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A CANONICAL FORM FOR FULLY INDECOMPOSABLE
(0, 1)-MATRICES

BY
D. J. HARTFIEL

This paper develops another canonical form for (0, 1)-matrices which may be
used in the same spirit as the nearly decomposable matrix [5] or the k-nearly
decomposable matrix [1]. This form is intrinsic in each fully indecomposable mat-
rix and does not require the replacement of any of its non-zero entries by 0’s. In
particular

Form. If A is a fully indecomposable nxn(0, 1)-matrix, with n>1, there are
permutations matrices P and Q so that

A, 0 «-- 0 F,
PAQ = F, 4, -+ 0 0 where s> 1,each 4,(i=1,...,5)

.................

is fully indecomposable and each F; (i=1, ..., s) has at least one non-zero entry.

Proof. (The proof has some similarity to that in [5]). As 4 is fully indecom-
posable each non-zero entry is on a positive diagonal. Consider B=(ay;(per 4,/
per A)) where A4, is obtained from 4 by deleting its i row and j column. It is easily
seen that B is doubly stochastic and b;,>0 if and only if a;;>0. Therefore we
argue that B has the specified form.

Consider y(B)=ming o Eielg b, |R|+|C|=n where |K| denotes the number of

Jje

elements in a set K. Suppose y(B)=z,-eR0 b;;. Pick permutation matrices P, and
ieCy
0, so that
_[B Ei
P lBQl - I:E2 Bz]
where E, is in the R, rows of B and in the C, columns of B. If B, is not fully inde-

composable there are permutation matrices P, and Q, so that

El 0 !
E B | M
P,P,B0,0, = E} "B |
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By the minimality of y(B) and the doubly stochasticity of B it follows by row-
column sum arguments involving y(B)=o(E;)=0(E,) that
B, 0 E]

P,P,BQ,Q, = | E 132 0
L0 E; B,
Here o(X)=3, ; x;; where X is a matrix. Hence by relabeling we have
B, 0 E,|
P,P,B0,Q; = |E; B, 0
L0 E; Bl

By continuing this argument on main diagonal blocks we may find permutation
matrices P and Q so that

B, 0 0 E
PBQ = E. B, 0 where s> 1,eachE(i=1,...,5)
.0. . 0 ...... Es Bs
has at least one non-zero entry and B; (i=1, ..., s) is fully indecomposable or
B,=(0).

Of course if any B,=(0) then y(B)=0(E;)=1 which is impossible since B is
doubly stochastic and hence y(B)<1. Therefore each B; (i=1,...,s) is fully
indecomposable. Now

4, 0 0 F
PAQ = Fo de oo 00 0 0d the form is developed.
0 0 F, A,

We now address ourselves to showing the utility of this new form. For this we
list the the following tools.

Lemma 1. If k;>3 is an integer for i=1, ... ,t and t >2, then

ﬁ k, > 3(zt ki—3).

=1 =1
t t t t
Proof. ITki>k 1Tk > kl(Z kz') > 3(2 ki_3)'
=1 i=2 im2 =1

LeMMA 2. If A is an nXn fully indecomposable (0, 1)-matrix then
per 4 > o(A4)—2n+2[4].

Lemma 2 may be deduced by the use of our form however this inequality has
already been easily established in other works. The inequality we choose to argue
is given in [2]. The result there is obtained by some rather exhaustive techniques
which may be greatly simplified.
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THEOREM. Let A,(3)={nxn(0, 1)-matrix with precisely three 1’s in each row
and column}. Then ming_, (s)(per A)>3(n—-1).

Proof. The proof is by induction on n. For n=3, per A=6 and the inequality
holds. Therefore suppose the inequality holds for 4 € A,(3) where k=3,...,n—1.
Let 4 € A,(3). It is well known that miny_, (s)(per 4) is achieved on a fully inde-
composable matrix. (The argument is that of Lemma 2 [3, 63].) Hence we may
assume A is fully indecomposable. We now argue cases.

Case 1. y(4)=1. Without loss of generality we may assume

Al 0 A 0 Fl
a=|Fr A 000 specified in the form.
0 0 F, A4,

Suppose for i=1,...,s we have that 4; is n;Xn;. Then as y(4)=0(F)=""--=
o(F,) it follows that n,>3 for i=1, ..., s. Hence

per A > T per 4;
=1
> [T (6(4)—2n,+2)
i=1
> I1 Gm—1-2n,+2)
i=1

> 11 (m+1) and as a consequence of Lemma 1
=1

> 3(n—3+s) > 3(n—1).

Case II. y(4)=2. Suppose each 1 in 4 lies on at least n—1 positive diagonals of
A. Then by expanding the permanent along any row we have that per 4>3(n—1).
If A has some 1, we may assume as a,;, on less than n—1 positive diagonals we
argue as follows.

Consider A4;;. If 4,; is fully indecomposable, then by Lemma 2, per 4;;>
[3(n—1)—2]—2(n—1)4+2=n—1 which implies that a,, is on at least n—1 positive
diagonals in 4. Hence it must be that 4,, is partly decomposable and so there
exist permutation matrices P and Q so that

1 E,

PAQ = 4]0
E,
X | 4,

Continuing to decompose 4 by y(d4), as in the form, allows the assumption,
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without loss of generality, that

A4, 0 0 F,
0 0 F, A,

with n;=1 and y(4)=0(Fy)=" - -=0o(F,). We now argue two cases:
Case 1. n,>2 for i=2, ..., s. In this case

TIper 4, > I1 Gn—2=2n+2) = [In; > > n; = n—1
i=2

=2 =2 =2

which contradicts a;; being on fewer than n—1 positive diagonals.

Case 2. Some n; =1, i,51. Suppose a,; =1 and ay;,=1 are in F; with q; ;=1
and g; ;=1 in F;. Define the (n—1)x (n—1) matrix

A4, 0 -+ 0 F

_ |F, 4 -+ 0 ] _

S RS Gt = G =
0 0 F, A,

are the only 1’s in F,. Per 4 then represents the sum of all positive diagonal pro-
ducts in 4 containing ay,, all those containing &;; - @;,, and all those containing
ay;, * a;3. (Note that as n; =1, a; _,; -8, _4;, 4 is not on a positive diagonal
product of 4 as &, _y; 1, 8;_1;,-1 would then have to be on a positive diagonal
which contains the two 1’s in F3 and hence contains the two I’s in Fy, ..., and
hence contains the two 1’s in F"io which is impossible as nio=l.) Now as s>3,
ay;,a;,1 as well as ay; a, ; each lies on at least two positive diagonals, namely those
which they share with each 1 in F;. This may be seen by noting that each entry
in a fully indecomposable (0, 1)-matrix is on a positive diagonal [5, 68] and hence
this property holds for each of 4, 4,, 43, . . . , A,. Therefore it follows that any
selection of precisely one 1 in each of Fy, Fy, Fs, ..., F, must lie on a positive
diagonal of A. Hence

per A > per A+4
and since 4 € A,_;(3) we have by the induction hypothesis that
per A > 3(n—2)+4 > 3(n—1).
All cases having been argued, the proof is concluded.
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