and fatigue may therefore point toward subopti-
mal integration of anticipated consequences of actions on bodily
states and current sensory/introspective processing and motor
planning. At a behavioral level, this may result in biased action-
selections that depend on anticipated effort-costs or pain, includ-
ing avoidance of activities that are expected to cause (too much)
fatigue or pain (Becker, Gandhi, & Schweinhardt, 2012; Hogan,
Chen, Teh, & Chib, 2020; Iodice et al., 2017; Kuppuswamy,
2021; Lacourt et al., 2018a; Muller, Klein-Flugge, Manohar,
Husain, & Apps, 2021; van der Schaaf et al., 2018). CBT may
be effective (at least in a subset of patients) by regaining the mod-
ulatory role of the vmPFC on sensory-motor regions, thereby
reducing discrepancies between anticipated and actual sensory
consequences of actions. Indeed, CBT for ME/CFS aims to reduce

fatigue by changing cognitions and expectations about
fatigue-related activities, to ultimately reduce fatigue and improve
self-efficacy to control fatigue. As CBT was focused on fatigue,
rather than pain, it may have more strongly affected the fatigue
related SMN network. Alternatively, SMN modulation may have
simultaneously reduced pain by altering sensory processing of
pain. Unfortunately, as changes in fatigue and pain were highly
correlated, we cannot state whether the change in SMN-DMN con-
nectivity reflects the change in both symptoms or in fatigue only.
Additionally, as CBT was compared to a WL condition, it remains
to be determined whether these effects are specific to CBT or
whether other (behavioral) treatments may have similar effects.

Some limitations of the current study need to be addressed.
First, limiting analysis to a selection of a priori defined networks
(van der Schaaf et al., 2017; van der Schaaf et al., 2018), may have
excluded some pain- or fatigue-related regions. However, explora-
tory uncorrected whole brain analyses (online Supplementary
Results and Figs S3–S6) confirmed our main results and point
toward potential involvement of cerebellar, basal ganglia and
mesolimbic networks which require further confirmation in new
independent samples.

Second, in contrast to our expectations, there were no baseline
differences between ME/CFS patients and healthy controls. One pos-
sibility is that only a subset of ME/CFS patients shows reduced con-
nectivity at baseline, and that this did not surface in a group
comparison. This may limit conclusions about a clear disease-related
pathology. Another reason for a lack of difference is that ME/CFS is
a heterogeneous condition and involves various symptoms that con-
tribute with varying extend to the clinical presentation of ME/CFS.
The substantial individual variability in symptom profiles may result
in variable changes across brain networks that may not surface in a
group comparison (van der Schaaf et al., 2017).

The main aim of this study was to gain insight into symptom
specific pathology in ME/CFS and to identify partly dissociable
patterns of neural connectivity for pain and fatigue symptoms.
This requires assessment of the relationships between (changes
in) symptoms and (changes in) connectivity measures within
the patient group itself (Kuppuswamy, 2023), rather than a
group comparison with healthy controls. The lack of group differ-
ences and presence of symptom specific associations further high-
lights the need for a multidimensional approach to ME/CFS,
where various combinations of symptoms expressions may relate
to different underlying (neuro)biological pathologies.

Although the current study used the U.S. Centers for Disease
Control (CDC)-criteria for ME/CFS (revised in 2003) (Fukuda
et al., 1994; Reeves et al., 2003), as preregistered (van Der Schaaf
et al., 2015), there was considerable overlap with the Canadian
and Institute of Medicine criteria (see the online Supplement of
van der Schaaf et al. (2017). Accordingly, similar variability in
symptoms is expected from alternative ME/CFS criteria.

Third, CBT was only effective in a subset of patients and only
affected some neural networks, highlighting the need to further
investigate why some patients benefit from CBT and others do
not. In addition, as baseline results were correlational no causality
can be inferred. It remains unclear whether altered connectivity
reflected a ‘central’ or cognitive problem, or whether it results
from persistent peripheral abnormalities. Studies assessing in
whom and to what extend neural networks and symptoms are
affected by central and peripheral causes are therefore warranted.
While the former could be effectively treated by CBT or non-
invasive brain-stimulation of sensorimotor regions (Ashrafi,
Mohseni-Bandpei, & Seydi, 2020; Cancelli et al., 2018; Porcaro
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et al., 2019; Zenon et al., 2015), the latter would require a better
understanding of potential biological factors that may underlie
ME/CFS (Proal & VanElzakker, 2021), including altered immune
function (Raijmakers et al., 2019a; Raijmakers et al., 2019b;
Raijmakers et al., 2020; VanElzakker, Brumfield, & Lara Mejia,
2018), altered expression of the tryptophan-catabolizing enzyme
indoleamine 2,3-dioxygenase-2 (IDO2) (Guo et al., 2023),
changes in energy metabolism (Lacourt, Vichaya, Chiu, Dantzer,
& Heijnen, 2018b), muscle function (Soares et al., 2022) and/or
(neuro) inflammation (Albrecht et al., 2019; Nakatomi et al.,
2014; Nieuwland et al., 2023) (but see (Raijmakers et al., 2022).
Together, this could ultimately improve and individualize
both existing treatments, while also providing insights for new
treatment-targets.

Using the largest sample of ME/CFS patients to date, this study
highlights specific roles for SMN and DLPFC connectivity in
fatigue and pain symptoms, respectively, that are commonly
modulated by the DMN. CBT may reduce symptoms in
CBT-responsive patients by altering DMN modulation of modal-
ity specific networks. Further investigation of the specific roles of
these networks in fatigue and pain symptoms and how they are
affected by cognitive and/or biological factors are warranted to
better individualize existing and new treatments for ME/CFS.
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