pre- and post-operative neuropsychological assessment was performed. Results: The TSG had significant atrophy by 12% of the unresected cHC (p<0.0001) most pronounced (27%) in the hippocampal body alone. The LG revealed that this atrophy occurred rapidly over the first week (1.3%/day; 3%/day cHC body). Significantly greater cHC atrophy was observed in those with ongoing seizures versus the seizure free (p=0.048). Conclusions: Significant cHC atrophy following TLE surgery that begins immediately, progresses over the first week, and remains significantly depressed. The severity postoperative cHC atrophy may represent an early biomarker of the propensity for delayed seizure recurrence.

C.04

CNSS K.G. McKenzie Memorial Prize in Basic Neuroscience Research (2nd place)

Motor cortex electrical stimulation to promote spinal cord injury repair in an animal model

A Jack (Edmonton)* A Nataraj (Edmonton) K Fouad (Edmonton)
doi: 10.1017/cjn.2016.70

Background: Electrical stimulation (ES) to promote corticospinal tract (CST) repair has been recently examined, though remains under investigated. We examine the role of motor cortex ES on axonal re-growth and functional recovery in a spinal cord injury (SCI) rat model. Methods: A partial transaction was performed at C4 in 48 rats. Animal groups included: ES333 rats (n=14; 333Hz, biphasic pulse, 0.2ms every 500ms), SCI only (n=10), and sham (n=10; electrode insertion without ES). Rats were trained in stairwell-grasping with subsequent SCI and ES. Post-injury reaching scores were recorded weekly, and histology completed quantifying axonal re-growth. Results: Post-SCI grasping (p<0.01, ANOVA) and well reached were lower than baseline values (p<0.01, ANOVA) for all groups. ES20 animals had lower grasping scores (p=0.03, ANOVA) and farthest well reached scores post-SCI than controls (p=0.03, ANOVA). ES333 rats had more axonal collaterals (axonal sprouts rostral to lesion) compared to control animals (p<0.01, M-W). No difference was found between groups with respect to axonal regeneration into the lesion (p=0.13, ANOVA). Conclusions: Cortical ES of the injured CST results in greater axonal outgrowth, and influences functional outcomes depending on ES parameters. ES is a potentially promising SCI therapy, but further investigation is required.

C.05

Canadian neurosurgery operative landscape

MK Tso (Calgary)* M Bigder (Winnipeg) A Dakson (Halifax) C Elliott (Edmonton) D Guha (Toronto) C Iorio-Morin (Sherbrooke) M Kameda-Smith (Hamilton) P Lavergne (Quebec City) S Makarenko (Vancouver) M Taccone (Ottawa) B Wang (London) A Winkler-Schwartz (Montreal) S Christie (Halifax) T Sankar (Edmonton)
doi: 10.1017/cjn.2016.71

Background: The Canadian Neurosurgery Research Collaborative (CNRC) is a trainee-led multi-centre collaboration made up of representatives from 12 of 14 neurosurgical centres with residency programs. To demonstrate the potential of this collaborative network, we gathered administrative operative data from each centre in order to provide a snapshot of the operative landscape in Canadian neurosurgery. Methods: Residents from each training program provided adult neurosurgical operative data for the 2014 calendar year, including the number of surgeries in the subcategories cranial, spinal, and peripheral nerve. Because some residency programs have surgeries distributed among more than one hospital, we calculated mean case load per residency program and per hospital. Results: Interim results from 6 neurosurgery residency programs are presented (with data from other programs forthcoming). Overall, there were on average 2,352 operative cases per residency program (n=6) and 1,176 operative cases per adult hospital (n=12). Among 5 programs with more detailed operative data, the mean numbers of cranial, spinal, peripheral nerve, and miscellaneous surgeries per residency program were 757 (47%), 487 (30%), 47 (3%), and 319 (20%) respectively. Conclusions: We show as a proof-of-concept that a trainee-led nation-wide research collaborative can generate meaningful data in a Canadian context.

C.06

Surgical resection of pediatric posterior fossa tumours in the molecular era

V Ramaswamy (Toronto)* E Thompson (Durham) MD Taylor (Toronto)
doi: 10.1017/cjn.2016.72

Background: Aggressive surgical resections of posterior fossa tumours result in tremendous neurological sequelae as a result of damage to the brainstem. As such we sought to re-evaluate the role of aggressive surgical resections in the molecular era. Methods: 820 posterior fossa ependymoma and 787 medulloblastoma were genomically profiled and correlated with pertinent clinical variables. Results: Across 787 medulloblastoma cases, the value of extent of resection was greatly dampened when accounting for molecular subgroup. Near-total resections are equivalent to gross total resections across all four subgroups even when correcting for treatment. The prognostic value of a gross total resection as compared to subtotal resection (>1.5cm2 residual) was restricted to Group 4 tumours (HR 1.26). Across 820 posterior fossa ependymoma PFA ependymoma was a very high risk group compared to PFB ependymoma, and a subtotal PFA ependymoma conferred an extremely poor prognosis. Gross totally resected PFB ependymoma could be cured with surgery alone. Prognostic nomograms in both medulloblastoma and ependymoma revealed molecular subgroup to be the most important predictor of outcome. Conclusions: The prognostic benefit of EOR for patients with medulloblastoma is marginal after accounting for molecular subgroup affiliation. In both molecular subgroups of posterior fossa ependymoma, gross total resection remains an important predictor of outcome.

C.07

Door to decompression should be the benchmark in trauma craniotomies

J Marcoux (Montreal)* D Bracco (Montreal)
doi: 10.1017/cjn.2016.73

Background: Quality control indicators for mass lesion in TBI use the delay between emergency department (ED) and OR arrival

Suppl. 2 – S12

Downloaded from https://www.cambridge.org/core, IP address: 54.70.40.11, on 22 Aug 2019 at 14:34:37, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/cjn.2016.71