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ASPHERICAL RELATIVE PRESENTATIONS
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A geometric hypothesis is presented under which the cohomology of a group G given by generators and
defining relators can be computed in terms of a group H defined by a subpresentation. In the presence of this
hypothesis, which is framed in terms of spherical pictures, one has that H is naturally embedded in G, and
that the finite subgroups of G are determined by those of H. Practical criteria for the hypothesis to hold are
given. The theory is applied to give simple proofs of results of Collins-Perraud and of Kanevskii. In addition,
we consider in detail the situation where G is obtained from H by adjoining a single new generator x and a
single defining relator of the form xaxbx'c, where a,b,ceH and |e| = 1.
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Introduction

There is a considerable amount of literature concerning the following situation (see,
for example, [2, 11] and the references cited there). Let H be a group and construct a
new group G as follows: adjoin a set of generators x to H; then factor the resulting free
product H * <x> by the normal closure N of a set r of cyclically reduced elements of
H*(x} — H. We will say that G is defined by the relative presentation P = <H,x; r>.

In this paper we will consider relative presentations which are orientable and
aspherical. The term "orientable" simply means that no element of r is a cyclic
permutation of its inverse. The definition of "aspherical" is more complicated, and is
expressed in terms of certain geometric objects called (spherical) pictures. These
geometric objects are well-known for ordinary presentation (see, for example,
[3,4,12,15,23]) but do not appear to have been used for relative presentations. The
definition of asphericity requires that every non-empty spherical picture over the relative
presentation contains a certain configuration called a dipole.

Now it turns out that if the relative presentation P is orientable and aspherical, then
a considerable amount of group-theoretic information about the group G defined by P
can be deduced. To be specific, the following results hold.

(0.1). The natural homomorphisn H-*G is injective (and so we can regard H as a
subgroup of G).

For RET, write R = R"m where R is not a proper power, and p(R) is a positive
integer. Let CR be the subgroup of G generated by AN. Obviously CR has order
dividing p(R).
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2 W. A. BOGLEY AND S. J. PRIDE

(0.2). CR has order exactly p(R) for all Rer.

(0.3). The homology and cohomology of G in dimensions ^ 3 is determined by that of
H and the subgroups CR (R e r). To be specific, there are isomorphisms

Hn(G,-)^Hn(H,-)®(©Hn(CR,-)

H\G, -)* (
Wr

(0.4). Any finite subgroup of G is contained in a conjugate of H or a conjugate of one
of the subgroups CR(Rer).

The paper is divided into four sections, each of which is further subdivided. In the
first section we discuss the general theory of aspherical relative presentations. In the
second section we prove some results giving sufficient conditions for a relative
presentation to be aspherical. In the third section we describe some applications of the
results of the first two sections. In the fourth section we give an independent topological
treatment of the theory of aspherical orientable relative presentations.

It is worth mentioning here, by way of illustration, one of our applications in Section
3 (Theorem 3.1, §3.1). (This theorem is one of the major results of our paper.)

Let P = <H,x; xalxa2xa3} where al,a2,ai are elements of H, not all the same. Then P
is aspherical if and only if neither of the following conditions holds:

(i) For i= 1, 2, 3, ata[~+\ has finite order p; (subscripts mod 3), and

1 1 1 ,
—+ —+ —>1.
Pi Pi Pz

(ii) There exist 7e{l,2,3}, p>2 and 0^k<p such that sgp{aia^+l:i= 1,2,3} is finite
cyclic with generator ajaj^ of order p, and aJ+ la]~+2 = (ajaj+l)

k where either k = l,
or p = k + 2, or p = 2k + 1, or p = 6 and k = 2,3.

The headings of the various sections and subsections of the paper, along with some
relevant comments, are given below.

1. Asphericity
1.1. Relative presentations

We introduce several definitions concerning relative presentations, and we fix our
notation.
1.2. Pictures over relative presentations
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ASPHERICAL RELATIVE PRESENTATIONS 3

As already mentioned, asphericity is defined in terms of pictures, and so the concept
of picture is central to the rest of the paper.
1.3. Pictures over ordinary presentations

An ordinary presentation can be regarded as a special type of relative presentation.
Specializing the material of §1.2 gives the usual concept of "picture".
1.4. Dipoles and asphericity

This subsection contains the definition of a dipole, and the definition of an aspherical
relative presentation.
1.5. Sequences, pictures and relation modules

The material in this subsection concerns ordinary presentations. Given an ordinary
presentation R, we can define the concept of an identity sequence over R. Each identity
sequence gives rise to a spherical picture over R, and conversely, every spherical picture
gives rise to an identity sequence (unique up to a certain equivalence).

We also have the concept of the relation module M corresponding to the presentation
R. There is a "natural" generating set of M. If we take a free module <I> with basis in
one to one correspondence with this "natural" generating set, we get an epimorphism
from 4> onto M, with kernel K say. Thus we have a presentation of M:

The computation of K relies on an analysis of identity sequences, or, what amounts to
the same thing, an analysis of spherical pictures.

Most of the material in this subsection is well-known. It can be found, for example, in
[3]. However, our treatment is slightly different, and is tailored to suit our purposes.
1.6. Lifting relative presentations

Given a relative presentation P there is an ordinary presentation P defining the same
group. The interplay between pictures over P and pictures over P is discussed.
1.7. The main results concerning orientable aspherical relative presentations

If P is an orientable aspherical relative presentation then, using the results of the
previous two subsections, we investigate identity sequences over the associated ordinary
presentation P. From this we deduce the results described at the start of this
Introduction.

2. Tests for asphericity
2.1. Star-complexes

Star-complexes (or star-graphs, or co-initial graphs) of ordinary presentations are well-
known, and have been used in several different contexts (see [6] and the references cited
there). We define what we mean by the star-complex of a relative presentation.
2.2. Weight test

We give a "weight test" for asphericity. This amounts to trying to assign numbers
("weights") to the edges of the star-complex in such a way that certain conditions are
satisfied. Our weight test generalizes work of Sieradski [25], Gersten [7] and Pride [20]
for ordinary presentations. We remark that a weight test similar to ours has been
introduced independently by Gersten [8] in unpublished work on equations over
torsion-free groups.
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4 W. A. BOGLEY AND S. J. PRIDE

2.3. Small cancellation conditions
We introduce small cancellation conditions C(p), T(q) for relative presentations in a

slightly non-standard way. Part of the definition makes use of the star-complex. A
relative presentation satisfying C(p), T(q) with l/p+l/<j=l/2 is aspherical.
2.4. New aspherical presentations from old

If we have an aspherical relative presentation <//, x; r>, and if we replace each R e r by
a power Rn(R) (n(R) a positive integer) then the resulting relative presentation is
aspherical.

We also obtain a "change of variables" theorem.

3. Applications
3.1. Some relative presentations with one defining relator (1)
3.2. Some relative presentations with one defining relator (2)

In these two subsections we discuss the asphericity of relative presentations of the
forms <i/,x; xaxbxc}, (H,x; xaxbx~ic} (a,b,ceH).
3.3. Quotients of free products ("generalized presentations")

A generalized presentation (or quotient of a free product) is an object <H,(ie/); u>,
where the H, are non-trivial groups, and u is a set of cyclically reduced elements of * H,
of free product length at least 2. We can associate with P a relative presentation Paug. If
Paug is aspherical (and if no element of u is a cyclic permutation of its inverse) then
information similar to (0.1)-(0.4) can be obtained concerning the group G defined by P.
For example, there are natural homomorphisms Hi->G(ieI) which are injections. Also,
the homology and cohomology of G in dimensions ^ 3 can be determined.
3.4. Small cancellation quotients of free products (Theorem of Collins and Perraud)

The theorem of Collins and Perraud [5] is an almost immediate consequence of the
results of §§2.3, 3.3.

We give some examples of small cancellation quotients of free products (including
groups considered by Kanevskii in [16]), to illustrate the C(6) and C(4), T(4) cases. We
also show that any T(6) quotient of a free product actually satisfies C(6).
3.5. Weight test for quotients of free products
3.6. LOG-presentations

These (ordinary) presentation have been discussed in [1,10]. In [1], the idea of a
shelling of an LOG-presentation L relative to a certain core K was discussed. This gives
rise to a relative presentation L//K. The proof of the main result of [1] demonstrates
that L//K is aspherical.

4. Topological aspects
We show how to construct a K(G, l)-space, where G is the group presented by an

aspherical orientable relative presentation.

1. Asphericity

1.1. Relative presentations

A relative presentation P is a triple
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<tf,x;r> (1.1)

where H is a group, x is a set, and r is a set of words in the alphabet H u x u x " 1 . Each
element of r is assumed to be written in the form

A'hlx?h2...x<n»hn (1.2)

where x,ex, ef= +1 , and Ji,e//, and is assumed to be cyclically reduced in the sense that
if /i, = l and x, = xI + 1 (subscripts mod/i), then e, = Ei+1. The elements of x u x " 1 will be
referred to as x-symbols. The elements of H will sometimes be referred to as coefficients.

The words in r represent elements of the free product H * <x>. The group G(P) defined
by P is the quotient of H • <x> by the normal closure of r.

If s is a subset of r then we denote by s* the set of all cyclic permutations of elements
of s u s " 1 of the form (1.2), that is, all cyclic permuations which begin with an x-symbol.

We define an operator ~ on r* as follows. For Rer write R = Sh where heH and S
begins and ends with x-symbols. We set

Note that R = R, and that R e r*. It is not difficult to show that R is fixed by " if and
only if R has the form

XhvX-xh2 (1.3)

where X begins and ends with x-symbols, and h1,h2 are elements of H each of order 2.
If R is an element of r* then R can be written in the form ./?P<R) where A is not a

proper power, and p(R) is a positive integer. We call A the root of R, and p(R) the
period.

We will say that P is slender if for each Rer, {R}*nr = {R}. We will say that P is
orientable if it is slender and if no element of r is a cyclic permutation of its inverse. We
remark that an element R e r is a cyclic permutation of its inverse if and only if some
cyclic permuation of R has the form (1.3) The (easy) verification of this is left to the
reader.

1.2. Pictures over relative presentations

A (generic) picture P is a finite collection of pairwise disjoint discs {A1,...,Am} in the
interior of a disc D2, together with a finite collection of pairwise disjoint simple arcs
{ai,...,an} properly embedded in the closure of D2-(J{A1, . . . ,Am}. By the discs of P
we mean the discs {Au...,Am} and not the ambient disc D2. The boundary of P is the
circle dD2, denoted dP. For je{l m}, the corners of Aj are closures of the connected
components of dAJ—\J{al,...,ixn}, where dAj is the boundary of A,-. The regions of P
are the closures of the connected components of D2—(\J{Al,...,Am}^j\J{<x1,...,(xn}).
An inner region of P is a simply connected region of P that does not meet dP. The

https://doi.org/10.1017/S0013091500005290 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500005290


6 W. A. BOGLEY AND S. J. PRIDE

picture IP is non-trivial if m2:l, is connected if U{A1 ( . . . ,Am} u \J{al,...,<xn} is
connected, and is spherical if it is non-trivial and (\J{cc1,...,xn}) n dP = 0.

Fix a relative presentation P = <//,x; r>, and suppose that the picture P is labelled, in
the following sense. Each arc is to be equipped with a normal orientation, indicated by
a short arrow meeting the arc transversely, and labelled by an element o f x u x " 1 . Also,
each corner of P is to be oriented anticlockwise (with respect to the ambient disc of P)
and labelled by an element of H.

If c is a corner of a disc A of the labelled picture P, then we denote by W(c) the word
obtained by reading in anticlockwise order the labels on the arcs and corners meeting
dA beginning with the label on the arc at the head (terminal point) of the anticlockwise
oriented corner c. Here the understanding is that if we cross an arc labelled t in the
direction of its normal orientation we read t, whereas if we cross in the opposite
direction we read t~l.

We say that the labelled picture P is a picture over P if the following two conditions
are satisfied.
(1.4). For each corner c of P, W(c)er*.
(1.5) If hi, h2,...,hm is the sequence of corner labels encountered in a clockwise traversal
of the boundary of an inner region of P, then hlh2...hm=l in H.

A based picture over P is a picture over P with the following additional features.
(1.6) If A is a disc of the picture then there are distinguished points (basepoints)
0 1 , . . . , 0 p in the interior of certain corners cu...,cp of A. The words W(ct),
W(c2),••., W(cp) are all equal to some element R of r u r. Moreover, p is the period of
R. We call R the label on A, and denote it by W(A).
(1.7) There is a distinguished point (basepoint) 0 on dP not lying on any arc of P. If we
travel around dP anticlockwise from 0 we will encounter a succession of arcs. Reading
off the labels on these arcs will give a word W(P), which we call the label on P. (Note
that W(P) involves only x-symbols.)

If P is a picture over P and if x0 is a subset of x, then those arcs labelled by elements
of X O U X Q * will be called xo-arcs. Similarly, if r0 is a subset of r, then those discs such
that W(c) e r$ (c a corner of the disc) will be called ro-discs.

1.3. Pictures over ordinary presentations

An ordinary presentation can be regarded as a relative presentation with W = {1}.
More precisely, if we have an ordinary presentation Q = <x; r> (r a set of cyclically
reduced words on x) then we can think of it as the relative presentation Q, =
<{l},x; r j ) where r t is the set of words Rt obtained from words Rer by inserting a 1
after each x-symbol. Notice that in a picture over Q, every corner is labelled by 1, and
thus condition (1.5) is always satisfied. The labels on the corners can thus all be ignored,
and we end up with the standard notion of a picture over Q ([3, 4, 12, 15, 23]). In
general we will blur the distinction between Q and Q l 5 and between pictures over Q
and pictures over Q j .

The following result is well-known (see [3, p. 190], or use Theorem V.I.I and Lemma
V. 1.2 of [19] and dualise).
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ASPHERICAL RELATIVE PRESENTATIONS 7

Lemma 1.1. A word W on x represents the identity of the group defined by Q if and
only if there is a based picture over Q with boundary label W.

1.4. Dipoles and asphericity

Let P be a relative presentation.
A dipole in a picture over P consists of a pair of corners c, d of the picture together

with an arc a joining the head of one corner with the tail of the other such that the
following conditions hold:

(i) c and d lie in the same region of the picture;

(ii) W(c') = W(c).

If r0 is a subset of r then the dipole is called an ro-dipole if W(c)er%. The discs on
which the corners c, d of the dipole lie are called the discs of the dipole. An important
observation is that if P is orientable then these discs are distinct. (For otherwise, some
cyclic permutation of an element of r* would be equal to its image under ~, by (ii)
above.)

A picture over P is reduced if it does not contain a dipole.
Our primary conceptual notion is the following.

Definition. A relative presentation P is aspherical if every connected spherical picture
over P contains a dipole (that is, fails to be reduced).

Remark. It is technically convenient to define asphericity in terms of connected
spherical pictures. Note however, that if P is aspherical then every spherical picture over
P contains a dipole (consider a suitable connected spherical subpicture). This remark
will be used often.

1.5. Sequences, pictures and relation modules

Consider an ordinary presentation

R = <x;t>

where the elements of t are cyclically reduced. The group G defined by R is then
(isomorphic to) F/N, where F is the free group on x and N is the normal closure of t in
F.

We let w denote the set of all words (reduced or not) on x. If s is a subset of t then
we let s" denote the subset of w consisting of all words of the form

WS*W-l(Wev/,Ses,e=±l).

Two elements WiT\xW[l, W^T^W^1 of tw will be said to be R-equivalent if
y-i f
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8 W. A. BOGLEY AND S. J. PRIDE

We will be interested in finite sequences of elements oft". Let a = ( C 1 , . . . , C J be such
a sequence. We define the inverse a'1 of a to be (C" 1 , . . . , ^"" 1 ) . For Wew we define
the conjugate aw of a by W to be (WCX W~1,..., WCmW~l). We define Ua to be the
word obtained by freely reducing the product CiC2...Cm. We say that a is an identity
sequence if Tla= 1.

Now let a' = {C\,...,C'n) be another sequence. We say that a and a' are ^.-equivalent if
m = n, n<7 = n<7', and there is a permutation 9 of {l,...,m} such that C\ is R-equivalent
t o C6(A)> ( / l=l , . . . , /n) . The two sequences are said to be equivalent if one can be
obtained from the other by a finite number of the following operations:

(I) Replace a sequence by an R-equivalent sequence.

(II) Delete two consecutive terms of a sequence if they are mutually inverse (as
words).

(Ill) The reverse of (II).

We remark that the notion of equivalence of sequences could be phrased in terms of
Peiffer exchanges, and collapses and expansions as defined on pp. 173-174 of [3].
However, we will not need this formulation here.

If Tet and a is a sequence then we define expT(cr) ("the exponent sum of Tin a") to
be the number of terms of a of the form WTW~l (Wew) minus the number of terms of
a of the form WT~lW~y (Wew). Note that if a' is equivalent to a then expr(<7') =
expT(o-) for all Tet.

We now relate sequences with pictures.
Let P be a based picture over R with discs A,, . . . ,Am and basepoint 0. A transverse

path in P is a path y in P with the following properties; (a) y interesects the arcs only
finitely many times (moreover, if y intersects an arc then it crosses if (and doesn't just
touch it); (b) y intersects 3 P u Ax u - u A m is a subset of the basepoints. Since we will
only ever consider transverse paths we will from now on drop the use of the adjective
"transverse", and simply refer to paths.

If we travel along a path y from its initial point to its terminal point then we will
cross various arcs, and we can read off the labels on these arcs, giving a word W(y), the
label on y.

A spray over P is a sequence y={y\,y2,---,yj) of simple paths satisfying the following:
(a) for k=\,...,m, yx starts at 0 and ends at a basepoint of Ae(^, where 6 is a
permutation of {l,...,m} (depending on y); (b) for l^X<(i^m, yx and y^ intersect only
at 0; (c) travelling around 0 anticlockwise in P we encounter the paths in the order
7iJ?2j--->ym- The sequence o(y) associated with y is

(W(y1)W(Ae(l))W(y1)-\...,W(ym)W(Seim))W(ymyi).

The proofs of the following two lemmas can be obtained by suitably modifying the
discussion in [23]. (The modifications required arise from the fact that, unlike in [23],
the discs in our pictures have several basepoints, determined by the periods of their
labels.)
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ASPHERICAL RELATIVE PRESENTATIONS 9

Lemma 1.2. / / y, y' are two sprays over P then o{y) and a{y') are R-equivalent.

Lemma 1.3. Given a sequence a there is a based picture P and a spray y over P such
that the label on P is Ylo, and a(y) = a. (We say that the picture P represents the sequence
a.)

We now relate identity sequences with relation modules.
Let M denote the relation module of R. Thus M is the left ZG-module with underlying

abelian group N/N' and G-action given by

WN • UN' = WUW~1N' (We F, U e AT).

Let <I> be the free left ZG-module with basis eT (Tet) . There is an epimorphism

Tet). (1.8)

Observe that the elements (1 — TN)eT (Tet) lie in the kernel of this homomorphism. We
call these the trivial elements.

If a = (W1T\lW;1,..., WmT'^W~l) is a sequence of elements of t" then eval(a) will
denote the element

of O. Note that if a' is equivalent to a then eval(ff)—eval(<r') lies in the submodule of <J>
generated by the trivial elements.

Lemma 1.4. Let S be a set of identity sequences such that every identity sequence is
equivalent to a product of conjugates of elements of l u l " 1 . Then Ker$ is generated by
the trivial elements together with the elements eval(ff) (a e Z).

Proof. Let K be the submodule of O generated by the trivial elements and the
elements eval(a) (<re£). Certainly K s

To show the reverse inclusion, let

belong to Ker0. Let Cx=WkT\lWJl(l=\,...,m). Then CxC2...CmeN', so there exist
elements DuD2,...,D2n_x, D2n oft" such that

is an identity sequence. By assumption, a is equivalent to a product a' = a\'v'
where a,, e 2 , K, e w, <5, = + 1 (i = 1,..., k). By a previous remark

eval(<r)-eval(ff')eK.

https://doi.org/10.1017/S0013091500005290 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500005290


10 W. A. BOGLEY AND S. J. PRIDE

Since eval(«r) = <!;, and eval(<r')e^> t n e result follows.

1.6. Lifting relative presentations

Let P = <H, x;r> be a relative presentation. We obtain an ordinary presentation P
defining the same group G as follows.

Let Q = <a; s> be an ordinary presentation of H. Then there is a homomorphism (f>
from the free group on a onto H with kernel the normal closure of s. For each h e H we
choose an element of (/>~l(h), represented by a freely reduced word in a. Now 4> extends
to a homomorphism from the free group o n a u x t o H * <x> in the obvious way, and
the lifting of elements of H decribed above induces a lifting of elements of H * <x>. In
particular, for each Rerwe have its lift R (a cyclically reduced word on aux) . We let

P = <a,x;s,r>

where r = {R:Rer}.

Lemma 1.5. / / P is orientable and aspherical, then every picture over P having at least
one r-disc and having no \-arcs meeting the boundary of the picture, contains an i-dipole.

Proof. Let P be a picture over P, and consider an r-disc of P. Between two
successive x-arcs meeting this r-disc, there is a succession of a-arcs; let W be the word
obtained by reading these arcs (anticlockwise). Now erase these a-arcs and label the
corner between the two successive x-arcs by <j)(W)eH. We let P/Q denote the picture
over P obtained by removing all a-arcs and s-discs, and labelling corners between x-arcs
as above. The condition (1.5) for pictures over P is satisfied by Lemma 1.1.

Now suppose that P contains at least one r-disc, and that no x-arc of P meets dP.
Then P/Q is a spherical picture over P; since P is aspherical, P/Q contains a dipole.
Since P is orientable, this dipole arises from an r-dipole in P.

We remark that without the orientability assumption, this result is false. For example,
if P = <H,x:[x,a]2>, where H is cyclic of order 2 generated by a, then it can be shown
that P is aspherical. However P is not orientable, and the picture over P shown in
Figure 1 contains no dipole.

The passage from pictures over P to pictures over P is reversible, in the following
sense.

Lemma 1.6. // P is a connected spherical picture over P, then there is a picture P
overP with P/Q = P>.

Proof. For each inner region Z of P, Lemma 1.1 provides a picture f. over Q with
boundary label equal to the product of the words in a which represent the corner labels
of Z. The one remaining region of P is an annulus. Replace each corner label in this
region by a succession of a-arcs reading the representative word (anticlockwise around
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FIGURE 1

the ambient disc). These a-arcs extend radially to the boundary, giving the required
picture P.

A connected spherical picture P over P is defined to be strictly spherical if the
product of the corner labels in the annular region (taken in anticlockwise order) defines
the identity in H. The relative presentation P is weakly aspherical if each strictly
spherical picture over P contains a dipole.

Lemma 1.7. / / P is weakly aspherical and if the natural map of H into G is an
embedding, then P is aspherical.

Proof. Given a connected spherical picture IP over P, construct a lifted picture P
over P as in Lemma 1.6. Note that the boundary label on P is a word W in a where
4>(W) is equal to the product of the outer corner labels. By Lemma 1.1, 4>{W) is in the
kernel of H -* G, and hence is trivial in H. Thus P is strictly spherical, and so contains a
dipole.

We remark that the converse of this result holds. This will follow from Theorem 1.1,
Corollary 1 (§1.7) in the case where P is orientable. The distinction between asphericity
and weak asphericity will be useful in §3.1 below.

1.7. The main results concerning orientable aspherical relative presentations

Throughout this section we will assume, without further comment, that P = <H,x; r>
is an orientable aspherical relative presentation. We let P = <a, x; s, f> where <a; s> is a
presentation of H and f is a lift of r (as in §1.6). We let w denote the set of words on
a u x. If a is a sequence of elements of (s u r)w then we let d(a) denote the number of
terms of a which belong to P . The group defined by P will be denoted by G.
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Theorem 1.1. / / a is a sequence where d(a)>0 and where Ho is a word on a, then a is
equivalent to a sequence a' with d(c') = d(a) — 2.

Proof. Let P be a based picture representing a (see Lemma 1.3). Then P contains an
r-dipole (Lemma 1.5). By considering a spray over P whose first two paths go to
appropriate basepoints of the discs of an r-dipole we find (using Lemma 1.2) that a is P-
equivalent to a sequence whose first two terms are in fw and are mutually inverse. By
deleting these first two terms we obtain the required sequence a'.

Corollary 1. The natural homomorphism H —> G is injective.

Proof. Let W be a freely reduced word in a which defines the identity of G. Then
W=T\o for some sequence a. It follows from Theorem 1.1 and induction that W = Ylx
for some sequence T with d(r) = 0. Thus W defines the identity in the group //*<x>
given by the presentation <x,a; s>, and therefore defines the identity of H.

Corollary 2. Every identity sequence over P is equivalent to an identity sequence all of
whose terms belong to s".

Corollary 3. / / a is an identity sequence then exp5(u)=0 for all Ref.

Corollary 4. If Rei then R defines an element of order precisely p(R) in G.

Proof. Suppose R defines an element of order / in G. Then l\p(R). Now /?' = riT for
some sequence T. Then the sequence a consisting of R ~J followed by p{R)/l copies of x
is an identity sequence. By Corollary 3 we have

Thus l = p(R).

Corollary 4 is a "relative" version of Proposition 1 of [14] (compare also with
Proposition 2.7 of [5]).

Let M be the relation module corresponding to the presentation P of G. (Thus
M = N/N', where N is the normal closure of s u f in the free group on a u x.) Also, let
MH be the relation module corresponding to the presentation <a; s> of//, and, for Rer,
let MR be the relation module corresponding to the presentation <bR; b^} of the cyclic
group CR of order p{R). By Corollary 1, H is embedded into G by the natural
homomorphism, and by Corollary 4, CR is embedded into G by the homomorphism
defined by bR t-» RN. We can therefore regard ZG as a (free) right Z//-module, and also
as a (free) right ZCR-module (R e r), and we can form the induced modules

ZG®ZHMH, ZG®ZCRMR(Rer). (1.9)
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Theorem 1.2. M is isomorphic to the direct sum of the modules in {1.9).

Proof. Let OH be the free left ZG-module with basis {es: Ses}, and for Rer, let <DR

be the free left ZG-module ZGeR of rank 1. Let

jter

By Corollary 2 above and Lemma 1.4 (§1.5) the kernel of the epimorphism
(as in (1.8)) is

KH@(@ZG(l-RN)eR\
\RSr /

where KH is the submodule of <S>H generated by {eval(a) :a is an identity sequence of
elements of sw}.

Now <t>H/KH is isomorphic to the submodule of M generated by {SAT:Ses}. This
submodule is in turn isomorphic to ZG ®ZH^H ( s e e [22, Lemma 2] in this regard). Also

ZG(l-RN)eR

The result follows.

(Rer).

Theorem 1.3. For any left ZG-module A, and any right ZG-module B we have

H»(G,A)^H-(H,A)®[ n Hn(sgpG{RN},A)
KRtsi

( HH(sgpG{RN},B)
\Rer

for alln^l.

This follows from Theorem 1.2 using fairly standard arguments concerning dimension
shifting and Shapiro's lemma. (For similar calculations, see the proof of Theorem 2 of
[23].)

Theorem 1.4. Any finite subgroup of G is contained in a conjugate of H or in a
conjugate of one of the cyclic subgroups sgpG{RN} (Rer).

This follows from Theorem 1.3 and a result due to Serre (quoted in [14]).
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2. Tests for asphericity

Throughout this section P = <//, x; r> will be an orientable relative presentation.

2.1. Star complexes

The star-complex Psl of P is a graph (in the sense of Serre [24]) whose edges are
labelled by elements of the coefficient group H. The definition is as follows.

The vertex and edge sets are x u x " 1 , r* respectively. For Rer*, write R = Sh where
heH and S begins and ends with x-symbols. The initial and terminal functions are
given by: i(R) is the first symbol of S, T(R) is the inverse of the last symbol of S. The
inversion function on edges is given by the operator ~ defined in §1.1. By remarks in
§1.1, R¥=R for all Rer*, since P is orientable. The labelling function is defined by
X(R) = h~l, and is extended to paths in the obvious way. Note that

Lemma 2.1. Let c1,...,ck be the sequence of corners encountered in an anticlockwise
traverse of an inner region £ of a picture P over P. Then: (i) The sequence of edges
W(ct),..., W(ck) is a cycle in P5'; (ii) W(cj), W(cJ+l) (subscripts modk) is a backtracking
if and only if there is an arc a. joining Cj to Cj +1 in the boundary of Y. such that a, Cj and
cJ+1 together form a dipole.

Proof, (i) If an arc a meets the corners c, and c,+ 1 in the boundary of £, then it
must join the head of cJ+l to the tail of Cj (or vice versa). From this it follows that

,))( = the label on a).

The claim (ii) is clear.

The cycle in (i) will be referred to as the cycle supported by the inner region L. By the
condition (1.5) for pictures, this cycle has trivial label in H. A non-empty cyclically
reduced cycle in Pst will be called admissible if it has trivial label in H. Each inner region
of a reduced picture over P supports an admissible cycle in Pst.

2.2. Weight test

A weight function 6 on Psl is a real valued function on the set of edges of Pst which
satisfies 6(R) = 9(R) for all Rer*. The weight of a path is the sum of the weights of the
constituent edges.

A weight function 0 on Psl is weakly aspherical if the following two conditions are
satisfied.
(2.1) Let Rer, say R = x\lhl...x

c
n"hn as in (1.2). Then

£ (1 -0(xf7i,-...xlnhax\'hi...x-'-,'Ji,-.
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ASPHERICAL RELATIVE PRESENTATIONS 15

(2.2) Each admissible cycle in Pst has weight at least 2.
A weakly aspherical weight function on Psl is aspherical if each edge of Pst has

non-negative weight.

Theorem 2.1. (i) / / Pst admits a weakly aspherical weight function, then P is weakly
aspherical.

(ii) If Vs1 admists an aspherical weight function then P is aspherical.

Proof. Suppose that P is a reduced strictly spherical picture over P. In the presence
of a weakly aspherical weight function 9, we derive a contradiction.

Shrink each disc of P to a vertex, and identify dP to a point to obtain a tesselation T
of the 2-sphere. Let no,n1,n2 be the number of vertices, edges, faces of T respectively.
Thus n0 is equal to the number of discs of P, nx is equal to the number of arcs, and n2

is equal to the number of regions. Denote the set of corners of P by C.
Clearly

ceC

Summing over all vertices of T, the condition (2.1) implies

csC

Now, as remarked in §2.1, each inner region of P supports an admissible cycle in Pst.
Moreover, since P is strictly aspherical, the outer annular region also supports an
admissible cycle in Pst. Thus, summing over all faces of T, the condition (2.2) implies

ceC

We now obtain the following contradiction:

2 = no-nl+n2^i £ ((l
ceC

(ii) Suppose that P is a reduced connected spherical picture over P, and that Psl

admits an aspherical weight function 9. Proceed as in (i), with the exception that the
outer region of P need not support an admissible cycle; it does support a cycle of non-
negative weight, however. In this case we have the following consequence of (2.2):

ceC

This leads to the contradiction:
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16 W. A. BOGLEY AND S. J. PRIDE

Remark. The present weight test generalizes work of Sieradski [25], Gersten [7] and
Pride [20] concerning ordinary presentations (and more generally 2-complexes). Aspher-
ical weight functions similar to ours have been introduced by Gersten in unpublished
work on equations over torion-free groups [8].

2.3. Small cancellation conditions

Let k be a positive integer. A k-wheel over P is a (non-trivial) connected picture W
over P which has discs {A^Ai,...,^}, and which satisfies:

(i) each arc of W meets a disc Aj for some je{l,...,k};
(ii) each arc of W either meets Ao or <3W;

(iii) each disc of W has a corner which lies in a region of W that meets 8W. The disc
Ao is the hub of the fc-wheel.

A typical fc-wheel is depicted in Figure 2.

FIGURE 2

Definition. Let p be a positive integer. Then P satisfies C(p) if there are no reduced
fe-wheels over P for k < p.

Definition. Let q be a positive integer. Then P satisfies T(q) if there are no
admissible cycles in Pst of length / for 3^

Theorem 2.2. / / P satisfies C(p), T(q) where l/p+ \/q= 1/2 then P is aspherical.
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Proof. Suppose that P is a reduced connected spherical picture over P. Observe that
each inner region of P has at least two corners since the relators of P are cyclically
reduced. Remove all inner regions of P that contain just two corners by identifying the
two bounding arcs to a single arc; denote the modified picture by P*. The identification
process is depicted in Figure. 3. (Note that the discs A and A' need not be distinct).

0—©
FIGURE 3

The labels on the arcs and corners of P involved in the identification process are
eliminated in the passage to P*. However the corners of P* remain labelled by
coefficients; by Lemma 2.1(i), each inner region of P* supports an admissible cycle of
length at least 3, and hence of length at least q, by T(q). If there are k incidences of arcs
of P* on a disc A of P*, then one can easily use the structure of the picture P near A to
construct a reduced fc-wheel with A as hub. By C(p) then, there are at least p incidence
of arcs on each disc A of P*.

Shrink each disc of P* to a vertex, and identify 5P to a point, to obtain a tesselation
T of the two-sphere containing n0 vertices, nt edges, and n2 faces. The C(p) condition
gives that each vertex of T supports at least p incidences of edges, which implies

pno<2nt.

The T(q) condition gives that all faces of T but one (the "outer" face) have at least q
boundary edges, which implies that

This produces the following contradiction:

= 1.

2.4. News aspherical presentations from old

For each R e r let n(R) be a positive integer. Let
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18 W. A. BOGLEY AND S. J. PRIDE

Theorem 2.3 (proper powers). / / P is aspherical then so is P.

Proof. Let IP be a (connected) spherical picture over P. Convert to a spherical
picture over P as follows. Select a disc A of P. For some Rer there are corners
c,,...,cn(R) of A such that W(Cj) = (Sh)"w ( ;= l,...,n(R)); here heH, S begins and ends
with x-symbols, and Sh is either R or R. Fracture A at each of the corners c,, and break
A up into n(R) smaller discs A1;...,An(R), so that cs is now a corner of A, and
W(cj) = Sh. The process is depicted in Figure 4.

FIGURE 4

The new picture Px has the same arcs as IP, but will generally not qualify as a picture
over either P or P: the condition (1.4) will typically be violated. The labelled and
oriented picture Pj does satisfy the condition (1.5) however. For the regions of Pj are
just the regions of P, except for a single region £ which is a union of one or more
regions of P, together with the "junction" that was created when A was fractured. If £ is
not inner to P, , then there is nothing to prove. Otherwise, the sequence of coefficients
obtained in a traverse of the boundary of I is a concatenation of n(R) coefficient
sequences taken from inner regions of P, and so has trivial product in H, as desired.

Continue in this fashion to obtain a finite sequence of spherical pictures

where PJ + 1 is obtained from Ps by fracturing a disc of P, with label in Rn(R) (R e r),
where each P ; satisfies the condition (1.5), and where P qualifies as a picture over P, the
condition (1.4) being satisfied for r.

While P need not be connected, it is spherical and so contains a dipole. Since no
relator of r is repeated, this implies that P contains a dipole, and the proof is complete.

Our next result concerns a "change of variables".
Let {tx: xex} be a set in 1:1 correspondence with x. For each xex, select hXtl and

/»*,_! in H, and select vxe{l, — 1}. Rewrite each word in tfuxux"1 using the
substitutions
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where e= ± 1 . Let r' denote the set of words obtained from r by substituting as above,
cyclically permuting so as to begin with a t-symbol, and finally multiplying adjacent
elements of H. We note that the words in r' are cyclically reduced. Let

Theorem 2.4 (change of variables). P is (weakly) aspherical if and only if P ' is
(weakly) aspherical.

Proof. It suffices to prove one direction. Convert a picture P over P to a picture P '
over P' as follows. Replace each label x ' e x u x " 1 on each arc of P by t"'. For a corner
c of a disc of P, if

i(W(c)) = x* and i(W(c)) = y6

(where i and T are the initial and terminal maps of Pst; x" and / are x-symbols), then
replace the label X on c by

One can now check that this new picture P' is a picture over P'. Moreover, a dipole in
P' gives rise to a dipole in P. The result follows easily.

3. Applications

3.1. Some relative presentations with one defining relator (I)

A relative presentation of the form

(H,x; xa1xa2. . .xan>

(aua2,...,ansH) is orientable and satisfies T(4). If n ^ 4 and if all the a's are distinct
then it also satisfies C(4), and so the presentation will be aspherical in this case
(Theorem 2.2). However, when n-3 the presentation satisfies C(4) only when al=a2 =
a3. Nevertheless, we can still investigate the asphericity of the presentation by using the
weight test (Theorem 2.1). This is our aim in this section.

Theorem 3.1. Let au a2 and a3 be elements of a group H such that {al,a2,a3}
contains at least two elements. The relative presentation (H,x; xalxa2xa3} is aspherical if
and only if neither of the following conditions holds:

(i) For i = 1, 2, 3, fl,-a(Vi has finite order p ,>0 (subscripts mod 3), and

Pi Pi Pi
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20 W. A. BOGLEY AND S. J. PRIDE

(ii) There exist je {1,2,3}, p>2, and O^k<p such that sgp{aia^+\: i= 1,2,3} is finite
cyclic with generator ajaj+i of order p, and aJ+1aj~+1

2=(ajaj'+1)
k where either

( a ) * = l.

(b) p = k + 2 or 2k + I, or

(c) p = 6 and k = 2 or 3.

The proof of this result is broken up into several pieces. In order to fix and simplify
notation, we work with a relative presentation

Px = <H, x; xaxbxc}

where {a, b, c} is a subset of H consisting of at least two distinct elements.

Theorem 3.2. If one of ab'1, be"1, ca'1 has infinite order then Pi is aspherical.

Theorem 3.3. Suppose ab'1, be'1, ca'1 have finite orders p,q,r respectively. Then Pt

is aspherical if

i + i + ̂ 1
p q r

and sgp{ab~l,bc~i,ca~1} is not generated by any one of ab'1, bc~1,ca~1.

Theorem 3.4. / / ab'1, be'1, ca'1 have finite orders p,q,r respectively, where

1 1 1 .
- + - + - > 1 ,
p q r

then Pj is not aspherical.

The Theorems 3.2, 3.3 and 3.4 cover the majority of Theorem 3.1. After proving these
results we will consider the remaining cases, in which sgp{ab~1,bc~l,ca~1} is finite
cyclic, generated by one of ab'1, be'1, ca~l.

Before proving the above theorems we make some preliminary remarks.
The star-complex of P t has the form

FIGURE 5
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where the edges a, /?, y are labelled by a, b, c respectively. We let A = afi~l, B = Py~1,
C = ya"1. A word in A, B, C will be said to be special if it is non-empty, cyclically
reduced, and none of its cyclic permutations has a subword (AB)±l, (BC)*1 or (CA)±1.
Then each non-empty cyclically reduced path p in P" starting at x" 1 can be expressed
as a special word W(p) in A, B, C. Moreover, p is admissible if and only if W(p) is in
the kernel of the homomorphism A from the free group on A, B, C to H given by

A h-» ab~ \ \

We note the following fact for future use.

If X, Y are distinct elements of {A,B,C} and if .XT" e KerA for some n, then
sgp{ab~l,bc~1,ca~i} is cyclic, generated by A(7). (3.1)

Since the natural homomorphism of H into the group defined by Px is injective [18],
it follows from Lemma 1.7 and Theorem 2.1(i) that P t is aspherical if there is a weakly
aspherical weight function on Ps/. Sufficient conditions for a weight function 9 on P" to
be weakly aspherical are the following:

2 (3.2)

and

6( W) ^ 2 (W a special word in Ker/l). (3.3)

Proof of Theorem 3.2. We suppose that ab~l has infinite order, and we exhibit a
weight function satisfying (3.2) and (3.3).

Case 1. B or C belongs to KerA.

Suppose without loss of generality that BeKerl. We claim that any special word W
in KerA must involve B. For if W involved only A and C then, since X(A) = X(C)~l

(using k(ABC)= 1), X(W) would be a non-zero power of X(A) = ab~l, and so A(W)#1.
It now suffices to put 0(a)= -1,0(0) = 0(j)= 1.

Case 2. B2 or C2 belongs to KerA.

Suppose without losing generality that B2eKerA (and that B, C^KerA). We claim
that any special word W in KerA must involve at least two occurrences of letters in
{ B * 1 , ^ 1 } . For otherwise, up to cyclic permutation and inversion, W would be of the
form AnB~l or A"C~l

 (M>0). If /TB^eKerA then k(A)2n = \, contradicting the fact
that k(A) has infinite order. If /TC^eKerA then we obtain the contradiction
k(A)2in+l)=l.

It now suffices to define 0(a) = 0Q3) = O and 0(y) = 1.

Case 3. One of AB~ \ AC^BC'1 is in KerA.
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If BC^eKerA then X(B) = X(Q and, since X(ABC) = \, we have X(A) = X(B)~2, which
means that X(B) has infinite order. Consequently, all three of AB~l, AC'1, BC'1 have
the form XY~l(X=£ Y) with X(X) of infinite order. Thus, by symmetry, it suffices to deal
with the case when AB~l e KerA.

If AB'1 eKerA then X(A) = X(B) and X(C) = ^(A)~2. Thus X(A), X(B), X(Q all have
infinite order, and so any special word W in KerA must involve at least one of A,B. We
claim that the total number of A's and B's in W must be at least 2. For otherwise, up to
cyclic permutation and inversion W would have one of the forms AC~",BC~"(n>0).
Suppose AB~neKerX. Then X(A)2 = X(C)2n = X(A)-4n, contradicting the fact that X(A)
has infinite order. Similarly BC~"$YLevX.

It follows from the above that if we put 0(<x) = %) = O, 0(0) = 1, then (3.2) and (3.3) are
satisfied.

Case 4. No special word of length less than 3 is in KerA.

Put 0(<x) = 0O?) = 0(y) = i (Alternatively, note that Px satisfies C(3), T(6).)
For the proof of Theorem 3.3 we need the following.

Lemma 3.1. Suppose sgp{ab~1,bc~i,ca~i} is not generated by any one of
ab~l,bc~1,ca~i, and suppose that ab~l, be'1, ca~l have finite orders p, q, r respectively.
Then a weight function 9 on P? is weakly aspherical if it satisfies (3.2) and:

9(A)^-,6(B)^-,e(Q^~; (3.4)
p q r

if X, Y are distinct elements of {A,B,C} and if W is a special word involving both X
and Y at least twice then 6(W)^2. (3.5)

Proof. We show that (3.3) holds. Let W be a special word in KerA. If W involves
only one of A, B, C then 9(W)^2 by (3.4). If W involves exactly two of A, B, C then
0(HO^2 by (3.5) and (3.1). If W involves all three of A, B, C then 0(W)^2 by (3.2) and
the fact that 9(A), 8{B),

Proof of Theorem 3.3. We exhibit a weight function 9 satisfying (3.2), (3.4), (3.5).

Case 1. p, q, r^.3.

Put 0(a) = 0(/5) = 0(y) = i (Alternatively, note that P, satisfies C(3) and T(6).)

Case 2. p = 2, q = 3, r ^ 6 .

Put 0(a)=i, 0(0=1, 9(y)=0.

Case 3. p = 2, q, r^.4.
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Proof of Theorem 3.4. We exhibit a spherical picture P over Pj without dipoles. We
can assume, without loss of generality, that p^q^r.

Case 1. p= 1.

Take P to be the following picture with Id discs, where d = lcm(q, r)

FIGURE 6

Case 2. p = 2.

We indicate how to construct a suitable picture P.
Start with a regular tesselation of the sphere where each vertex has valence q and

each region has r sides, and project this tesselation onto the plane. (The vertices and
edges of this tesselation will not form of P, but will be used to indicate where to place
various parts of P.)

In the middle of each edge of the tesselation place a configuration thus:

o •o

6-
FIGURE 7

•o

Then add additional arcs to "box in" each vertex of the tesselation.

o—o o—o

6 6 o—o
FIGURE 8
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9 = 3

FIGURE 9

Finally, rub out all the vertices and edges of the tesselation, and label the arcs and
corners of the remaining configuration to obtain a spherical picture P (there is
essentially only one way to do this).

The case q = 3, r = 4 is depicted below. (We have left in the edges and vertices of the
tesselation for illustrative purposes.)

FIGURE 10

To complete the proof of Theorem 3.1 we now suppose that sgp{ab 1,bc 1,ca l} is
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finite cyclic generated by ab~l of order p, and we write bc~l=(ab~1)k where 0^
We may assume that p > 2 and kj^O, p— 1 (otherwise Theorem 3.4 applies).

If fc= 1 then

in the group G defined by P l 5 and so bx represents an element of order dividing
( — 2)p— 1 in G. However, bx is not conjugate in G to any element of H (in fact, bx does
not even belong to the normal closure of H in G), so Pl is not aspherical, by Theorem
1.4.

Ifp = fc + 2 then

{a-lb)(xa){a-lb)~l=(xay2 in G,

while if p = 2/c + 1 then

2 in G.

In both cases, arguments similar to those in the previous paragraph shows that Pi is
not aspherical.

Suppose that p = 6 and k = 2 or 3. The substitution t~1 = bx show that

* K
ab-'=s

where K is the group given by the ordinary presentation <s, t; s6, t2s x lsk>. A computer
assisted coset enumeration establishes that K is finite (of order 342). It follows from this,
using Theorems 1.4 and 2.4, that Pt is not aspherical.

Now suppose that fe#l, p^k+l, 2fc + l, and that if p = 6 then fe^4. We will show
that Pj is aspherical. A cyclically reduced loop in Pf of length less than 6 is labelled by
an element of the form (ab'1)1, where |/| is one of 1, 2, k, 2k, fe+ 1, 2(fc+ 1), k- 1, 2fc+ 1,
k + 2. If none of these labels is trivial then define a weight function 9 on P5,1 by
0(<x) = 6(P) = 9(y)=% so that (3.2) and (3.3) hold. (Alternatively, observe that P t satisfies
C(3) and T(6).) Otherwise, our assumptions imply that either p = 2k and /c^4, or
p = 2(fe+ 1) and k^.3. Using the change of variable t"1 =axb and appealing to Theorem
2.4, if necessary, allows us to concentrate on showing that P t is aspherical when p = 2fc

Define a weight function 6 on Pf by 0(<x) = O, 6(P) = 9(y) = $. Then (3.2) is satisfied. To
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see that (3.3) holds, first observe that none of the special words A, A2, A3, C, C2, C3,
CA~l, CA~2, C2A~l is in KerA, and so any special word in KerA not involving B has
length at least 4, and thus has weight at least 2. Next, observe that none of B, AB~l,
BC'1 is in KerA, and so any special word in KerA involving just one occurrence of B
has length at least 3, and thus has weight at least 2. Finally, note that a special word
involving two or more occurrences of B clearly has weight at least 2.

3.2. Some relative presentations with one defining relator (2)

In this section we augment the considerations of §3.1 by discussing relative
presentations P2 of the form

<//,x; xaxbx~icy

where a,b,ceH, and b# 1 ^c . Observe that such presentations are orientable.

Theorem 3.5. P2 is aspherical except possibly when b and c have finite orders p, q and
either \/p + \jq> 1/2, or a~iba = ck for some k, or aca~l=bk for some k.

Proof. The star complex of P2 has the form

o
FIGURE 11

where the edges a, /?, y are labelled by a, b, c respectively. For p a path in P2 and v any
one of tx,fi,y we define Lv(p) to be the total number of occurrences of v and v"1 in p.

To show that P2 is aspherical, it suffices to find a non-negative weight function 8 on
P2 such that 0(a) + 0(/?) + 0(y) = l, and such that the weight of every admissible path is at
least 2.

Case 1. b and c have infinite order.

Then La(p) ^ 2 for every admissible path p, and so it suffices to define 6 by

Case 2. b has finite order, c has infinite order.

Then Lp(p)^2 for admissible path p. For otherwise, up to cyclic permutation and
inversion, p would be one of /?, Pa.yna.~l («#0). But /? is certainly not admissible.
Moreover, if p<xy"<x~l were admissible then the element b (of finite order) would be
conjugate in H to the element c" of infinite order, a contradiction.

We define 6 by 0(<x) = 0(y) = O, 0(0) = 1.
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Case 3. b,c have finite order p,q respectively, l/p+l/q^l/2, no relations of the form
a'1ba — ck, aca~1=bk hold.

We define 9 by

2

Q

Let p be an admissible path. Certainly if Lx(p) = 0 then 9(p) ̂  2.
Suppose La(p)^2. We claim that Lfi(p), Ly(p)^2. This is obvious if Lx(p)^4, and if

Lx(p) = 2 then it follows from the fact that no relations of the form a~1ba = ck,
aca~l = bk hold. We now see that

2 2

V \P qjj P+ ~q= '

3.3. Quotients of free products ("generalized presentations")

Consider a generalized presentation [13]

P = <tf,(ie/);u>. (3.6)

Here the //, are non-trivial groups, and u is a set of cyclically reduced elements of
H = *islHj of free product length at least 2. The group G defined by P is (isomorphic to)
the quotient of H by the normal closure K of u in H.

We denote the set of cyclic permutations of elements of n u u " 1 by u*. We can
assume without loss of generality that if l /eu* then no cyclic permutation of U±l

except for U itself, belongs to u*. If Ueu then we may write U = 0*U) where U is not a
proper power and p(U) is a positive integer (U is the root of U, and p(U) is the period).

Let X; (iel) be collection of new symbols. If U is an element u, say U = uxu2-..um in
normal form (ukeHik, A=l , . . . ,m), then let l/aug denote the element

of tf*<x, (iel)). (Here 1 is the identity of H.) Define Paug to be the relative
presentation

/,x,. ( ie / ) ; uaug>,

where uaug = {t/aug: l / eu} .
We make the following assumptions.

No element of u is a cyclic permutation of its inverse. (3.7)

Paug is aspherical. (3.8)
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Lemma 3.2. The natural homomorphisms Ht->G ( i e / ) are injective. If Ueu then U
defines an element of order p(U) in G.

Proof. Let <p: H»-+G, </>aug: H*X->GiUg be the natural epimorphisms (where X is
the free group on {*,; i e / } and Gaug is the group defined by Paug). Let \p be the
automorphism of H * X given by

/ f), x, i-» xt

for each j e /. Then there is an induced isomorphism

where i//*(<j)*id) = <t)augil/. By Theorem 1.1, Corollary 1, the restriction of </>aug to H is
injective. Let heHi, and suppose <j)(ht)=l. Then (<f>* id)(x^ihixi) = 1, so
</>aug^(xf 1/i,xi) = l. Thus </>aug(fci)= 1, which implies that /i, = 1, as required.

The second statement follows from the fact that <£aug(t/'(£/)) has order p(U) by
Theorem 1.1, Corollary 4.

For each i e / choose a presentation <y,;s,> of//,. Then there is a homomorphism </>,
from the free group on y, onto / / , with kernel the normal closure of sf. A lift of //, is a
choice of exactly one element of 4>^l{h) for each heHt. (We assume that the chosen
element of <f>i~J {h) is expressed in freely reduced form for each h e // ,). We then get an
induced lift of / / = * i e / / / , via *16/ 0;. Let u be the lift of u, and let

Then P is an ordinary presentation defining the same group G as P.
The lift of H also induces a lift Paug of Paug:

PaUg = <y,-(ieH,x,(iel); s,(ie/),uaug>.

Let s = U,e/s,-, and let w, waug denote the set of words in (J i e /y ( , U^ / (y iU {*.•}).
respectively.

Lemma 3.3. / / a is an identity sequence over P then a is equivalent to a sequence all
of whose terms are in s".

Proof. The proof is by induction on the number d(o~) of terms of a not in sw. If
d(<r) = 0 the result holds.

Suppose d(a)>0. Let P be a spherical picture representing a (Lemma 1.3). We can
convert P to a spherical picture Paug over Paug as follows.

(a) For each arc labelled by an element y e yt; u yf i replace it by three parallel arcs.
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FIGURE 12

(b) If, when reading around a disc we have two successive arcs labelled by x,, xf1,
then perform a bridge move to cancel them.

FIGURE 13

(c) Remove any "floating" x,-arcs.

a
FIGURE 14

Now Paug contains a uaug-dipole (Lemma 1.5). There is therefore a spray y in Paug

such that the first two terms of the sequence associated with y are in u"™j, and are
mutually inverse. Now recover P from Paug by rubbing out all the x.-arcs. Then y is a
spray in P, and in the associated sequence the first two terms are mutually inverse
elements of uw. Deleting these two terms gives a sequence a' equivalent to a, with
d(&) = d(a) — 2.

Let M be the relation module corresponding to the presentation P. For iel, let M, be
the submodule of M generated by the cosets of the elements of s;, and let MHi be the
relation module corresponding to the presentation <y,; s(> of H{. Finally, for Uen, let
Mu denote the relation module of the standard presentation of the cyclic group Cv of
order p(U).

Now the Mt {iel) generate their direct sum in M, as is easily seen by considering
their images under the standard embedding of M into a free module [9, p. 119].
Moreover,
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(see [22, Lemma 2]).
Using the above remarks, together with arguments based on Lemma 3.3, we can

obtain the following results (cf. Theorems 1.2, 1.3, 1.4).

Theorem 3.6. Afs (0 , 6 / ZG ®ZH,MH I.) ®(®UeaZG®ZCvMv).

Theorem 3.7. For any left ZG-module A, and any right ZG-module B we have

Ueu

®((&Hn(sgp{UK},B))
Weii /

Theorem 3.8. Any finite subgroup of G is contained in a conjugate of some H( (iel)
or in a conjugate of some sgp{UK} (Ueu).

In order to make practical use of the above results, we need ways of telling when a
generalized presentation satisfies (3.7) and (3.8). Verification that (3.7) holds is of course
just a simple matter of inspection. In the next two sections we will give some sufficient
conditions for (3.8) to hold. These make use of the star-complex of a generalized
presentation, which we now define.

Let P be as in (3.6). The inversion operator - 1 is an involution on u*, and this
operation has no fixed points (since we are assuming that the elements of u are
cyclically reduced). We will need another involution ~ on u*. Let Ueu, say

U = Ulu2...um (3.9)

in normal form (u^eHUi,A= 1,...,m). Then we define U to be

(Thus, if we write U = u1V, then U = u'[lV~1.) The necessary and sufficient conditions
for ~ to have no fixed points is that (3.7) holds.

Assuming that (3.7) holds, we can define the star-complex Pst of P to be the labelled
1-complex specified as follows.
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Vertex set: I x { —1,1}.

Edge set: u* x{ — 1,1}.

Operations: Let l /eu* and suppose the first letter of U lies in // , and the last lies in
j . Then

i(l/, l) = (i, 1), r(l / , l) = (j , 1), (U, I ) " 1 = ( [ / " S 1)

Labelling: An edge of the form (I/, 1) is labelled by leH. An edge of the form (U, - 1 )
is labelled by the inverse of the first letter of U.

The important fact about Pst is that it is isomorphic (as a labelled 1-complex) to P*'ug,
where the isomorphism is specified as follows. Let U be an element of u* as in (3.9).
Then the edges (U, 1), (U, — 1) of Psl are mapped to the edges

x ^ ^ r l lxitu2xr11... ximumxrj 1, xr
i lxhu2xr l l . . . ximumxrj lxh u t

of PaUg, respectively.

3.4. Small cancellation quotients of free products (Theorem of Collins and Perraud)

We use the notation of the previous section.
Let W be an element of H, say W=wlw2...wn in normal form. An initial segment of

W is a string wlw2...w, with 0<t^n. A semi-initial segment of W is a string
wlw2.-.wt_lh where 0<t^n and where h lies in the same factor of H as w,. Let Wy be
an initial segment of W, and let W be what is left after removing Wl. Let W2 be an
initial segment of W, and let W" be what is left after removing W2 and so on.
Continuing this way, we get a factorization W1W2...W, of W.

Let C/eu*, and let UlU2...U, be a factorization of U. We call this a factorization
into pieces if, for A=l,...,l,Ux is a semi-initial segment of some element of u* different
(vomUxU)i+1...U,U1...Ux.1.

C(p): If Vi U2... Ut is a factorization of an element of u* into pieces, then I7z.p.

T(q): There is no admissible path in Psl of length m, with 3^m<q.

Note that, because of the isomorphism between Pst and P|'ug (see § 3.3) we have:

P satisfies T(q) if and only if Paug satisfies T{q). (3.10)

The following result can also be proved (the proof is left as an exercise for the reader).
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// P satisfies C{p), then Paug satisfies C(p). (3.11)

We now deduce from (3.10), (3.11) and Theorem 2.2 that if P satisfies C{p),

a 2

then (3.10) holds, and we can apply Theorems 3.6, 3.7, 3.8. This gives a proof of results
of Collins and Perraud [5].

We now give a few specific examples illustrating the above.

Example 1. (Kanevskil's groups [16], and generalizations).

Let At (iel) be a collection of cyclic groups of order 2, with At generated by a,. Let T
be a set of ordered triples of elements of / with the properties:

(a) if (i, j , k)eT then all three of i, j , k are distinct;

(b) if two triples in T have more than one element in common, then the triples
coincide.

Let 4> be a function from T to {2,3,4,...}, and let

Let

Then (3.7) obviously holds for K, and (3.8) holds because K satisfies C(6).
The case when Im</> = {2} was studied by Kanevskil [16] (see also [17,21]). Kanevskil

was interested in the torsion in the group defined by the presentation. His result (and, in
fact, a more general result than his) follows from Theorem 3.8.

Example 2. Let

V = <A,B,C,D;aibiclidl{XeA)>

where a;eA — {1}, b;eB-{1} and so on (AeA). Suppose that: (i) a;#a/J,a^,a^2(A#/i);
(ii) a; does not have order 3 (AeA); afa^al'^l (A, p, v distinct elements of A, e;_, e,,,
£ve{l, -1}), and similarly for the b\ c's and d's. Then (3.7) holds for P, and (3.8) holds
because P satisfies C(4) and T(4).

We do not give any example illustrating the C(3), T(6) case. The reason is the
following:
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Theorem 3.9. Any T(6) generalized presentation satisfies C(6).

Proof. Let P be as in (3.6) and suppose that P satisfies T(6). We claim that in any
factorization of an element of u* into pieces, each term of the factorization has length 1.
For otherwise there would be distinct edges e = (U, 1), f = (V,l) of Pst with i(e) = i ( / ) ,

= *(/)• Then (e / " 1 ) 2 would be an admissible path of length 4, contradicting T(6).
It now suffices to show that each element U of u has length at least 6. Write
= u1u2... um in normal form, as in (3.9). Now the edges

of Pst constitute an admissible path p. If w = 3, 4, 5 then we get an immediate
contradiction to T(6), while if w = 2 we get a contradiction by considering p2.

3.5. Weight test for quotients of free products

We continue the notation of § 3.3.
The isomorphism between Pst and Pa'ug allows us to formulate a weight test for Psl

which guarantees that Paug is aspherical. Specifically, suppose there is a non-negative
weight function 6 on Pst satisfying the following conditions:

(i) The weight of every admissible cyclically reduced path in Psl is at least 2.
(ii) If U is an element of u as in (3.9). then

Then Paug is aspherical.

Example 3. Let

P = (A,B,C,D,E; aj)^dj,2cx, (a2c2)
k, (d2e2)'y

where al,a2eA — {1}, bt, b2eB — {1} and so on, and where k, I are positive integers. Let
pA denote the length of a shortest non-empty freely reduced word in at and a2 which is
equal to 1 in A (if no such word exists, put pA = oo). Define pB, pc etc. similarly. Then P
satisfies (3.7) provided not both a2,c2 have order 2, and not both d2, e2 have order 2.
Also, using the weight test, we have that P satisfies (3.8) if

PA PC

PD PE

Appropriate weights on Psl are given below.
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2/pB

etc.

B

FIGURE 15

3.6. LOG-presentations

Consider a group presentation L in which each relator has the form

nrlrl
(3.12)

where i, t, I are generators. Associated to L are three geometric graphs, each with vertex
set equal to the set of generators, and having one (geometric) edge for each relator. For
the first of these, denoted LOG(L), the edge corresponding to the relator (3.12) has
initial vertex i, terminal vertex t, and is labelled by the vertex (i.e. generator) /. The
graph LOG(L) is a labelled oriented graph, and L is an LOG-presentation (see [1,10]).
The other two graphs are /(L) and T(L); these are unlabelled and undirected.
Corresponding to the relator (3.12), there is an edge with endpoints i and / in /(L), and
there is an edge in T(L) with endpoints t and /.

An LOG-presentation L is said to be the join of LOG-presentations L', L" if
L = L' u L", where L' and L" intersect in a single generator. A shelling of an LOG-
presentation L is a filtration

where L o ,h l , . . . ,h n are LOG-presentations, and for m=l,...,n, either: (i) Lm is the join
of Lm_j and an LOG-presentation whose /-graph or T-graph is a forest; or (ii) Lm_j is
a subpresentation of Lm, and each edge of LOG(Lm) —LOG(Lm_1) is extremal in
LOG(LJ. We call K the core of the shelling.

If K is a subpresentation of an (arbitrary) presentation L, then there is a relative
presentation L//K, which defines the same group as L. One simply removes the relators
of K, replaces the generators of K by the group presented by K, and views the
occurrences of generators of K in relators of L — K as coefficients.

The proof of the main result of [1] demonstrates the following
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Theorem 3.10. / / K is the core of a shelling of an LOG-presentation L, then L//K is
aspherical.

Since L//K is orientable, the results of §1.7 apply.
Briefly, the proof of Theorem 3.10 uses covering space topology to detect dipoles in

spherical pictures over L//K.
See [1] for explicit examples.

4. Topological aspects

In this section we present an independent topological treatment of the theory of
aspherical orientable relative presentations. The combinatorial discussions of §§1.5,1.6
are made topological; Theorems 1.1 and 1.2 are recast in homotopy-theoretic terms. The
main results of § 1.7 (see (0.1)-(0.4) of the Introduction) follow from a theorem of Howie
(Theorem 4.2) in [12]) and standard arguments. We also discuss generalizations which
arise naturally from the topological viewpoint, including the generalized presentations of
§3.3.

Let P = <//, x; r> be an aspherical orientable relative presentation for a group G.
Select a K(H, l)-space K and let K1 = K v \/X6XSi. For each Rer, let <pR: Sjj-*-!^ be a
(based) loop in K^1' representing the root R in 7i1K1sH*free(x). Also, let DP(R) be a
K(Z/p{R)Z, l)-space with two-skeleton modelled on the presentation <p; pp(R)>; thus,

) = Si. Let M be the adjunction space as in the pushout diagram

Rer ReR

M

of CW complexes. Then K u M | 2 | = K, u \JRstc
2

R where cR is a two-cell attached to Kt

along a (based) loop representing ReH*free(x)S7T1K1; in particular, ^ M ^
j , (KuM | 2 1 )£G. Comparing with §1.6, the choice of K is analogous to the choice of
the ordinary presentation Q for H, while the choice of the maps (j>R parallels the lifting
of r to words. The two-skeleton M(2) models the lifted ordinary presentation P for G.
The following is analogous to Theorem 1.1.

Theorem 4.1. JI 2 (M,K) = 0.

Proof. As in Proposition 2 of [15], any map ^(B^S1) ->(M,K) can be represented
by a picture IP over a lifted presentation P for G S T ^ M . The pictures P determines the
pictures P determines the homotopy class of n. Since ^(S'JsK, there are no x-arcs
meeting dP. By Lemma 1.5, either P has no r-discs, in which case n represents an
element of 7t2(K1,K) = 0, or else P contains an r-dipole. In the presence of the three-cells
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homotopic relative S1 to a map (B2,S1)-»(M,K) with a representative picture having
two fewer r-discs than P. Induction completes the proof.

Using the long exact homotopy sequence for (M,K), the result (0.1) of the
Introduction follows immediately, as does the fact that 7t2M=0. Since the three-cell of
Dp(R) is attached along a homologically trivial spherical map, Theorem 4.1 further
implies that the composite

7i2(K u M(2)) -» TT2(K u M(2), Kx) ->H2(K u M(2),K,)

is trivial (a restatement of Corollary 3 to Theorem 1.1). The result (0.2) follows using the
argument of Huebschmann [14], as in the proof of Corollary 4 to Theorem 1.1.

To prove an analogue of Theorem 1.2, we employ a result of Howie.

Theorem ([12, Theorem 4.2]). Let the CW complex X be a pushout as in the diagram

of aspherical CW complexes and cellular maps. Suppose n^.2 and that for each choice of
basepoint

(i)

(ii) hd{ker(n1Xi^n1X))^n(i=l,2), and
(iii) 7T;X = 0,2^;"^n.

Then, X is aspherical.

We remark that Howie states this theorem for the case where X is the union of
aspherical subcomplexes Xt and X2 with aspherical intersection Xo. This generalizes to
pushouts using the mapping cylinder construction.

Theorem 4.2. M is aspherical: UjM = 0 for j ^ 2.

Proof. Apply Howie's theorem to the pushout diagram (4.1) and take n = 2. The
conditions (i) and (ii) hold by (0.1), (0.2) and the subgroup theorem for free products.
The condition (iii) follows from Theorem 4.1 as above.

The results (0.3) and (0.4) now follow from Theorem 4.2 using standard arguments
and the theorem of Serre [14].

Consider next a generalized presentation
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for a group G as in (3.6), and assume that (3.7) and (3.8) are satisfied. A topological
model for P is constructed as follows. For iel, let K, be a K(Hh l)-space, and let W be
obtained from the disjoint union U,6/K, by adding a disjoint zero-cell e°, together with
oriented one-cells e{ (iel), where e\ has initial point e° and terminal point in K,. For
Ueu, let CT^SJ^W be a (based) loop in W(1) realizing the root Ue*ie,Hi^ni W. Also,
let DpW) be a K(Z/p(U)Z, l)-space with two-skeleton modelled on <v:vp(i;)>. Let Y be
the adjunction space as in the pushout diagram

Veu Ueu

I (4-2)
p.o. |

W y Y

of CW complexes. This compares with §3.3 as follows. Let q:Y->M be the quotient
map which identifies all endpoints of the one-cells el (iel) with the zero-cell e°. Set
K = q(\Jie,Ki) and K1=^(W). Then the triple (M,K,,K) models the augmented relative
presentation Paug as in (4.1). The following is analogous to Lemma 3.3.

Lemma 4.1. 7i2Y = 0.

Proof. The map q#:7r1Y-»7r1M is the inclusion of a free factor, and 0 = 7i2IVIs
Z ^ M ®,|Vu2Y, which implies that 7i2Y = 0.

Using Lemma 3.2 and Howie's theorem, we obtain:

Theorem 4.3. Y is aspherical.

From this, one may easily deduce Theorem 3.6 and Theorem 3.7.
More generally, one may use these techniques to build Eilenberg-Maclane spaces for

the fundamental group of a "generalized two-complex", as defined in [13]. Specifically,
let F be a (connected) graph of groups with trivial edge groups. For each vertex group
Hv, select a K(HV, l)-space Kv, attached to F at v. Given a collection u of elements of
7t,(F,{//,}), let G be the quotient of n{(r,{//,}) by the normal closure of u. Identifying
the vertices of F to a point, there results a topological model for a relative (augmented)
presentation; if this is aspherical and orientable, then a K(G, l)-space can be constructed
in the manner of (4.1) and (4.2).
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