
JFP 16 (4&5): 451–483, 2006. c© 2006 Cambridge University Press

doi:10.1017/S0956796806006022 Printed in the United Kingdom

451

Generics for the masses

RALF HINZE

Institut für Informatik III, Universität Bonn, Römerstraße 164, 53117 Bonn, Germany

(e-mail: ralf@informatik.uni-bonn.de)

Abstract

A generic function is a function that can be instantiated on many data types to obtain

data type specific functionality. Examples of generic functions are the functions that can be

derived in Haskell, such as show , read , and ‘ ’. The recent years have seen a number of

proposals that support the definition of generic functions. Some of the proposals define new

languages, some define extensions to existing languages. As a common characteristic none

of the proposals can be made to work within Haskell 98: they all require something extra,

either a more sophisticated type system or an additional language construct. The purpose of

this paper is to show that one can, in fact, program generically within Haskell 98 obviating

to some extent the need for fancy type systems or separate tools. Haskell’s type classes are at

the heart of this approach: they ensure that generic functions can be defined succinctly and,

in particular, that they can be used painlessly. We detail three different implementations of

generics both from a practical and from a theoretical perspective.

Capsule Review

If you like programming techniques that deploy well-known tools in new and ingenious ways,

you will like this paper. It shows how to use standard Haskell 98 type classes to write generic

programs; that is, programs that work unchanged on arbitrary new data types, provided you

do a small, fixed amount of work for each such new data type.

Generic programming is a subject with a rich and subtle design space. Although Hinze’s

solution has its shortcomings, it has a particularly elegant economy of mechanism. It repays

careful study, both as a programming exercise, and as a practically-useful technique.

1 Introduction

A type system is like a suit of armour: it shields against the modern dangers of

illegal instructions and memory violations, but it also restricts flexibility. The lack

of flexibility is particularly vexing when it comes to implementing fundamental

operations such as showing a value or comparing two values. In a statically typed

language such as Haskell 98 (Peyton Jones, 2003) it is simply not possible to define

an equality test that works for all types. Polymorphism does not help: equality is not

a polymorphic function since it must inspect its arguments. Static typing dictates

that equality becomes a family of functions containing a tailor-made instance of

equality for each type of interest. Rather annoyingly, all these instances have to be

programmed.

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

452 R. Hinze

More than a decade ago the designers of Haskell noticed and partially addressed

this problem. By attaching a so-called deriving form to a data type declaration the

programmer can instruct the compiler to generate an instance of equality for the

new type.1 In fact, the deriving mechanism is not restricted to equality: parsers,

pretty printers and several other functions are derivable, as well. These functions

have to become known as data-generic or polytypic functions, functions that work

for a whole family of types. Unfortunately, Haskell’s deriving mechanism is closed:

the programmer cannot introduce new generic functions.

The recent years have seen a number of proposals (Jansson & Jeuring, 1997;

Hinze & Peyton Jones, 2001; Cheney & Hinze, 2002; Hinze & Jeuring, 2003b;

Norell & Jansson, 2003) that support exactly this, the definition of generic functions.

Some of the proposals define new languages, some define extensions to existing

languages. However, none of the proposals can be made to work within Haskell 98:

they all require something extra, either a more sophisticated type system or an

additional language construct.

The purpose of this paper is to show that one can, in fact, program generically

within Haskell 98 obviating to some extent the need for fancy type systems or sepa-

rate tools. The proposed approach is extremely light-weight; each implementation of

generics—we will introduce three major ones and a few variations—consists roughly

of two dozen lines of Haskell code. The technique is surprisingly expressive: we can

define all the generic functions presented, for instance, in Hinze (2002). Of course,

there are also limitations: for instance, defining functions that involve generic types

(Hinze et al., 2004) seems out of reach. On the other hand, the code can be easily

adapted to one’s needs. Indeed, the reader is cordially invited to play with the

material. The source code can be found at

http://www.informatik.uni-bonn.de/~ralf/masses.tar.bz2

We have also included several exercises to support digestion of the material and to

stimulate further experiments.

The rest of the paper is structured as follows. The first part, consisting of Sections 2,

3 and 4, introduces three implementations of generics. This part is largely written

in a tutorial style introducing the approach to a potential user, that is, a generic

programmer. The theoretical background is then investigated in the second part,

Section 5, which derives the two major approaches from first principles. The two

parts are largely independent. The reader who is keen to see the inner workings

may wish to skim through the first part, read the second part and then go back

to the first. Finally, Section 6 summarizes the main points and Section 7 provides

references for further studies and reviews related work.

1 Actually, in Haskell 1.0 the compiler would always generate an instance of equality. A deriving form
was used to restrict the instances generated to those mentioned in the form. To avoid the generation
of instances altogether, the programmer had to supply an empty deriving clause.

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

Generics for the masses 453

2 Generic functions on types

This section discusses our first implementation of generics. Section 2.1 shows how

to embed a generic definition into Haskell 98 covering what you would expect from

a paper on generics. However, this is not the whole story. Whenever the user defines

a new data type, she has to do a bit of extra work so that a generic function can

be instantiated to that type. This extra work is detailed in Section 2.2. Furthermore,

some additional code is needed, which is shared among the generic definitions.

Section 2.3 provides the details.

Most if not all approaches to generics contain these three facets: code for generic

definitions, per data type code, and shared library code. In most cases, however, the

per data type code is not burdened upon the generic programmer but is generated

automatically. In a sense, this is the price we have to pay for staying within

Haskell 98. On the other hand, since neither language extensions nor compiler mod-

ifications are required, the approach can be easily modified or extended. Section 2.4

takes a look at various extensions, some obvious and some perhaps less so.

2.1 Defining a generic function

Let us tackle a concrete problem. Suppose we want to encode elements of various

data types as bit strings implementing a simple form of data compression. For

simplicity, we represent a bit string by a list of bits.

type Bin = [Bit]

data Bit = 0 | 1 deriving (Show)

bits :: (Enum α)⇒ Int → α→ Bin

We assume a function bits that encodes an element of an enumeration type using

the specified number of bits. We seek to generalize bits to a function showBin that

works for arbitrary types. Here is a simple interactive session that illustrates the use

of showBin (note that characters consume 7 bits and integers 16 bits).

Main〉 showBin 3

[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Main〉 showBin [3, 5]

[1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Main〉 showBin "Lisa"

[1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0]

A string of length n , for instance, is encoded in 8 ∗ n + 1 bits.

Implementing showBin so that it works for arbitrary data types seems like a hard

nut to crack. The good news is that it suffices to define showBin for primitive types

and for three elementary types: the one-element type, the binary sum, and the binary

product.

data Unit = Unit

data Plus α β = Inl α | Inr β

data Pair α β = Pair{outl :: α, outr :: β }

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

454 R. Hinze

As an aside, the latter definition uses Haskell’s record syntax to simultaneously

introduce a constructor function Pair :: α → β → Pair α β and two selector

functions outl :: Pair α β → α and outr :: Pair α β → β.

Why these three types? Well, Haskell’s construct for defining new types, the data

declaration, introduces a type that is isomorphic to a sum of products. Thus, if

we know how to compress sums and products, we can compress elements of an

arbitrary data type. More generally, we can handle a type σ if we can handle some

representation type τ that is isomorphic to σ. The details of the representation type

are largely irrelevant, so we abstract away from them: When programming a generic

function it suffices to know the two mappings that witness the isomorphism.

data Iso α β = Iso{fromData :: β → α, toData :: α→ β }

In what follows β will always be the original data type and α its representation type.

Turning to the implementation of showBin , we first have to provide the signature

of the generic function. Rather unusually, we specify the type using a newtype

declaration.

newtype ShowBin α = ShowBin{appShowBin :: α→ Bin }

An important point is that you should read the above declaration as a type signature;

the newtype declaration is just an idiom for embedding generics in Haskell 98.

An element of ShowBin σ is an instance of showBin that encodes values of

type σ as bit strings. We know that the generic function showBin itself cannot be a

genuine polymorphic function of type α → Bin . Data compression does not work

for arbitrary types, but only for types that are representable. Representable means

that the type can be represented by a certain value. For the moment, it suffices to

know that a type representation is simply an overloaded value called rep. The first

part of the generic compression function is then given by the following definition.

showBin :: (Rep α)⇒ α→ Bin

showBin = appShowBin rep

Loosely speaking, we apply the generic function to the type representation rep.

Of course, this is not the whole story. The code above defines only a convenient

shortcut. The actual definition of showBin is provided by an instance declaration,

but you should read it instead as just a generic definition.

instance Generic ShowBin where

unit = ShowBin (λx → [])

plus = ShowBin (λx → case x of Inl l → 0 : showBin l

Inr r → 1 : showBin r)

pair = ShowBin (λx → showBin (outl x) ++ showBin (outr x))

datatype iso = ShowBin (λx → showBin (fromData iso x))

char = ShowBin (λx → bits 7 x)

int = ShowBin (λx → bits 16 x)

The class Generic has six member functions corresponding to the elementary types,

Unit , Plus , and Pair , and to a small selection of primitive types, Char and Int .

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

Generics for the masses 455

newtype Poly α = Poly{appPoly :: π α}
poly :: (Rep α)⇒ π α

poly = appPoly rep

instance Generic Poly where

unit = Poly (. . .)

plus = Poly (. . . poly . . . poly . . .)

pair = Poly (. . . poly . . . poly . . .)

datatype iso = Poly (. . . (fromData iso) . . . poly . . . (toData iso) . . .)

char = Poly (. . .)

int = Poly (. . .)

Fig. 1. A template for generic definitions on types.

The member function datatype, which slightly breaks ranks, deals with arbitrary

data types. Each method binding defines the instance of the generic function for the

corresponding type. Let us consider each case in turn. To encode the single element

of the type Unit no bits are required (read: the instance of showBin for the Unit

type is λx → []). To encode an element of a sum type, we emit one bit for the

constructor followed by the encoding of its argument. The encoding of a pair is

given by the concatenation of the component’s encodings. To encode an element of

an arbitrary data type, we first convert the element into a sum of products, which is

then encoded. Finally, characters and integers are encoded using the function bits .

That’s it, at least, as far as the generic function is concerned. Figure 1 summarizes

the idioms you have to use for defining a generic function poly of type π α, where

α marks the generic part (the parts in ellipsis have to be filled in). Before we can

actually compress data to strings of bits, we first have to turn the types of the

to-be-compressed values into representable types, which is what we will do next.

Exercise 1. Implement a generic version of Haskell’s comparison function compare ::

(Rep α) ⇒ α → α → Ordering . Follow the scheme above: first turn the signature

into a newtype declaration, then define compare, and finally provide an instance of

Generic. �

Exercise 2. Implement a function readBin :: (Rep α) ⇒ Bin → α that decodes a bit

string that was encoded by showBin . �

2.2 Defining a new type

A generic function such as showBin can only be instantiated to a representable type.

By default, only the elementary types, Unit , Plus , and Pair , and the primitive types

Char and Int are representable. So, whenever we define a new data type and we

intend to use a generic function on that type, we have to do a little bit of extra

work. As an example, consider the data type of binary leaf trees.

data Tree α = Leaf α | Fork (Tree α) (Tree α)

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

456 R. Hinze

We have to show that this type is representable. To this end we exhibit an isomorphic

type built from representable type constructors. We call this type the structure type

of Tree, denoted Tree′.

type Tree′ α = Plus α (Pair (Tree α) (Tree α))

The main work goes into defining two mappings, fromTree and toTree, which certify

that Tree α and its structure type Tree′ α are indeed isomorphic.

instance (Rep α)⇒ Rep (Tree α) where

rep = datatype (Iso fromTree toTree)

fromTree :: Tree α→ Tree′ α

fromTree (Leaf x) = Inl x

fromTree (Fork l r) = Inr (Pair l r)

toTree :: Tree′ α→ Tree α

toTree (Inl x) = Leaf x

toTree (Inr (Pair l r)) = Fork l r

Perhaps surprisingly, the structure type may contain the original type. This is valid

and, in fact, the standard approach for recursive types since the original type

becomes representable by virtue of the instance declaration.

Remark 1

Strictly speaking, the type Tree α and its structure type Tree′ α are not isomorphic

in Haskell since Plus is a lifted sum. This can be safely ignored if the trees on

which the generic functions operate are always fully defined. We have to be careful,

however, if the functions also deal with partial trees. In this case, the definition of

toTree should be changed to

toTree (Inl x) = Leaf x

toTree (Inr (∼(Pair l r))) = Fork l r

so that Inr ⊥ is mapped to Fork ⊥ ⊥ rather than ⊥. In general, we have to take

care that the mapping to the data type is sufficiently lazy. �

As a second example, here is the encoding of Haskell’s list data type.

type List ′ α = Plus Unit (Pair α [α])

instance (Rep α)⇒ Rep [α] where

rep = datatype (Iso fromList toList)

fromList :: [α]→ List ′ α

fromList [] = Inl Unit

fromList (x : xs) = Inr (Pair x xs)

toList :: List ′ α→ [α]

toList (Inl Unit) = []

toList (Inr (Pair x xs)) = x : xs

The Unit type is used for encoding constructors with no arguments. If a data type

has more than two alternatives, or if a constructor has more than two arguments,

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

Generics for the masses 457

type T ′ α1 . . . αn = . . .

instance (Rep α1, . . . ,Rep αn)⇒ Rep (T α1 . . . αn) where

rep = datatype (Iso fromT toT)

fromT :: T α1 . . . αn → T ′ α1 . . . αn
fromT = . . .

toT :: T ′ α1 . . . αn → T α1 . . . αn
toT = . . .

Fig. 2. A template for making types representable.

we have to nest the binary type constructors Plus and Pair accordingly. Actually,

we are more flexible than this: we can map the new type to any other type as long

as the target type is an instance of Rep. For instance, we could map elements of

some efficient sequence type (Okasaki, 1997) to lists. This flexibility is even necessary

if the structure of a type is not available as in the case of abstract types. Figure 2

summarizes the per data type work.

Exercise 3. Turn the following types into instances of Rep.

data Shrub α β = Tip α | Node (Shrub α β) β (Shrub α β)

data Rose α = Branch α [Rose α] �

Exercise 4. Write a program that takes a data type definition and generates the

Haskell source for the Rep instance. Use a tool such as DrIFT (2005) or the

Template Haskell extension (Sheard & Peyton Jones, 2002) if you like. �

2.3 Implementing the shared library code

The implementation of light-weight generics is surprisingly concise: apart from

declaring the two classes, Generic and Rep, we only provide a handful of instance

declarations. To begin with, the class Generic accommodates the different instances

of a generic function.

class Generic g where

unit :: g Unit

plus :: (Rep α,Rep β)⇒ g (Plus α β)

pair :: (Rep α,Rep β)⇒ g (Pair α β)

datatype :: (Rep α)⇒ Iso α β → g β

char :: g Char

int :: g Int

The class abstracts over the type constructor g , the type of a generic function. This

is why unit has type g Unit . In the case of Plus and Pair the corresponding method

has an additional context that constrains the type arguments of Plus and Pair to

representable types. This context is necessary so that a generic function can recurse

on the component types. In fact, the context allows us to call any generic function,

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

458 R. Hinze

so that we can easily define mutually recursive generic functions. We will see an

example of this in the next section.

As a technical aside, in the introductory example in Section 2.1 the type constructor

g was ShowBin . Since Haskell restricts class instances to data types, introduced by

data or newtype declarations, the type signature of a generic function must be given

by a newtype rather than a type definition.

Now, what does it mean for a type to be representable? For our purposes, this

simply means that we can instantiate a generic function to that type. So an intriguing

choice is to identify type representations with generic functions.

class Rep α where

rep :: (Generic g)⇒ g α

Note that the type variable g is implicitly universally quantified: the type represen-

tation must work for all types g that are instances of Generic. This is quite a strong

requirement. How can we possibly define an instance of Rep? The answer lies in the

type of rep: we have to use the methods of class Generic. Recall that unit has type

(Generic g)⇒ g Unit . Thus, we can turn Unit into an instance of Rep.

instance Rep Unit where

rep = unit

instance (Rep α,Rep β)⇒ Rep (Plus α β) where

rep = plus

instance (Rep α,Rep β)⇒ Rep (Pair α β) where

rep = pair

instance Rep Char where

rep = char

instance Rep Int where

rep = int

Strange as the instance declarations may possibly seem, each of them has a logical

explanation. A type is representable if we can instantiate a generic function to that

type. But the class Generic just contains the instances of generic functions. Thus, each

method of Generic with the notable exception of datatype gives rise to an instance

declaration. We have seen in Section 2.2 that the method datatype is used to make

an arbitrary type an instance of Rep. The procedure described in Section 2.2 is, in

fact, dictated by datatype’s type (Rep α)⇒ Iso α β → g β: to make β representable

we have to provide an isomorphic type α which in turn is representable.

The type of rep, namely, (Rep α,Generic g) ⇒ g α is quite remarkable. In a

sense, rep can be seen as the mother of all generic functions. This explains, in

particular, the definition of showBin in Section 2.1: the field selector appShowBin

has type ShowBin α → (α → Bin); the application appShowBin rep implicitly

instantiates rep’s type to (Rep α)⇒ ShowBin α, which the field selector then turns to

(Rep α) ⇒ α → Bin . Note that the classes Generic and Rep are mutually recursive:

each class lists the other one in a method context.

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

Generics for the masses 459

2.4 Extensions

2.4.1 Additional type cases

The class Generic can be seen as implementing a case analysis on types. Each

method corresponds to a case branch. Types not listed as class methods are handled

completely generically. However, this is not always what is wanted. As an example,

recall that the encoding of a list of length n takes n + 1 bits plus the space for the

encoding of the elements. A better method is to first encode the length of the list

and then to concatenate the encodings of the elements. In order to treat the list type

as a separate case, we have to add a new method to the class Generic.

class Generic g where

. . .

list :: (Rep α)⇒ g [α]

list = datatype (Iso fromList toList)

instance (Rep α)⇒ Rep [α] where

rep = list

So, the bad news is that we have to change a class definition, which suggests that

Generic is not a good candidate for inclusion in a library (unless one can anticipate

all future type cases). The good news is that by supplying a default definition for list

this change does not affect any of the instance declarations: all the generic functions

work exactly as before. In other words, the modification is a very local one but

requires access to the source code. The new ShowBin instance overrides the default

definition.

instance Generic ShowBin where

. . .

list = ShowBin (λx → bits 16 (length x) ++ concatMap showBin x)

The technique relies on Haskell’s concept of default class methods: only if the

instance does not provide a binding for the list method, then the default class

method is used.

Exercise 5. Adopt readBin to the new encoding of lists. �

2.4.2 A default type case

Using the same technique we can also implement a default or catch-all type case.

class Generic g where

. . .

default :: (Rep α)⇒ g α

unit = default

plus = default

pair = default

char = default

int = default

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

460 R. Hinze

Now, the generic programmer can either define unit , plus , pair , char , int or simply

default (in addition to datatype).2 A default type case is useful for saying ‘treat all

the type cases not explicitly listed in the following way’. We will see an example

application in Section 2.4.4.

2.4.3 Accessing constructor names

So far, the structure type captures solely the structure of a data type, hence its name.

However, in Haskell there is more to a data type than this: a data constructor has a

unique name, an arity, possibly a fixity, and possibly named fields. We are free to add

all this information to the structure type. There are, in fact, several ways to accom-

plish this: we discuss one alternative in the sequel, Exercise 6 sketches a second one.

To record the properties of a data constructor we use the data type Constr—we

confine ourselves to name and arity.

type Name = String

type Arity = Int

data Constr α = Constr{name :: Name,

arity :: Arity ,

arg :: α}

As an example, here is a suitable redefinition of fromTree and toTree.

type Tree′ α = Plus (Constr α) (Constr (Pair (Tree α) (Tree α)))

fromTree :: Tree α→ Tree′ α

fromTree (Leaf x) = Inl (Constr "Leaf" 1 x)

fromTree (Fork l r) = Inr (Constr "Fork" 2 (Pair l r))

toTree :: Tree′ α→ Tree α

toTree (Inl (Constr n a x)) = Leaf x

toTree (Inr (Constr n a (Pair l r))) = Fork l r

Note that, for reasons explained below, toTree simply discards the additional Constr

wrapper. So strictly, the two functions do not define an isomorphism. This is not a

problem, however, as long as we do not cheat with the constructor names (such as

attaching Constr "Leaf" 1 to the representation of a Fork constructor).

It remains to introduce a new type case for constructors and to add Constr to the

league of representable types.

class Generic g where

. . .

constr :: (Rep α)⇒ g (Constr α)

constr = datatype (Iso arg wrap)

where wrap a = Constr ⊥ ⊥ a

instance (Rep α)⇒ Rep (Constr α) where

rep = constr

2 Unfortunately, if we specify all the type cases except default , we get a compiler warning saying that
there is no explicit method nor default method for default .

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

Generics for the masses 461

newtype Pretty α = Pretty{appPretty :: α→ Doc }
pretty :: (Rep α)⇒ α→ Doc

pretty = appPretty rep

instance Generic Pretty where

unit = Pretty (λx → empty)

plus = Pretty (λx → case x of Inl l → pretty l

Inr r → pretty r)

pair = Pretty (λx → pretty (outl x) 〈〉 line 〈〉 pretty (outr x))

datatype iso

= Pretty (λx → pretty (fromData iso x))

char = Pretty (λx → prettyChar x)

int = Pretty (λx → prettyInt x)

list = Pretty (λx → prettyl pretty x)

constr = Pretty (λx → let s = text (name x) in

if arity x 0

then s

else group (nest 1 (text "(" 〈〉 s 〈〉 line

〈〉 pretty (arg x) 〈〉 text ")")))

prettyl :: (α→ Doc)→ ([α]→ Doc)

prettyl p [] = text "[]"

prettyl p (a : as) = group (nest 1 (text "[" 〈〉 p a 〈〉 rest as))

where rest [] = text "]"

rest (x : xs) = text "," 〈〉 line 〈〉 p x 〈〉 rest xs

Fig. 3. A generic prettier printer

Note that arg , which is used in the default method for constr , is a field selector of

the data type Constr . It is important that we have a default case for constr so that

a generic function that does not require the additional information need not define

a constr case. Since the helper function wrap necessarily adds undefined name and

arity fields, the mapping toTree and colleagues have to ignore the decoration.

Figure 3 displays a simple pretty printer, based on Wadler’s prettier printing library

(2003), that puts the additional information to good use. The plus case discards the

constructors Inl and Inr as they are not needed for showing a value. The constr

case signals the start of a constructed value. If the constructor is nullary, its string

representation is emitted. Otherwise, the constructor name is printed followed by

a space followed by the representation of its arguments. The pair case applies

if a constructor has more than one component. In this case the components are

separated by a space. Finally, list takes care of printing lists using standard list

syntax: comma-separated elements between square brackets.

The approach above works well for pretty printing but, unfortunately, fails

for parsing. The problem is that the constructor names are attached to a value.

Consequently, this information is not available when parsing a string. The important

point is that parsing produces (not consumes) a value, and yet it requires access to

the constructor name. An alternative approach, discussed in the exercise below, is

to attach the information to the type (more accurately, to the type representation).

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

462 R. Hinze

Exercise 6. Augment the datatype method by an additional argument

datatype :: (Rep α)⇒ DataDescr → Iso α β → g β

that records information about the data type and its constructors. Re-implement the

pretty printer using this modification instead of the constr case. Hint: also extend

pretty by a DataDescr argument. �

Exercise 7. Use the extension of the previous exercise and a parser library of your

choice to implement a generic parser analogous to Haskell’s read method. �

2.4.4 Mutual recursion

In Haskell, the Show class takes care of pretty printing. The class is very carefully

crafted so that strings, which are lists of characters, are shown in double quotes,

rather than between square brackets. It is instructive to re-program this behaviour

as the new code requires all three extensions introduced above.

Basically, we have to implement a nested case analysis on types. The outer type

case checks whether we have a list type; the inner type case checks whether the type

argument of the list type constructor is Char . In our setting, a nested type case can

be encoded using a pair of mutually recursive generic functions. The first realizes

the outer type case.

instance Generic Pretty where

. . .

list = Pretty (λx → prettyList x)

The instance declaration is the same as before, except that the list method dispatches

to the second function which corresponds to the inner type case.

newtype PrettyList α = PrettyList{appPrettyList :: [α]→ Doc }
prettyList :: (Rep α)⇒ [α]→ Doc

prettyList = appPrettyList rep

instance Generic PrettyList where

char = PrettyList (λx → prettyString x)

datatype iso = PrettyList (λx → prettyl prettyd x)

where prettyd = pretty · fromData iso

list = default

default = PrettyList (λx → prettyl pretty x)

The PrettyList instance makes use of a default type case which implements

the original behaviour (comma-separated elements between square brackets). The

datatype method is similar to default except that the list elements are first converted

to the structure type. Note that the list method must be explicitly set to default

because it has the ‘wrong’ default class method: datatype (Iso fromList toList)

instead of default . Finally, the char method takes care of printing strings in double

quotes.

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

Generics for the masses 463

3 Generic functions on type constructors

Let us now turn to an alternative implementation of generics, which will increase

flexibility at the cost of automation.

The generic functions introduced in the last section abstract over a type. For

instance, showBin generalizes functions of type

Char → Bin , String → Bin , [[Int]]→ Bin

to a single generic function of type

(Rep α)⇒ α→ Bin

A generic function may also abstract over a type constructor. Take, as an example,

a function that counts the number of elements contained in a data structure (a

container). Such a function generalizes functions of type

[α]→ Int , Tree α→ Int , [Rose α]→ Int

to a single generic function of type

(FRep ϕ)⇒ ϕ α→ Int

The class context makes explicit that counting elements does not work for arbitrary

type constructors, but only for representable ones.

When type constructors come into play, typings often become ambiguous. Imagine

applying a generic size function to a data structure of type [Rose Int]. Shall we

count the number of rose trees in the list, or the number of integers in the list of rose

trees? Because of this inherent ambiguity, the second implementation of generics

will be more explicit about types and type representations.

This section is structured like the previous one: Section 3.1 introduces the format

of generic definitions. Section 3.2 details the extra work for each newly defined data

type, and Section 3.3 lists the shared library code. Finally, Section 3.4 takes a look at

some extensions. Note that we shall re-use the class and method names even though

the types of the class methods are slightly different.

3.1 Defining a generic function

Let us again start with a concrete example. Here is the implementation of a generic

counter.

newtype Count α = Count{appCount :: α→ Int }
instance Generic Count where

unit = Count (λx → 0)

plus a b = Count (λx → case x of Inl l → appCount a l

Inr r → appCount b r)

pair a b = Count (λx → appCount a (outl x) + appCount b (outr x))

datatype iso a

= Count (λx → appCount a (fromData iso x))

char = Count (λx → 0)

int = Count (λx → 0)

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

464 R. Hinze

The new version of the class Generic has the same member functions as before, but

with slightly different typings: the cases corresponding to type constructors, plus ,

pair and datatype, now take explicit type arguments, a and b, which are passed to

the recursive calls. Of course, we do not pass types as arguments, but rather type

representations.

Though the class is a bit different, we are still able to define all the generic

functions we have seen before. In particular, we can apply appCount to rep to

obtain a generic function of type (Rep α) ⇒ α → Int . However, the result is not

interesting at all: the function appCount rep always returns 0 (provided its argument

is fully defined). Instead, we apply appCount to frep, the generic representation of a

type constructor.

size :: (FRep ϕ)⇒ ϕ α→ Int

size = appCount (frep (Count (λx → 1)))

Since frep represents a type constructor, it takes an additional argument, which

specifies the action of size on the base type α: the function λx → 1 makes precise

that each element of type α counts as 1. Interestingly, this is not the only option. If

we pass the identity to frep, then we get a generic sum function.

sum :: (FRep ϕ)⇒ ϕ Int → Int

sum = appCount (frep (Count (λx → x)))

Two generic functions for the price of one!

When size and sum are applied to some value, Haskell’s type inferencer determines

the particular instance of the type constructor ϕ. We have noted in the introduction

that there are, in general, several possible alternatives for ϕ. If we are not happy with

Haskell’s choice, we can always specify the type explicitly (list is the representation

of the list data type).

Main〉 let xss = [[i ∗ j | j ← [i . . 9]] | i ← [0 . . 9]]

Main〉 size xss

10

Main〉 let a = Count (λx → 1)

Main〉 appCount (list (list a)) xss

55

Main〉 appCount (list a) xss

10

Main〉 appCount a xss

1

By default, size calculates the size of the outer list, not the total number of elements.

For the latter behaviour, we must pass an explicit type representation to appCount .

This is something which is not possible with the first implementation of generics.

Figure 4 summarizes the idioms for defining a generic function in the new style.

Exercise 8. Generalize size and sum so that they work for arbitrary numeric types.

size :: (FRep ϕ,Num η)⇒ ϕ α→ η

sum :: (FRep ϕ,Num η)⇒ ϕ η → η �

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

Generics for the masses 465

newtype Poly α = Poly{appPoly :: π α}
instance Generic Poly where

unit = Poly (. . .)

plus a b = Poly (. . . (appPoly a) . . . (appPoly b) . . .)

pair a b = Poly (. . . (appPoly a) . . . (appPoly b) . . .)

datatype iso a = Poly (. . . (fromData iso) . . . (appPoly a) . . . (toData iso) . . .)

char = Poly (. . .)

int = Poly (. . .)

poly :: (FRep ϕ)⇒ π (ϕ . . .)

poly = appPoly (frep (Poly (. . .)))

Fig. 4. A template for generic definitions on type constructors.

Exercise 9. The function reducer whose signature is given below generalizes Haskell’s

foldr function (reducer swaps the second and the third argument).

newtype Reducer β α = Reducer{appReducer :: α→ β → β }
instance Generic (Reducer β)

reducer :: (FRep ϕ)⇒ (α→ β → β)→ (ϕ α→ β → β)

reducer f = appReducer (frep (Reducer f))

Fill in the missing details. Use reducer to define a function that flattens a data

structure into a list of elements. Define sum in terms of reducer . �

3.2 Introducing a new type

As before, we have to do a bit of extra work when we define a new data type. The

main difference to Section 2.2 is that we must explicitly provide the structure type:

the method datatype now expects the structure type as its second argument. At first

sight, providing this information seems to be a lot less elegant, but it turns out to

be fairly advantageous.

Reconsider the data type Tree. Since it is a type constructor rather than a type,

we first define a ‘type constructor representation’.

tree :: (Generic g)⇒ g α→ g (Tree α)

tree a = datatype (Iso fromTree toTree) (a ⊕ tree a ⊗ tree a)

The operators ‘⊕’ and ‘⊗’ are convenient shortcuts for plus and pair .

infixr 3 ⊗
infixr 2 ⊕
a ⊕ b = plus a b

a ⊗ b = pair a b

The type constructor Tree can be seen as a function that takes types to types.

Likewise, tree is a function that takes type representations to type representations.

The structure type a ⊕ tree a ⊗ tree a makes explicit, that Tree is a binary sum,

that the first constructor takes a single argument of type α, and that the second

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

466 R. Hinze

type T ′ α1 . . . αn = . . .

t :: (Generic g)⇒ g α1 → · · · → g αn → g (T α1 . . . αn)

t a1 . . . an = datatype (Iso fromT toT) (t ′ a1 . . . an)

-- here, t ′ a1 . . . an is the representation of the structure type T ′ α1 . . . αn

fromT :: T α1 . . . αn → T ′ α1 . . . αn
fromT = . . .

toT :: T ′ α1 . . . αn → T α1 . . . αn
toT = . . .

instance (Rep α1, . . . ,Rep αn)⇒ Rep (T α1 . . . αn) where

rep = t rep . . . rep -- n copies of rep

-- if T has at least one type argument:

instance (Rep α1, . . . ,Rep αn−1)⇒ FRep (T a1 . . . αn−1) where

frep = t rep . . . rep -- n − 1 copies of rep

Fig. 5. A template for making types representable (second approach).

constructor takes two arguments of type Tree α. Using tree we can now provide

suitable instances of Rep and FRep.

instance (Rep α)⇒ Rep (Tree α) where

rep = tree rep

instance FRep Tree where

frep = tree

The last declaration shows that tree is just the Tree instance of frep. Figure 5

summarizes the per data type work.

3.3 Implementing the shared library code

The implementation of Generic and Rep reflects the change from implicit to explicit

type arguments: the implicit arguments in the form of a context ‘(Rep α) ⇒’ are

replaced by explicit arguments of the form ‘g α→’.

class Generic g where

unit :: g Unit

plus :: g α→ g β → g (Plus α β)

pair :: g α→ g β → g (Pair α β)

datatype :: Iso α β → g α→ g β

char :: g Char

int :: g Int

class Rep α where

rep :: (Generic g)⇒ g α

instance Rep Unit where

rep = unit

instance (Rep α,Rep β)⇒ Rep (Plus α β) where

rep = rep ⊕ rep

instance (Rep α,Rep β)⇒ Rep (Pair α β) where

rep = rep ⊗ rep

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

Generics for the masses 467

instance Rep Char where

rep = char

instance Rep Int where

rep = int

Furthermore, we introduce a class that accommodates the mother of all ‘type

constructor representations’.

class FRep ϕ where

frep :: (Generic g)⇒ g α→ g (ϕ α)

The class Rep abstracts over a type of kind 	, FRep abstracts over a type of kind

	→ 	. In general, we need a class Repκ for each kind of interest, see also Exercise 15.

Exercise 10. The first implementation of generics used implicit, the second explicit

type arguments. Does it make sense to combine both?

class Generic g where

unit :: g Unit

plus :: (Rep α,Rep β)⇒ g α→ g β → g (Plus α β)

. . .

Hint: given this interface can you define a truly polymorphic function of type

(FRep ϕ)⇒ ϕ α→ Int? �

3.4 Extensions

3.4.1 Accessing constructor names

Passing type representations explicitly pays off when it comes to adding information

about constructors. In Section 2.4.3 we had to introduce a new type Constr to record

the name and the arity of the constructor, and we had to change the representation

of elements accordingly. Now, we can simply add the information to the type

representation.

class Generic g where

. . .

constr :: Name → Arity → g α→ g α

Since the additional type case constr name arity has type g α → g α, the repre-

sentation of values is not affected. This is a huge advantage as it means that this

extension works both for pretty printing and parsing.

In particular, it suffices to adapt the definition of tree and colleagues; the

implementation of the mappings fromTree and toTree is not affected.

tree :: (Generic g)⇒ g α→ g (Tree α)

tree a = datatype (Iso fromTree toTree)

(constr "Leaf" 1 a ⊕ constr "Fork" 2 (tree a ⊗ tree a))

The new definition of tree is a true transliteration of the data type declaration.

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

468 R. Hinze

3.4.2 Mutual recursion

Being explicit about type representations is awkward when it comes to programming

mutually recursive generic functions. With the first implementation mutual recursion

was easy: the method context ‘(Rep α) ⇒’ allowed us to call any generic function.

Now, we are less flexible: the explicit g α argument corresponds to the immediate

recursive call. So, to implement mutual recursion we have to tuple the functions

involved.

newtype Pretty α = Pretty{appPretty :: α→ Doc,

appPrettyList :: [α]→ Doc }
The following exercise asks you to re-implement the prettier printer using this record

type.

Exercise 11. Re-implement the generic prettier printer of Section 2.4.4 using tupling.

Try, in particular, to simulate default type cases. �

4 Abstracting over multiple type arguments

The next and final generalization, while simple to implement, is not entirely obvious:

we allow the signature of a generic function to abstract over multiple type arguments.

This extension is pointless for generic functions on types, but useful for generic

functions on type constructors as it adds an extra degree of flexibility. Again, we

shall re-use the class and method names of the previous sections even though the

types are different.

4.1 Defining a generic function

Many list-processing functions can be made generic so that they work for arbitrary

data types. An important example is the function map which applies a given function

to every element of a given list:

map :: (α1 → α2)→ ([α1]→ [α2])

map f [] = []

map f (x : xs) = f x : map f xs

As a characteristic feature map does not change the structure of the list; only the

elements of the list are modified. The list data type is the most prominent example

of a container type. It is not hard to see that mapping functions make sense for

arbitrary container types. In general, the mapping function for an n-ary container

type (containing elements of n different types) takes n argument functions and

applies them to the elements of the appropriate types leaving the structure of the

container unchanged:

Int → Int

(α1 → α2)→ (Tree α1 → Tree α2)

(α1 → α2)→ (β1 → β2)→ (Shrub α1 β1 → Shrub α2 β2)

Type constructors with no arguments, ie types, are an extreme case: since the

mapping function takes no arguments, it has type T → T . In fact, the mapping

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

Generics for the masses 469

function for types boils down to the identity as it is not supposed to change the

structure of the ‘container’. We already know from Section 3.1 that generic functions

sometimes have trivial instances on types: the generic counter, for instance, is the

constant 0 function in this case. Nonetheless the extreme case is important as it

suggests a type signature for the generic mapping function:

newtype Map α = Map{appMap :: α→ α}

If we apply appMap to rep, we obtain a function of type (Rep α)⇒ α→ α as desired.

Applying appMap to frep yields

fmap ′ :: (FRep ϕ)⇒ (α→ α)→ (ϕ α→ ϕ α)

fmap ′ f = appMap (frep f)

which is almost what we want: fmap ′ takes as a first argument a function of type

α → α whereas the original map takes a function of type α1 → α2. Fortunately, this

problem is easy to remedy: we merely have to extend the type signature by a second

type argument:

newtype Map α1 α2 = Map{appMap :: α1 → α2 }

The type Map is now isomorphic to the function type constructor ‘→’, so we could

use ‘→’ directly. However, for clarity, we shall stick to the more verbose type. The

generic definition of the mapping function is mostly straightforward.

instance Generic Map where

unit = Map (λx → x)

plus a b = Map (λx → case x of Inl l → Inl (appMap a l)

Inr r → Inr (appMap b r))

pair a b = Map (λx → Pair (appMap a (outl x)) (appMap b (outr x)))

datatype iso1 iso2 a

= Map (λx → toData iso2 (appMap a (fromData iso1 x)))

char = Map (λx → x)

int = Map (λx → x)

The mapping function on types, Unit , Char and Int , is the identity; on binary types,

Plus and Pair , it takes two argument functions and applies them to the components

of the appropriate types. We postpone a discussion of datatype until the next section.

The specialization of the generic mapping function to unary type constructors is

then given by

fmap ′ :: (FRep ϕ)⇒ (α1 → α2)→ (ϕ α1 → ϕ α2)

fmap ′ f = appMap (frep (Map f))

The type of fmap ′ is as expected because frep now has the more general type

(Generic g)⇒ g α1 α2 → g (ϕ α1) (ϕ α2), see Section 4.3.

Exercise 12. Implement a generic version of the monadic mapping function:

newtype MapM µ α1 α2 = MapM {appMapM :: α1 → µ α2 }
instance (Monad µ)⇒ Generic (MapM µ) �

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

470 R. Hinze

4.2 Introducing a new type

Making new types representable works almost exactly as before except that datatype

now takes two iso arguments: given isomorphisms iso1 and iso2 of types Iso α1 β1

and Iso α2 β2 the method dataype iso1 iso2 has type g α1 α2 → g β1 β2. It allows us

to turn a generic function of type g α1 α2 into a function of type g β1 β2 provided

α1 and β1 are isomorphic and α2 and β2. This explains the definition of the mapping

function for the datatype case in the previous section: since Map is essentially ‘→’,

we have to turn a function f of type α1 → α2 into a function of type β1 → β2. The

composition toData iso2 · f · fromData iso1 does the job.

As an example, here is the type constructor representation for the data type Tree.

tree :: (Generic g)⇒ g α1 α2 → g (Tree α1) (Tree α2)

tree a = datatype isoTree isoTree (a ⊕ tree a ⊗ tree a)

isoTree :: Iso (Tree′ α) (Tree α)

isoTree = Iso fromTree toTree

At first sight, it seems that we pass two copies of isoTree to datatype, but a closer in-

spection reveals that they are two different instances of the same polymorphic value.

4.3 Implementing the shared library code

The Generic class must be adapted to abstract over a binary type constructor g .

class Generic g where

unit :: g Unit Unit

plus :: g α1 α2 → g β1 β2 → g (Plus α1 β1) (Plus α2 β2)

pair :: g α1 α2 → g β1 β2 → g (Pair α1 β1) (Pair α2 β2)

datatype :: Iso α1 β1 → Iso α2 β2 → g α1 α2 → g β1 β2

char :: g Char Char

int :: g Int Int

The mother of all generic functions, rep, instantiates g to two copies of the

representable type:

class Rep α where

rep :: (Generic g)⇒ g α α

Though the class definition has changed, the instance declarations are exactly as in

Section 3.3.

The FRep class is, however, more general than before—this was the purpose of

the whole exercise.

class FRep ϕ where

frep :: (Generic g)⇒ g α1 α2 → g (ϕ α1) (ϕ α2)

The new version of Generic strictly generalizes the development in Section 3 as

every one-argument type signature can be rewritten as a two-argument signature

that simply ignores the second argument. For example,

newtype Count α1 α2 = Count{genericCount :: α1 → Int }

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

Generics for the masses 471

So, at least in principle, there is no necessity to have both the one-argument and the

two-argument version of Generic.

Exercise 13. Can you think of a generic function that is parameterized by more than

two type arguments? �

Exercise 14. How would you implement

apply :: (FRep ϕ)⇒ ϕ (α→ β)→ (ϕ α→ ϕ β)

which applies a structure of functions to a structure of arguments? We require both

structures to have the same shape. Hint: solve the previous exercise first. �

Exercise 15. Generalize Rep and FRep to a family Repκ of classes indexed by

the kind κ of its type argument: Rep = Rep	 and FRep = Rep	→	. Hint: use a

kind-indexed type (Hinze, 2002). �

4.4 Example: generic ordering

Exercise 1 asked for a generic version of Haskell’s comparison function suggesting

the following type signature

newtype Cmp α = Cmp{appCmp :: α→ α→ Ordering }

Intuitively, the two elements whose ordering is determined must be of the same type.

Perhaps surprisingly, we obtain a more flexible variant if we abstract over two type

arguments.

newtype Cmp α1 α2 = Cmp{appCmp :: α1 → α2 → Ordering }

Given this type the implementation of the generic compare is fairly straightforward:

instance Generic Cmp where

unit = Cmp (λx1 x2 → EQ)

plus a b = Cmp (λx1 x2 → case (x1, x2) of

(Inl a1, Inl a2)→ appCmp a a1 a2

(Inl a1, Inr b2)→ LT

(Inr b1, Inl a2)→ GT

(Inr b1, Inr b2)→ appCmp b b1 b2)

pair a b = Cmp (λx1 x2 → case appCmp a (outl x1) (outl x2) of

LT → LT

EQ → appCmp b (outr x1) (outr x2)

GT → GT)

datatype iso1 iso2 a

= Cmp (λx1 x2 → appCmp a (fromData iso1 x1) (fromData iso2 x2))

char = Cmp (λx1 x2 → compare x1 x2)

int = Cmp (λx1 x2 → compare x1 x2)

Applying appCmp to rep yields the function requested in Exercise 1.

cmp :: (Rep α)⇒ α→ α→ Ordering

cmp = appCmp rep

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

472 R. Hinze

The extra generality shows up if we lift cmp to type constructors:

fcmp :: (FRep ϕ)⇒ (α1 → α2 → Ordering)→ (ϕ α1 → ϕ α2 → Ordering)

fcmp rel = appCmp (frep (Cmp rel))

The call fcmp rel x1 x2 checks whether corresponding elements in the structures x1

and x2 are related by rel . Of course, rel need not be the usual lexicographic

ordering; it may even relate elements of different types. It is worth noting that

the above implementation with the exception of datatype works for both the one-

argument and the two-argument version of Cmp. In a sense, the more general type is

also more natural; the first type artificially constrains the applicability of the code.

5 Background: type representations

We have seen three implementations of generics. So far we have motivated and

explained the different approaches mainly from the perspective of a potential user.

It is high time to look behind the scenes. In this section we shall highlight the

theoretical background deriving the first two implementations from first principles.

A generic function such as showBin can be seen as a function that is parameterized

by a type and proceeds by case analysis on the type. Of course, Haskell 98 like most

other languages neither allows the programmer to pass types nor to analyze them.

However, what we can do is to pass and analyze representations of types.

As a first try, we could invent a type Rep and assign showBin the type Rep → α→
Bin . A moment’s reflection, however, reveals that this won’t work. The parametricity

theorem (Wadler, 1989) implies that a function of this type must necessarily ignore

its second argument. The trick described in Cheney & Hinze (2002) is to use a

parametric type for type representations:3

showBin :: ∀α .Rep α→ α→ Bin

The idea is that an element of Rep τ is the unique representation of τ. Interestingly,

we can define Rep in Haskell using a recent extension called generalized algebraic

data types (Hinze, 2003; Peyton Jones et al., 2004):

data Rep :: 	 → 	where

Int :: Rep Int

Pair :: ∀α β .Rep α→ Rep β → Rep (α, β)

The declaration introduces the type constructor Rep and two data constructors Int

and Pair . For brevity, we shall use this stripped-down version of Rep that comprises

only one primitive and one elementary type as a running example. Note that Rep is

not an ordinary parameterized data type since the result types of Int and Pair are

not of the form Rep α.

Using Rep we can easily implement a generic version of showBin .

showBin :: ∀τ .Rep τ→ τ→ Bin

showBin (Int) i = bits 16 i

showBin (Pair a b) (x , y) = showBin a x ++ showBin b y

3 From now on we shall be explicit about universal quantification. In particular, as we shall use
polymorphic functions of higher ranks and local universal quantification.

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

Generics for the masses 473

Since a type is represented by a value, the type case boils down to an ordinary case,

which is a good thing because we can use all the conveniences of pattern matching

such as default cases or nested patterns.

It is important to note, however, that the case analysis is unusual in that each

branch has a different type: the first equation instantiates the type of showBin to Int ,

the second to (α, β). This is why generalized algebraic data types are a non-trivial

extension of Haskell 98. Since we want to do without any extensions, we have to

encode Rep somehow.

5.1 Background: encodings of data types

Before we proceed let us briefly review representations of data types. The best

known scheme for representing data types in System F (Girard, 1972) was discovered

independently by Leivant (1983) and Böhm & Berarducci (1985). In this scheme

the recursive type T ∼= F T is represented by the space of polymorphic functions

∀τ . (F τ → τ) → τ. Consider as a simple example the unary representation of the

natural numbers.

data Nat :: 	where

Zero :: Nat

Succ :: Nat → Nat

We have Nat ∼= F Nat where F α = 1 + α. Using the laws of exponentials, in

particular, 1 → C ∼= C and (A + B) → C ∼= (A → C) × (B → C), we can slightly

simplify the encoding: F τ → τ = (1 + τ) → τ ∼= (1 → τ) × (τ → τ) ∼= τ × (τ → τ).

Thus, we obtain the following definition of Nat .

newtype Nat = Nat{fold :: ∀nat .Algebra nat → nat }
data Algebra nat = With{foldZero :: nat ,

foldSucc :: nat → nat }

The helper data type Algebra , which implements F τ → τ, is pretty much a

transliteration of the original data declaration, except that Nat has been replaced by

nat . Interestingly, an element of Nat can be seen as a fold or catamorphism (Hinze,

2005): it evaluates the natural number it represents using a given algebra. As an

aside, since τ × (τ → τ) → τ ∼= (τ → τ) → (τ → τ), the above definition of Nat is

isomorphic to the type of Church numerals, which is why this scheme is often called

Church encoding.

The constructors Zero and Succ are represented by

zero = Nat (λa → foldZero a)

succ n = Nat (λa → foldSucc a (fold n a))

Read the definitions as folds or catamorphisms: the successor function, for instance,

first evaluates its argument (fold n a) and then applies the appropriate component

of the algebra to the result (foldSucc a). Here is the definition of addition using this

encoding:

(+) :: Nat → Nat → Nat

m + n = fold m With{foldZero = n ,

foldSucc = succ }

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

474 R. Hinze

A second scheme for representing data types is due to Parigot (1992). Here the

recursive type T ∼= F T is represented by the type U = ∀τ . (F U → τ) → τ, which

is recursive, as well. The Parigot encoding of the natural numbers is very similar to

the Church encoding:

newtype Nat = Nat{case :: ∀nat .Case nat → nat }
data Case nat = Of {caseZero :: nat ,

caseSucc :: Nat → nat } -- NB. Nat → nat instead

-- of nat → nat

Again, note that the helper type Case, which implements F U → τ, is almost a

transliteration of the original data declaration, except that now only the occurrences

of Nat in the result types of the constructors are replaced by nat . The major

difference to the Church encoding is that an element of Nat now implements a

case-analysis rather than a fold. Consequently, the representations of Zero and Succ

simply select a case branch.

zero = Nat (λc → caseZero c)

succ n = Nat (λc → caseSucc c n)

The definition of addition is more or less a transliteration of the usual recursive

definition.

(+) :: Nat → Nat → Nat

m + n = case m Of {caseZero = n ,

caseSucc = λm ′ → succ (m ′ + n)}

An advantage of the Parigot encoding is that the predecessor can be computed in

constant time: pred n = case n Of {caseZero = zero, caseSucc = id }. On the other

hand, it requires System F to be extended by recursive types.

5.2 Parigot encoding of Rep

Now, let us apply the encodings to the type Rep of type representations. It may

come as a surprise that we can actually do this as Rep is a generalized algebraic

data type, one that is not given as the fixed point of some type constructor F . The

point is that F is not needed to make this work: we can directly transliterate the

data declaration of Rep, which defines a higher-order algebra, into an Algebra or

Case record.

Here is the Parigot encoding of Rep (we start with the Parigot encoding as this

one is easier to understand):

newtype Rep τ = Rep{case :: ∀rep .Case rep → rep τ}
data Case rep = Of {caseInt :: rep Int ,

casePair :: ∀α β .Rep α→ Rep β → rep (α, β)}
int :: Rep Int

int = Rep (λc → caseInt c)

pair :: ∀α β .Rep α→ Rep β → Rep (α, β)

pair a b = Rep (λc → casePair c a b)

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

Generics for the masses 475

Typical of the Parigot encoding, the recursive arguments of the constructors have

type Rep rather than rep. Furthermore, Rep and Case are defined by mutual

recursion.

Here is the showBin function adapted to the Parigot encoding.

newtype ShowBin α = ShowBin{appShowBin :: α→ Bin }
showBin ′ :: ∀τ .Rep τ→ ShowBin τ

showBin ′ t = case t Of {caseInt = ShowBin (λi → bits 16 i),

casePair = λa b → ShowBin (λ(x , y)→
showBin a x ++ showBin b y)}

showBin :: ∀τ .Rep τ→ (τ→ Bin)

showBin t = appShowBin (showBin ′ t)

We have successfully eliminated the generalized algebraic data type. However, the

program above is still not legal Haskell 98 since it uses local universal quantification:

Case is a record with a polymorphic component. Worse still, Rep τ is a polymorphic

function that takes a polymorphic record as an argument. On top of this, a generic

function such as showBin takes an argument of type Rep τ.

How can we possibly encode this tower of polymorphic functions in Haskell 98?

The essential clue to solving this puzzle is to recall that Haskell has two different

kinds of records: data types with a single constructor and type classes. A type

class declaration introduces a record type, each instance declaration defines a record

of that type. Though type classes are second-class citizens, they have two distinct

advantages over ordinary records: they are created and passed implicitly and they

may contain polymorphic components.

The first feature is a convenience: an element of Rep τ represents a type, so what

could be more natural to use the class system to automatically create and pass

elements of type Rep τ, in particular, as the creation is dictated by type.

The second feature is essential for the transition to Haskell 98. It is well-known

that the translation of type classes to System F, the so-called dictionary translation,

requires records with polymorphic components. Here we employ this fact to encode

polymorphic records. Since both Rep and Case contain polymorphic functions, we

turn both types into type classes.

class Rep τ where

case :: (Case rep)⇒ rep τ

class Case rep where

caseInt :: rep Int

casePair :: ∀α β . (Rep α,Rep β)⇒ rep (α, β)

Of course, Rep and Case are still mutually recursive. The encodings of Int and Pair

are now given by two instance declarations.

instance Rep Int where

case = caseInt

instance (Rep α,Rep β)⇒ Rep (α, β) where

case = casePair

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

476 R. Hinze

The method definitions are unusually short (SPJ: “Ralf stopped writing.”) since

all the arguments are now passed implicitly. For completeness, here is the code of

showBin using type classes.

instance Case ShowBin where

caseInt = ShowBin (λi → bits 16 i)

casePair = ShowBin (λ(x , y)→ showBin x ++ showBin y)

showBin :: ∀τ . (Rep τ)⇒ τ→ Bin

showBin = appShowBin case

It’s also much shorter than the previous version because again most of the arguments

are passed implicitly.

If we compare the code above to the definitions in Section 2, we find that we

have, modulo naming of classes and methods, derived the first implementation of

generics.

5.3 Church encoding of Rep

Here is the Church encoding of Rep:

data Rep τ = Rep{fold :: ∀rep .Algebra rep → rep τ}
data Algebra rep = With{foldInt :: rep Int ,

foldPair :: ∀α β . rep α→ rep β → rep (α, β)}
int :: Rep Int

int = Rep (λc → foldInt c)

pair :: ∀α β .Rep α→ Rep β → Rep (α, β)

pair a b = Rep (λc → foldPair c (fold a c) (fold b c))

As we already know, the difference to the Parigot encoding is subtle: the two types

are no longer mutually recursive, since the arguments of the constructors have type

rep rather than Rep. Furthermore, pair now recursively evaluates its arguments.

Because pair already does most of the hard work, foldPair in the code below only

needs to apply its arguments to the components of the pair: a and b are no longer

type representations, but already appropriate instances of showBin ′.

showBin ′ :: ∀τ .Rep τ→ ShowBin τ

showBin ′ t = fold t With{foldInt = ShowBin (λi → bits 16 i),

foldPair = λa b → ShowBin (λ(x , y)→
appShowBin a x ++ appShowBin b y)}

showBin :: ∀τ .Rep τ→ (τ→ Bin)

showBin t = appShowBin (showBin ′ t)

Since Algebra is the algebra of types (more accurately, of type representations),

showBin ′ can be seen as a type fold.

As in the previous section, we can use type classes to turn the above code into a

legal Haskell 98 program.

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

Generics for the masses 477

class Rep τ where

fold :: (Algebra rep)⇒ rep τ

class Algebra rep where

foldInt :: rep Int

foldPair :: ∀α β . rep α→ rep β → rep (α, β)

int = foldInt

infixr 3 ⊗
a ⊗ b = foldPair a b

instance Rep Int where

fold = int

instance (Rep α,Rep β)⇒ Rep (α, β) where

fold = fold ⊗ fold

Adapting showBin to the class-based version is largely a matter of routine.

instance Algebra ShowBin where

foldInt = ShowBin (λi → bits 16 i)

foldPair a b = ShowBin (λ(x , y)→ appShowBin a x ++ appShowBin b y)

showBin :: ∀τ . (Rep τ)⇒ τ→ Bin

showBin = appShowBin fold

All in all, we have derived the second implementation of generics.

One of the pros of the second variant, discussed in Section 3, is that it allows us

to define generic functions on type constructors. This feature is, in fact, achieved via

a neat trick. The first thing to note is that the generic functions still analyse types,

not type constructors (we could have introduced a generalized algebraic data type to

represent type constructors, but we didn’t). The basic idea is that a type constructor

of kind 	 → 	 , a function on types, can be represented by an open type, a type that

contains a single free type variable. Assume, for the sake of example, that we want

to encode solely the structure of a container ignoring its elements. Using informal

syntax, this could be implemented as follows (the type constructor is Λa . int ⊗ a):

showBin (int ⊗ a) where showBin (a) = λx → []

The free type variable a marks the positions of the elements that are ignored; the

action of showBin on the free type variable a is defined in the where clause.

Though the original Rep type only admits closed terms, the class-based variant

is more flexible: the informal syntax above corresponds to the legal Haskell 98

fragment below

appShowBin (int ⊗ a) where a = ShowBin (λx → [])

The reason why this works is that Haskell’s class system silently adds code: the

type of a causes int and ‘⊗’ to be instantiated to ShowBin; consequently both

are passed the dictionary of the ShowBin instance of Algebra . In other words, the

occurrence of int in the expression above is not the polymorphic value but rather

a suitable ShowBin instance. That said, it is clear that we could, in principle, mimic

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

478 R. Hinze

this behaviour in the record-based variant of the Church encoding, but it would be

quite inconvenient to do so.

6 Stock taking

We have presented three implementations of generics. The first one in Section 2 is

slightly easier to use (mutually recursive definitions are straightforward) but more

restricted (generic functions on type constructors are not supported). The second

one in Section 3 is very flexible (supports generic functions on both types and

type constructors) but slightly more inconvenient to use (mutual recursion requires

tupling). The third implementation in Section 4 supersedes the second by generalizing

the signature of generic functions to abstract over multiple type arguments.

The two main approaches only differ in the way type representations are passed

around: the first implementation, the Parigot encoding, passes them implicitly via

Rep α contexts; the second, the Church encoding, passes them explicitly as arguments

of type g α. Being explicit has one further advantage besides greater expressiveness:

we can change the representation of types without changing the representation

of the underlying values. This is very useful for adding information about data

constructors.

The class-based implementation of generics is surprisingly expressive: we can

define all the generic functions presented, for instance, in Hinze (2002). It has,

however, also its limitations. Using a single Generic class we can only define functions

that abstract over a fixed number of type arguments. In principle, we need one

separate class for each arity. In practice, a single class that abstracts over two

arguments might be sufficient: type signatures that abstract over one argument only

can be rewritten as two-argument signatures that ignore the second parameter;

generic functions that need abstraction over three or more parameters are quite

rare (but see Exercises 13 and 14). Using several different Generic classes has

the unfortunate consequence that there isn’t a single type representation, which is

awkward for implementing dynamic values. Finally, none of the approaches can

define generic functions that involve generic types (Hinze et al., 2004), types that are

defined by induction on the structure of types.

The particular implementation described in this paper is inspired by Weirich’s

paper (2003). Weirich gives an implementation in Haskell augmented by rank-2

types. The essence of this paper is that Haskell’s class system can be used to avoid

higher-order ranks.

There is yet another encoding of type representations, described in Cheney &

Hinze (2002). The idea is to simulate the original Rep type, which is a generalized al-

gebraic data type, using equality constraints. To illustrate the idea, the type signature

Pair :: Rep α→ Rep β → Rep (α, β)

can be rewritten as

Pair :: (τ (α, β))⇒ Rep α→ Rep β → Rep τ

A witness for the equality constraint is then passed to each occurrence of Pair ,

either implicitly or explicitly. The constraint can subsequently be used to convert an

element of τ into a pair, or vice versa.

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

Generics for the masses 479

7 Further reading and related work

Have you got interested in generic programming? There is a wealth of material

on the subject. For a start, we recommend studying the tutorials (Backhouse et al.,

1999; Hinze & Jeuring, 2003b; Hinze & Jeuring, 2003a). Further reading includes

(Jansson & Jeuring, 1997; Hinze, 2000). Let us now take a closer look at related

work.

Generic type classes Haskell’s major innovation was its support for ad-hoc overload-

ing in the form of type classes. Type classes bear a strong resemblance to generic

definitions: A type class declaration corresponds to the type signature of a generic

definition—or rather, to a collection of type signatures. An instance declaration

is related to a type case of a generic definition. The crucial difference to generic

programming is that an instance declaration must be written by hand for each

newly defined data type, whereas a generic definition automatically works for all

(representable) types. We have mentioned in the introduction that Haskell provides

special support for a handful of built-in classes: by attaching a deriving clause to a

data declaration, the Haskell compiler is instructed to generate the ‘obvious’ code

for these classes. What ‘obvious’ means is specified informally in an Appendix of the

language definition (Peyton Jones, 2003). Of course, the idea suggests itself to use

generic definitions for specifying default methods so that the programmer can define

her own derivable classes. This extension is detailed in Hinze & Peyton Jones (2001)

and partially supported by the Glasgow Haskell Compiler (The GHC Team, 2005).

A similar, but more expressive variant of generic type classes is implemented in

Clean (Alimarine & Plasmeijer, 2001). The overall programming style is very similar

(modulo syntax) to what we have seen here. A distinct advantage over our proposal

is that the per data type code is generated automatically. Furthermore, extra type

cases are easily handled by providing additional instance declarations. On the other

hand, some extensions do not seem to fit well into the class framework: for instance,

to provide access to the names of constructors, values must be embedded in types.

Since neither Haskell nor GHC’s internal language support this, access to constructor

names is currently not supported. With type representations this is not an issue: a

type representation is a value, which can be easily augmented by additional data.

PolyP The Haskell extension PolyP (Jansson & Jeuring, 1997) was one of the first

attempts to produce a generic programming language. It is simpler and less powerful

than the approach described here as it is restricted to generic functions that abstract

over regular type constructors of kind 	 → 	 . The original implementation of

PolyP is set up as a preprocessor that translates PolyP code into Haskell. A later

version (Norell & Jansson, 2003) embeds PolyP programs into Haskell augmented

by multiple parameter type classes with functional dependencies (Jones, 2000). A

disadvantage of the latter approach is that many type classes propagate into the

types of generic functions. For instance, the generic counter has type

psum :: (FunctorOf f d ,P fmap2 f ,P fsum f)⇒ d Int → Int

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

480 R. Hinze

An advantage of PolyP is that it can define various recursion operators such as

cata- or anamorphisms (Meijer et al., 1991). This is not possible here as it requires

a different representation of types. However, Oliveira & Gibbons (2005) show how

to adopt our approach to PolyP resulting in a purely Haskell 98 implementation,

called Light PolyP. In Light PolyP the types of generic functions are much closer to

what one would expect without loosing any expressive power.

Generic Haskell Generic Haskell (Löh, 2004; Löh & Jeuring, 2005) is a full-fledged

implementation of generics based on ideas by Hinze (2002; 2004) that features

generic functions, generic types and various extensions such as default cases and

constructor cases (Clarke & Löh, 2002). Generic Haskell supports the definition of

functions that work for all types of all kinds, such as, for example, a generalized

mapping function. Default cases and constructor cases allow the generic programmer

to refine the behaviour of a generic functions for some specific data types (additional

type cases) or even for some specific data constructors. Generic Haskell like PolyP

is a preprocessor that translates generic programs into Haskell 98 augmented by

rank-n types. It works by program specialization: for every data type, a generic

function is applied to, Generic Haskell generates a tailor-made instance. Since the

type case analysis is performed at compile-time, the resulting code is more efficient.

Intensional type analysis Closely related to generic programming is the work on

intensional type analysis (Harper & Morrisett, 1995; Crary et al., 1998; Crary &

Weirich, 1999; Trifonov et al., 2000; Weirich, 2001). Intensional type analysis is used

in typed intermediate languages in compilers for polymorphic languages, among

others to be able to optimise code for polymorphic functions. Loosely speaking,

intensional type analysis relates to generic programming in the same way the

Parigot encoding relates to the Church encoding: intensional type analysis centers

around type case, while generic programming deals with type catamorphisms.

Scrap your boilerplate A different approach to generic programming, called ‘scrap

your boilerplate’ henceforth SYB, was developed by Peyton Jones and Lämmel in a

series of papers (2003; 2004; 2005). Originally, the approach was an implementation

of strategic programming (Visser, 2000) in Haskell and was then extended to cover

more generic grounds. Briefly, strategic programming is an idiom for processing

and querying complex, compound data such as terms or object structures. The

SCP approach essentially combinator-based: the user writes generic functions by

combining a few generic primitives. This is one of its strengths (generic traversals

can often be written succinctly and perspicuously), but also its main weakness: the

definition of more complex functions (for instance, a function that traverses several

structures simultaneously) requires a considerable level of sophistication. On a more

principal note, it is not clear, whether the set of predefined combinators is sufficient

to define all generic functions of interest. Indeed, each new paper introduces a few

additional combinators. The approach is restricted to generic functions on types,

generic functions on type constructors such as map or size are out of reach. The

implementation relies in an essential way on rank-2 polymorphism and various

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

Generics for the masses 481

other extensions (such as type-safe cast and recursive dictionaries), so that the

approach is not suitable for Haskell 98. Furthermore, it requires additional compiler

support for instantiating the primitives to every data type of interest. With respect to

efficiency, SYB seems to be advantageous, since the generic functions work directly

on the original data, whereas our approach requires a mediating data structure,

the representation type. On the other hand, SYB makes heavy use of higher-order

functions and potentially costly run-time type tests, which may outweigh the savings.

The SYB approach can be simulated to some extent in our framework if one is

willing to go beyond Haskell 98, see Hinze (2003). In general, using rank-2 types we

can implement higher-order generic functions.

Acknowledgements

I am grateful to Andres Löh, Jeremy Gibbons, Simon Peyton Jones, Bruno Oliveira,

Fermin Reig, Stephanie Weirich, and the anonymous referees of ICFP 2004 and

of this special issue for pointing out several typos and for valuable suggestions

regarding grammar and, in particular, presentation.

References

Alimarine, A. & Plasmeijer, R. (2001) A generic programming extension for Clean. In:

Arts, T. and Mohnen, M. (eds.), Proceedings of the 13th International workshop on the

Implementation of Functional Languages, IFL’01 pp. 257–278.

Backhouse, R., Jansson, P., Jeuring, J. & Meertens, L. (1999) Generic Programming —

An Introduction —. In: Swierstra, S. D., Henriques, P. R. and Oliveira, J. N. (eds.), 3rd

International Summer School on Advanced Functional Programming, Braga, Portugal. Lecture

Notes in Computer Science 1608, pp. 28–115. Springer-Verlag.

Böhm, C. & Berarducci, A. (1985) Automatic synthesis of typed λ-programs on term algebras.

Theoretical Computer Science, 39(2-3), 135–154.

Cheney, J. & Hinze, R. (2002) A lightweight implementation of generics and dynamics. In:

Chakravarty, M. M. (ed.), Proceedings of the 2002 ACM SIGPLAN Haskell Workshop, pp.

90–104. ACM Press.

Clarke, D. and Löh, A. (2002) Generic Haskell, specifically. In: Gibbons, J. and Jeuring, J.

(eds.), Proceedings of the IFIP TC2 Working Conference on Generic Programming, Schloss

Dagstuhl, pp. 21–48. Kluwer Academic.

Crary, K. & Weirich, S. (1999) Flexible type analysis. Proceedings ICFP 1999: International

Conference on Functional Programming, pp. 233–248. ACM Press.

Crary, K., Weirich, S. & Morrisett, J. G. (1998) Intensional polymorphism in type-erasure

semantics. Proceedings ICFP 1998: International Conference on Functional Programming,

pp. 301–312. ACM Press.

DrIFT. (2005) DrIFT Home Page. http://repetae.net/john/computer/haskell/DrIFT/.

Girard, J.-Y. (1972) Interprétation foncionnelle et élimination des coupures de l’arithmétique

d’order supérieur. PhD thesis, Université de Paris VII.

Harper, R. & Morrisett, G. (1995) Compiling polymorphism using intensional type analysis.

22nd Symposium on Principles of Programming Languages, POPL ’95, pp. 130–141.

Hinze, R. (2000) A new approach to generic functional programming. In: Reps, T. W.

(ed.), Proceedings of the 27th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL’00), Boston, Massachusetts, pp. 119–132.

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

482 R. Hinze

Hinze, R. (2002) Polytypic values possess polykinded types. Science of Computer Programming,

43, 129–159.

Hinze, R. (2003) Fun with phantom types. In: Gibbons, J. and de Moor, O. (eds.), The Fun

of Programming, pp. 245–262. Palgrave Macmillan.

Hinze, R. (2005) Theoretical Pearl: Church numerals, twice! J. Functional Programming, 15(1),

1–13.

Hinze, R. & Jeuring, J. (2003a) Generic Haskell: Applications. In: Backhouse, R. and Gibbons,

J. (eds.), Generic Programming: Advanced Lectures. Lecture Notes in Computer Science 2793,

pp. 57–97. Springer-Verlag.

Hinze, R. & Jeuring, J. (2003b) Generic Haskell: Practice and theory. In: Backhouse, R. and

Gibbons, J. (eds.), Generic Programming: Advanced Lectures. Lecture Notes in Computer

Science 2793, pp. 1–56. Springer-Verlag.

Hinze, R. & Peyton Jones, S. (2001) Derivable type classes. In: Hutton, G. (ed.), Proceedings

of the 2000 ACM SIGPLAN Haskell Workshop, vol. 41.1 of Electronic Notes in Theoretical

Computer Science. Elsevier Science. (The preliminary proceedings appeared as a University

of Nottingham technical report.)

Hinze, R., Jeuring, J. & Löh, A. (2004) Type-indexed data types. Science of Computer

Programming, 51, 117–151.

Jansson, P. & Jeuring, J. (1997) PolyP—a polytypic programming language extension.

Conference Record 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL’97), Paris, France, pp. 470–482. ACM Press.

Jones, M. P. (2000) Type classes with functional dependencies. In: Smolka, G. (ed.), Proceedings

of the 9th European Symposium on Programming, ESOP 2000, Berlin, Germany. Lecture

Notes in Computer Science 1782, pp. 230–244. Springer-Verlag.

Lämmel, R. & Peyton Jones, S. (2004) Scrap more boilerplate: reflection, zips, and generalised

casts. In: Fisher, K. (ed.), Proceedings of the 2004 International Conference on Functional

Programming, Snowbird, UT, pp. 244–255.

Lämmel, R. & Peyton Jones, S. (2005) Scrap your boilerplate with class: extensible generic

functions. In: Pierce, B. (ed.), Proceedings of the 2005 International Conference on Functional

Programming, Tallinn, Estonia.

Leivant, D. (1983) Reasoning about functional programs and complexity classes associated

with type disciplines. Proceedings 24th Annual IEEE Symposium on Foundations of Computer

Science, FOCS’83, Tucson, AZ, pp. 460–469. IEEE Press.

Löh, A. (2004) Exploring Generic Haskell. PhD thesis, Utrecht University.

Löh, A. & Jeuring, J. (2005) The Generic Haskell user’s guide, Version 1.42 – Coral release.

Tech. rept. UU-CS-2005-004. Universiteit Utrecht.

Meijer, E., Fokkinga, M. & Paterson, R. (1991) Functional programming with bananas, lenses,

envelopes and barbed wire. 5th ACM Conference on Functional Programming Languages

and Computer Architecture, FPCA’91, Cambridge, MA. Lecture Notes in Computer Science

523, pp. 124–144. Springer-Verlag.

Norell, U. & Jansson, P. (2003) Polytypic programming in Haskell. In: Trinder, P., Michaelson,

G. & Peña, R. (eds.), Implementation of Functional Languages: 15th International Workshop,

IFL 2003, Edinburgh, UK, pp. 168–184.

Okasaki, C. (1997) Catenable double-ended queues. Proceedings of the 1997 ACM SIGPLAN

International Conference on Functional Programming, pp. 66–74. (ACM SIGPLAN Notices,

32(8), August 1997.)

Oliveira, B. C. & Gibbons, J. (2005) TypeCase: A design pattern for type-indexed functions. In:

Daan Leijen (ed.), Proceedings of the 2005 ACM SIGPLAN workshop on Haskell, Tallinn,

Estonia, pp. 98–109. ACM Press.

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

Generics for the masses 483

Parigot, M. (1992) Recursive programming with proofs. Theoretical Computer Science, 94(2),

335–356.

Peyton Jones, S. (2003) Haskell 98 Language and Libraries. Cambridge University Press.

Peyton Jones, S. & Lämmel, R. (2003) Scrap your boilerplate: a practical approach to generic

programming. Proceedings of the ACM SIGPLAN Workshop on Types in Language Design

and Implementation (TLDI 2003), New Orleans, LA, pp. 26–37.

Peyton Jones, S., Washburn, G. & Weirich, S. (2004) Wobbly types: type inference for

generalised algebraic data types. Submitted.

Sheard, T. & Peyton Jones, S. (2002) Template metaprogramming for Haskell. In: Chakravarty,

M. M. T. (ed.), ACM SIGPLAN Haskell Workshop 02 pp. 1–16. ACM Press.

The GHC Team (2005) The Glorious Glasgow Haskell Compilation System User’s Guide,

Version 6.4. Available from http://www.haskell.org/ghc/documentation.html.

Trifonov, V., Saha, B. & Shao, Z. (2000) Fully reflexive intensional type analysis. Proceedings

ICFP 2000: International Conference on Functional Programming, pp. 82–93. ACM Press.

Visser, E. (2000) Language independent traversals for program transformation. In: Jeuring, J.

(ed.), Proceedings of the 2nd Workshop on Generic Programming, Ponte de Lima, Portugal,

pp. 86–104. (The proceedings appeared as a technical report of Universiteit Utrecht, UU-

CS-2000-19.)

Wadler, P. (1989) Theorems for free! The Fourth International Conference on Functional

Programming Languages and Computer Architecture (FPCA’89), London, UK, pp. 347–

359. Addison-Wesley.

Wadler, P. (2003) A prettier printer. In: Gibbons, J. and de Moor, O. (eds.), The Fun of

Programming. Cornerstones of Computing, pp. 223–243. Palgrave Macmillan.

Weirich, S. (2001) Encoding intensional type analysis. European Symposium on Programming.

LNCS 2028, pp. 92–106. Springer-Verlag.

Weirich, S. (2003) Higher-Order Intensional Type Analysis in Type-Erasure Semantics. Avail-

able from http://www.cis.upenn.edu/~sweirich/papers/erasure/erasure-paper-

july03.pdf.

https://doi.org/10.1017/S0956796806006022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006022

