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ENUMERATING BRANCHED SURFACE COVERINGS
FROM UNBRANCHED ONES
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Abstract

The number of non-isomorphic n-fold branched coverings of a given
closed surface can be determined by the number of nonisomorphic
n-fold unbranched coverings of the surface and the number of non-
isomorphic connectedn-fold graph coverings of a suitable bouquet of
circles. A similar enumeration can also be done for regular branched
coverings. Some explicit enumerations are also possible.

1. Introduction

Throughout this paper, a surface S means a compact connected 2-manifold without bound-
ary. By the classification theorem of surfaces, a surface S is homeomorphic to one of the
following:

Sk =
{

the orientable surface with k handles, if k � 0,

the nonorientable surface with − k crosscaps, if k < 0.

A continuous function p : S̃ → S from a surface S̃ onto another surface S is called
a branched covering if there exists a finite set B in S such that the restriction of p to
S̃ − p−1(B), p|

S̃−p−1(B)
: S̃ − p−1(B) → S − B, is a covering projection in the usual

sense. The smallest subset B of S that has this property is called the branch set.
A branched covering p : S̃ → S is regular if there exists a (finite) group A that acts

on S̃ with at most finitely many fixed points, so that the surface S is homeomorphic to the
quotient space S̃/A, say by h, and the quotient map S̃ → S̃/A is the composition h ◦ p
of p and h. We call it simply a branched A-covering. In this case, the group A becomes
the covering transformation group of the branched covering p : S̃ → S. Two branched
coverings p : S̃ → S and q : S̃

′ → S are isomorphic if there exists a homeomorphism
h : S̃ → S̃

′ such that p = q ◦ h.
Recently, Kwak et al. [12, 14] examined the conditions under which a surface can be a

branched A-covering of a given surface with a given branch set, when A is the cyclic group
Zp or the dihedral group Dp of order 2p, for p a prime.

In this paper, we derive an enumeration formula for the total number of non-isomorphic
(regular) branched coverings of any given surface S with branch set B, in terms of the non-
isomorphic unbranched coverings and some non-isomorphic graph coverings of a suitable
bouquet of circles.
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Enumerating branched surface coverings

2. A classification of branched coverings

LetGbe a finite connected graph with vertex setV (G) and edge setE(G).We allow loops
and multiple edges. Notice that G can be identified with a one-dimensional CW complex
in the Euclidean 3-space R

3, so that every graph map is continuous. Every covering of a
graph G can be constructed as follows (see [3]).

Every edge of a graphG gives rise to a pair of oppositely directed edges. By e−1 = vu,
we mean the reverse edge to a directed edge e = uv. We denote the set of directed edges of
G byD(G). Each directed edge e has an initial vertex ie and a terminal vertex te. Following
[3], a permutation voltage assignment φ on a graph G is a map φ : D(G) → Sn with
the property that φ(e−1) = φ(e)−1 for each e ∈ D(G), where Sn is the symmetric group
on n elements {1, 2, . . . , n}. The permutation derived graph Gφ is defined as follows:
V (Gφ) = V (G)×{1, 2, . . . , n}, and for each edge e ∈ D(G) and j ∈ {1, 2, . . . , n} there is
an edge (e, j) inD(Gφ)with i(e,j) = (ie, j) and t(e,j) = (te, φ(e)j). The natural projection
pφ : Gφ → G is a covering. In the derived graph Gφ , a vertex (u, i) is denoted by ui , and
an edge (e, j) is denoted by by ej . Let A be a finite group. An ordinary voltage assignment
(or, A-voltage assignment) of G is a function φ : D(G) → A with the property that
φ(e−1) = φ(e)−1 for each e ∈ D(G). The values of φ are called voltages, and A is called
the voltage group. The ordinary derived graphG×φ A has as its vertex set V (G)× A and
as its edge setE(G)×A, so that an edge (e, g) ofG×φA joins a vertex (u, g) to (v, φ(e)g)
for e = uv ∈ D(G) and g ∈ A. In the ordinary derived graph G ×φ A, a vertex (u, g)
and an edge (e, g) are denoted by ug and eg , respectively. The first coordinate projection
pφ : G ×φ A → G, called the natural projection, commutes with the left multiplication
action of the φ(e) and the right action of A on the fibers, which is free and transitive, so
that p is a regular |A|-fold covering, called simply an A-covering.

A (branched) surface covering is closely related to a graph covering that is embeddable
into it. To see such a relation, we first review a graph embedding into a surface.

An embedding of a graph G into a surface S is a continuous one-to-one function ı :
G → S. If every component of S − ı(G), called a region, is homeomorphic to an open
disk, then ı : G → S is called a 2-cell embedding. Such an embedding can be described
by a combinatorial method as follows. An embedding scheme (ρ, λ) for a graphG consists
of a rotation scheme ρ, which assigns a cyclic permutation ρv on N(v) = {e ∈ D(G) :
the initial vertex of e is v} to each v ∈ V (G), and a voltage assignment λ, which assigns a
value λ(e) in Z2 = {−1, 1} to each e ∈ E(G).

It is well known that every embedding scheme determines a 2-cell embedding ofG into
an orientable or non-orientable surface S; also, every 2-cell embedding of G into a surface
S is determined by such a scheme (see [19] or [20]).

Let ı : G → S be a 2-cell embedding with embedding scheme (ρ, λ), and let φ be a
permutation voltage assignment. The derived graphGφ has the derived embedding scheme
(ρ̃, λ̃), which is defined by ρ̃vi (ei) = (ρv(e))i and λ̃(ei) = λ(e) for each ei ∈ D(Gφ).
Then it induces a 2-cell embedding of Gφ into a surface, say ı̃ : Gφ → S

φ, such that the
following diagram commutes.

Gφ S
φ

G S

�

�

ı̃

ı
�

pφ
�
p̃φ
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(a) B7 ↪→ S2 − B (b) B6 ↪→ S−3 − B

Figure 1: Two examples of standard embeddings

Moreover, if Gφ is connected, then S
φ is connected and p̃φ : S

φ → S is a covering,
possibly having branch points. Conversely, let p : S̃ → S be a branched n-fold covering
of a surface S. Then there exists a 2-cell embedding ı : G → S of a graph G such that
each face of the embedding has at most one branch point interior to it, and a permutation
voltage assignment φ : D(G) → Sn such that the branched n-fold covering p̃φ : S

φ → S

is isomorphic to the given branched covering p : S̃ → S; see [4].
A surface Sk can be represented by: (i) a 4k-gon with identification data

∏k
s=1 asbsa

−1
s b−1

s

on its boundary if k > 0; (ii) a −2k-gon with identification data
∏−k
s=1 asas on its boundary

if k < 0; and (iii) a bigon with identification data aa−1 on its boundary if k = 0.
Let B be a finite set of points in Sk . Note that the fundamental group π1(Sk − B, ∗) of

the punctured surface Sk − B with the base point ∗ ∈ Sk − B can be represented by〈
a1, . . . , ak, b1, . . . , bk, c1, . . . , c|B| ;

k∏
s=1

asbsa
−1
s b−1

s

|B|∏
t=1

ct = 1

〉
, if k > 0;

〈
a1, . . . , a−k, c1, . . . , c|B| ;

−k∏
s=1

asas

|B|∏
t=1

ct = 1

〉
, if k < 0;

〈
c1, . . . , c|B| ;

|B|∏
t=1

ct = 1

〉
, if k = 0.

We call this the standard presentation of the fundamental group π1(Sk − B, ∗). For each
t = 1, 2, . . . , |B|, we take a simple closed curve based at ∗ lying in the face determined
by the polygonal representation of the surface Sk so that it represents the homotopy class
of the generator ct . Then it induces a 2-cell embedding of a bouquet of m circles, say
Bm, into the surface Sk such that the embedding has: (i) |B| 1-sided regions and one
(|B| + 4k)-sided region if k > 0; (ii) |B| 1-sided regions and one (|B| − 2k)-sided region
if k < 0; and (iii) |B| 1-sided regions and one |B|-sided region if k = 0, where m is the
number of the generators of the standard presentation of the corresponding fundamental
group. This embedding ı : Bm → Sk is called the standard embedding, simply denoted by
Bm ↪→ Sk−B. For example, Figure 1 illustrates the standard embeddings of bouquets with
|B| = 3. Figure 1(a) represents the standard embedding B7 ↪→ S2 − B, and Figure 1(b)
shows the standard embedding B6 ↪→ S−3 − B.
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For a natural number n, let C1(Bm; n) denote the set of all permutation voltage assign-
ments φ : D(Bm) → Sn on the bouquet of m circles Bm. Notice that C1(Bm; n) can be
identified with the cartesian product (Sn)m of m copies of the symmetric group Sn; that
is, each element φ in C1(Bm; n) can be identified with an m-tuple (φ(�1), . . . , φ(�m)),
where �i is a positively oriented loop in D(Bm). For convenience, let ak = 2k if k � 0,
and let ak = −k if k < 0. Let C1(Bak+|B| ↪→ Sk − B; n) and C1(Bak+|B| ↪→ Sk − B; A)
respectively denote the subset of (Sn)ak+|B| and the subset of (A)ak+|B| consisting of all
(ak + |B|)-tuples (σ1, . . . , σak+|B|) that satisfy the following three conditions.

(C1) The subgroup
〈
σ1, . . . , σak+|B|

〉
generated by {σ1, . . . , σak+|B|} is transitive on

{1, 2, . . . , n}, or else is the full group A.

(C2) (i) If k � 0, then
k∏
i=1

σiσk+iσ−1
i σ−1

k+i
|B|∏
i=1

σak+i = 1;

(ii) if k < 0, then
−k∏
i=1

σiσi

|B|∏
i=1

σak+i = 1.

(C3) σi �= 1 for each i = ak + 1, . . . , ak + |B|.

Note that condition (C1) guarantees that the surface S
φ is connected, and conditions

(C2) and (C3) ensure that the set B is the same as the branch set of the branched covering
p̃φ : S

φ → S. By using a method similar to that given in [14], one can obtain the following
theorem.

Theorem 1 (Existence and classification of branched coverings). Every permuta-
tion voltage assignment inC1(Bak+|B| ↪→ Sk−B; n) induces a connected branched n-fold
covering of Sk with branch setB. Conversely, every connected branched n-fold covering of
Sk with branch setB can be derived from a voltage assignment inC1(Bak+|B| ↪→ Sk−B; n).
Moreover, for any two permutation voltage assignments φ,ψ ∈ C1(Bak+|B| ↪→ S−B; n),
two branched n-fold surface coverings p̃φ : S

φ → S and p̃ψ : S
ψ → S are isomorphic if

and only if two graph coverings pφ : B
φ
ak+|B| → Bak+|B| and pψ : B

ψ
ak+|B| → Bak+|B|

are isomorphic. Equivalently, there exists a permutation σ ∈ Sn such that

ψ(�i) = σφ(�i)σ
−1

for all �i ∈ D(Bak+|B|), where ak = 2k if k � 0, and ak = −k if k < 0.

For a finite group A, let SA denote the symmetric group on the group elements of A.
It gives the (left) regular representation A → SA of A via g → L(g), the left translation
by g on A. Clearly, this representation is faithful and the group A can be identified with
the group of left translations L(g): A ≡ {L(g) | g ∈ A} (Cayley theorem). Notice that a
permutation voltage assignment φ : D(G) → SA having its images in A can be considered
as an A-voltage assignment of G, and for such a voltage assignment φ, the permutation
derived graph Gφ is nothing but the ordinary derived graph G ×φ A. By using this fact,
Corollary 1 was shown in [14].
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Corollary 1 (Existence & classification of regular branched coverings). Every
ordinary voltage assignment in C1(Bak+|B| ↪→ Sk −B; A) induces a connected branched
A-covering of Sk with branch set B.

Conversely, every connected branched A-covering of Sk with branch set B can be
derived from a voltage assignment in C1(Bak+|B| ↪→ Sk − B; A). Moreover, for any
two voltage assignments φ,ψ ∈ C1(Bak+|B| ↪→ S − B; A), two branched A-coverings
p̃φ : S

φ → S and p̃ψ : S
ψ → S are isomorphic if and only if two graph coverings

pφ : Bak+|B| ×φ A → Bak+|B| and pψ : Bak+|B| ×ψ A → Bak+|B| are isomorphic. It is
also equivalent to say that there exists a group automorphism σ of A such that

ψ(�i) = σ (φ(�i))

for all �i ∈ D(Bak+|B|), where ak = 2k if k � 0, and ak = −k if k < 0.

3. Computational formulas

To derive an enumeration formula for the isomorphism classes of branched surface
coverings, we define an Sn-action on the set C1(Bm; n) = (Sn)

m by a simultaneously
coordinatewise conjugation; that is, for any g ∈ Sn and any (σ1, . . . , σm) ∈ C1(Bm; n),

g · (σ1, . . . , σm) = (gσ1g
−1, . . . , gσmg

−1).

It follows from Theorem 1 that two voltage assignments in C1(Bak+|B| ↪→ Sk − B; n)
derive isomorphic branched coverings of Sk if and only if they belong to the same orbit
under the Sn-action. Hence we have the following lemma.

Lemma 1. Let k be any integer, and let B be a finite subset of the surface Sk . Then the
number of non-isomorphic connected n-fold branched coverings of the surface Sk with
branch set B is

Isoc(Sk, B; n) =:
∣∣∣C1(Bak+|B| ↪→ Sk − B; n)/Sn

∣∣∣ .
Now we aim to express the number Isoc(Sk, B; n) in terms of known parameters.

Let C(Bm; n) denote the set of all m-tuples (σ1, . . . , σm) in (Sn)m such that the group
〈σ1, . . . , σm〉 generated by {σ1, . . . , σm} is transitive on {1, 2, . . . , n}; that is,

C(Bm; n) = {(σ1, σ2, . . . , σm) ∈ (Sn)m : 〈σ1, σ2, . . . , σm〉 is transitive on {1, 2, . . . , n}}.
Then C(Bm; n) contains all the representatives of the connected n-fold coverings of the
bouquet of m-circles Bm, and the number Isoc(Bm; n) of non-isomorphic connected n-
fold coverings of Bm is equal to |C(Bm; n)/Sn|, where the Sn-action on C(Bm; n) is also
defined by the simultaneously coordinatewise conjugation (see [10, 11]).

Lemma 2. Let k be an integer, and let b be a nonnegative integer. For each 0 � t � b, let

S(k, b, t)

= {φ ∈ (Sn)ak+b : φ satisfies (C1) and (C2), and σi = 1, ∀i = ak + 1, . . . , ak + t
}
,

where φ = (σ1, σ2, . . . , σak+b). If t = b, then the set S(k, b, b) is equal to the set
C1(Bak ↪→ Sk; n), and if t �= b, then there is a one-to-one correspondence between the sets
S(k, b, t) and C(Bak+b−t−1; n). Moreover, the correspondence preserves the Sn-action on
both the sets, which are defined by simultaneously coordinatewise conjugacy.
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Proof. The case where t = b is clear. Assume that t �= b. Then every element in S(k, b, t)
is of the form (σ1, . . . , σak , 1, . . . , 1, σak+t+1, . . . , σak+b). It follows from conditions (C1)
and (C2) that the function f : S(k, b, t) → C(Bak+b−t−1; n) defined by

f (σ1, . . . , σak , 1, . . . , 1, σak+t+1, . . . , σak+b) = (σ1, . . . , σak , σak+t+1, . . . , σak+b−1)

is well-defined and bijective. (Note that the function f is defined by deleting 1’s and the
last coordinate.) This completes the proof.

The following is one of the main theorems in this paper.

Theorem 2. Let k be any integer, and letB be a b-subset of the surface Sk . Then the number
of connected n-fold branched coverings of the surface Sk with branch set B is

Isoc(Sk, B; n) = (−1)b Isoc(Sk, ∅; n)+
b−1∑
t=0

(−1)t
(
b
t

)
Isoc(Bak+b−t−1; n),

where Bm is a bouquet of m circles, ak = 2k if k � 0, and ak = −k if k < 0.

Proof. For each i = ak + 1, . . . , ak + b, let Pi be the property that the ith coordinate of
an element of (Sn)ak+b is the identity. For each subset S of {ak + 1, . . . , ak + b}, letN(PS)
be the number of elements in the product (Sn)ak+b that satisfy conditions (C1) and (C2)
and the properties Pi for all i ∈ S. Notice that N(P∅) is the number of all elements in the
product (Sn)ak+b that satisfy not only conditions (C1) and (C2), but also the requirement
that the set C1(Bak+b ↪→ Sk −B; n) be equal to the set of elements of (Sn)ak+b that satisfy
conditions (C1) and (C2), but not any other property Pi for i = ak + 1, . . . , ak + b. It
follows from the inclusion-exclusion principle that

∣∣C1(Bak+b ↪→ Sk − B; n)∣∣ = b∑
t=0

(−1)t


 ∑

S⊂{ak+1,...,ak+b}|S|=t

N(PS)


 .

SinceN(PS) = N(PS′) for any two subsets S and S′ of {ak +1, . . . , ak +b} with the same
cardinality, we have∑
S⊂{ak+1,...,ak+b}, |S|=t

N(PS)

= (b
t

)∣∣{φ ∈ (Sn)ak+b : φ satisfies (C1) and (C2), and σi = 1, ∀i = ak+1, . . . , ak+t}
∣∣.

Now, from Lemma 2, we have∣∣C1(Bak+b ↪→ Sk − B; n)∣∣
=

b−1∑
t=0

(−1)t
(
b
t

)∣∣C(Bak+b−t−1; n)
∣∣+ (−1)b

∣∣C1(Bak ↪→ Sk; n)
∣∣.

By taking the Sn-action on the underlying sets of both sides of this equation, we have

Isoc(Sk, B; n) = (−1)b Isoc(Sk, ∅; n)+
b−1∑
t=0

(−1)t
(
b
t

)
Isoc(Bak+b−t−1; n).
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The number Isoc(G; n) was computed for any graph G and any natural number n by
Liskovets [15] and by the first two authors (see [11]) as a recursive formula, and the number
Isoc(Sk, ∅; n) was computed for any k and n by Mednykh (see [17, 18]). In fact, Mednykh
computed the number of conjugacy classes of subgroups of index n in the fundamental
group π1(Sk, ∗) of a surface Sk which is equal to the number Isoc(Sk, ∅; n).

For convenience, let P(n) denote the set of all partitions of the natural number n: that is,
the set of ordered sequences (n1, n2, . . . , n�) with n1 � n2 � · · · � n� of natural numbers
such that n1 + n2 + · · · + n� = n. For a partition p of n, let jk(p) denote the multiplicity of
k in the partition p, so that j1(p)+ 2j2(p)+ · · · + njn(p) = n. A partition p of n is denoted
by [[k; n/k]] if every term of p is k. Note that [[k;m]] denotes the partition of the natural
number km, each of whose terms is k.

Theorem 3 (see [11]). For n � 2, the number of non-isomorphic connected n-fold cover-
ings of Bm is

Isoc(Bm; n) =
∑

�1+2�2+···+(n−1)�n−1=n−1

(
(�1 + 1)m−1 − 1

)
× (�1! 2�2�2! · · · (n− 1)�n−1�n−1!

)m−1

+
∑

2�2+3�3+···+n�n=n

(
2�2�2! 3�3�3! · · · n�n�n!

)m−1

−
∑

p ∈ P(n)− {[[n; 1]]}
j1(p) = 0

∏
jk(p)�=0

(
1

jk(p)!
jk(p)−1∏
�=0

(Isoc(Bm; k)+ �)

)
,

where the summation over the empty index set is defined to be 0.

Theorem 4 (see [17, 18]). The number of non-isomorphic connected n-fold unbranched
coverings of a surface Sk of genus k is

Isoc(Sk, ∅; n) =




1

n

∑
m|n

Sk(m)
∑

d|(n/m)
µ
( n
md

)
d(2k−2)m+2, if k � 0,

1

n

∑
m|n

∑
d|(n/m)

µ
( n
md

)
d(−k−2)m+1[(2, d)S−

k (m)+ d S+
k (m)], if k < 0,

where Sk(m) is the number of subgroups of index m in the fundamental group π1(Sk, ∗)
of a surface Sk of genus k, µ is the Möbius function, S+

k (m) is equal to 0 if m is odd and
equal to Sk(m/2) ifm is even, S−

k (m) = Sk(m)−S+
k (m), and (2, d) is the greatest common

divisor of 2 and d. In fact, the number Sk(m) is given as follows:

Sk(m) = m

m∑
s=1

(−1)s+1

s

∑
i1 + i2 + · · · + is = m

i1, i2, . . . , is � 1

βi1βi2 · · ·βis ,

where

βh =
∑
χ∈Dh

(
h!
f (χ)

)t
, t =

{
2k − 2, if k � 0,

−k − 2, if k < 0.

Dh is the set of all irreducible representations of the symmetric group Sh, and f (χ) is the
degree of the representation λ.
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As an illustration of Theorem 2, we compute explicitly the number of non-isomorphic
3-fold branched coverings of the orientable surface Sk (k � 0)with branch setB, (|B| = b).

It is already known that Isoc(Bm; 3) = 6m−1 + 3m−1 − 2m−1 (see [11]) and
Isoc(Sk, ∅; 3) = 2 · 62k−2 + 4 · 32k−2 − 2 · 22k−2 (see [17]). Now, by applying Theo-
rem 2, we have

Isoc(Sk, B; 3) = 62k−2(5b + (−1)b
)+ 32k−2(2b + (−1)b3

)− 22k−2(1 + (−1)b
)
.

4. Regular coverings

In this section, we aim to compute the number IsocR(Sk, B; n) of non-isomorphic con-
nected regular n-fold branched coverings of a surface Sk with branch set B. Any two
connected regular branched coverings are not isomorphic if their covering transformation
groups (or voltage groups) are not isomorphic. Hence, the following equation comes from
the fact that every connected regular n-fold branched covering is isomorphic to a connected
branched A-covering for some group A of order n:

IsocR(Sk, B; n) =
∑
A

Isoc(Sk, B; A),

where A runs over all the representatives of the isomorphism classes of groups of order n.
Now, we need to compute the number Isoc(Sk, B; A) for each finite group A. Let Aut(A)

denote the group of automorphisms of A, and we define an Aut(A)-action on C1(Bm; A)
as follows. For any σ ∈ Aut(A) and any (g1, . . . , gm) ∈ C1(Bm; A), we define

σ · (g1, . . . , gm) = (σ (g1), . . . , σ (gm)).

Then it follows from Corollary 1 that two voltage assignments inC1(Bak+|B| ↪→ Sk−B; A)
derive isomorphic branched coverings of Sk if and only if they belong to the same orbit
under the Aut(A)-action. Notice that this Aut(A)-action on C1(Bak+|B| ↪→ Sk −B; A) is
free because {g1, . . . , gak+b} generates A. This implies that the number Isoc(Sk, B; A) of
non-isomorphic connected branched A-coverings of the surface Sk with branch set B is

Isoc(Sk, B; A) =
∣∣C1(Bak+|B| ↪→ Sk − B; A)

∣∣
|Aut(A)| .

By using a method similar to the proof of Theorem 2, one can derive the following
theorem.

Theorem 5. Let k be any integer, and let B be a b-subset of the surface Sk . Then, for
any finite group A, the number of connected branched A-coverings of the surface Sk with
branch set B is

Isoc(Sk, B; A) = (−1)b Isoc(Sk, ∅; A)+
b−1∑
t=0

(−1)t
(
b
t

)
Isoc(Bak+b−t−1; A),

where Bm is a bouquet of m circles, ak = 2k if k � 0, and ak = −k if k < 0.

To calculate the number of coverings in Theorem 5, we follow the method used by
Jones in [7, 8]. Let F = π1(Sk, ∗) be the fundamental group of the surface Sk . Denote
by Hom(F ; A) and Epi(F ; A), respectively, the set of homomorphisms and the set of
epimorphisms of the group F into the group A.
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Then one can see that |C1(Bak ↪→ Sk; A)| = | Epi(F ; A)|, so that

Isoc(Sk, ∅; A) = | Epi(F ; A)|
| Aut(A)| .

Also, we have

| Hom(F ,A)| =
∑
K�A

| Epi(F ,K)|,

where the sum is taken over all subgroups K of the group A. Now, one can invert this
equation to count epimorphisms in terms of homomorphisms, by introducing the Möbius
function for A. This assigns an integer µ(K) to each subgroup K of A by the recursive
formula ∑

H�K
µ(H) = δK,A =

{
1, if K = A,

0, if K < A.

The equation

| Epi(F ,A)| =
∑
K�A

µ(K)| Hom(F ,K)|

is then easily deduced. As a result we have the following lemma.

Lemma 3. Let F = π1(Sk, ∗) be the fundamental group of a surface Sk . Then

Isoc(Sk, ∅; A) = 1

| Aut(A)|
∑
K�A

µ(K)| Hom(F ,K)|.

In a similar way, taking into account the fact that the fundamental group of the bouquet
Br of r circles π1(Br ) = Fr is the free group of rank r , we obtain the next lemma.

Lemma 4. Let Br be a bouquet of r circles. Then

Isoc(Br ; A) = | Epi(Fr ,A)|
| Aut(A)| = 1

| Aut(A)|
∑
K�A

µ(K)| Hom(Fr , K)|

= 1

| Aut(A)|
∑
K�A

µ(K)|K|r .

The number Isoc(Bm; A) has been explicitly computed for anym and any finite abelian
group A or any dihedral group Dn of order 2n (see [13]). Notice that the formulae in [13] do
not involve the lattice structure of subgroups of A. When A is abelian the formula depends
only on the decompositions of A, and when A = Dn the formula depends only on the prime
decompositions of n.

Denote by HSk (A) = | Hom(π1(Sk, ∗); A)| the number of homomorphisms of the
fundamental group π1(Sk, ∗) into a finite group A. The following result, essentially due to
Frobenius, was given in different cases in [7], [9] and [17].

Lemma 5. (a) Let Sk be a closed orientable surface of genus k � 0. Then

HSk (A) = |A|2k−1
∑
χ

χ(1)2−2k,

where χ ranges over all irreducible characters of A and χ(1) is degree of χ.
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(b) Let Sk be a closed non-orientable surface of genus −k, k < 0. Then

HSk (A) = |A|−k−1
∑
χ

c−kχ χ(1)2+k,

where, with the representation ρ corresponding the character χ ,

cχ = 1

|A|
∑
g∈A

χ(g2) =




+1, if ρ is real,

−1, if χ is real but ρ is not real,

0, if χ is not real,

is the Frobenius–Schur indicator of ρ and χ .

By virtue of Lemmas 3 and 4, the statement of Theorem 5 can be rephrased as

Isoc(Sk, B; A) = 1

| Aut(A)|
∑
K�A

µ(K)

(
(−1)bHSk (K)+

b−1∑
t=0

(−1)t
(
b
t

)|K|ak+b−t−1

)
.

Applying Lemma 5, we obtain the following result.

Theorem 6. Let B be a b-subset of a surface Sk , and let A be a finite group. Then we have

Isoc(Sk, B; A)

=




∑
K�A

µ(K) |K|2k−1

| Aut(A)|
(
(|K| − 1)b + (−1)b

∑
χ

χ(1)2−2k
)
, if k � 0,

∑
K�A

µ(K) |K|−k−1

| Aut(A)|
(
(|K| − 1)b + (−1)b

∑
χ

c−kχ χ(1)2+k
)
, if k < 0,

where χ ranges over all irreducible characters of K except the principal one and

cχ = 1

|A|
∑
g∈A

χ(g2) =




+1, if ρ is real,

−1, if χ is real but ρ is not real,

0, if χ is not real,

with the representation ρ corresponding to χ .

Let A be a finite abelian group, and let λ(A) denote the number of direct summands
of A whose orders are even. Since every character of an abelian group is linear and every
irreducible character of an abelian group can be obtained by the product of irreducible
characters of its direct summands, the number of irreducible real characters of an abelian
group A is equal to 2λ(A). For example, λ(Z6 ⊕ Z8) = 2, and hence Z6 ⊕ Z8 has four
irreducible real characters. Now we have the following corollary.

Corollary 2. Let B be a b-subset of Sk , and let A be a finite abelian group. Then we have

Isoc(Sk, B; A) =




∑
K�A

µ(K) |K|2k−1

| Aut(A)|
(
(|K| − 1)b + (−1)b(|K| − 1)

)
, if k � 0,

∑
K�A

µ(K) |K|−k−1

| Aut(A)|
(
(|K| − 1)b + (−1)b(2λ(K) − 1)

)
, if k < 0,

where λ(K) is the number of direct summands of A whose orders are even.
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We observe that Theorem 6 and Corollary 2 are quite efficient if the lattice structure of
subgroups of A, and their characters, are known. However, even though A is abelian, it is
not easy to use Corollary 2 for Isoc(Sk, B; A) if |A| is so large that the lattice structure of
its subgroups is complicated.

In the next section we shall give another enumeration formula, for use when A is abelian,
which does not involve the lattice structure of subgroups of A.

5. More on abelian branched coverings

In this section, we aim to derive an explicit enumeration formula for Isoc(Sk, B; A)
when A is abelian. It is possible to obtain this from Theorem 5, by deriving a computational
formula for Isoc(Sk, ∅; A) that does not involve the lattice structure of subgroups of A
when A is abelian.

Let A = A1 ⊕ A2 with (|A1|, |A2|) = 1. Then

|C1(Bak ↪→ Sk; A)| = |C1(Bak ↪→ Sk; A1)| · |C1(Bak ↪→ Sk; A2)|
and | Aut(A)| = | Aut(A1)| · | Aut(A2)|. Hence we have the following lemma.

Lemma 6. For any finite groups A and B with (|A|, |B|) = 1, and for any surface Sk , we
have

Isoc(Sk, ∅; A ⊕ B) = Isoc(Sk, ∅; A) · Isoc(Sk, ∅; B).

Let A be an abelian group. If k � 0 and B = ∅, then conditions (C2) and (C3) in
the definition of the set C1(Bak ↪→ Sk; A) are clearly satisfied, so that Isoc(Sk; ∅; A) =
Isoc(B2k; A), as has already been computed in [13]. If k < 0 and B = ∅, then C1(Bak ↪→
Sk; A) is equal to the set of (−k)-tuples (g1, . . . , g−k)with the properties that {g1, . . . , g−k}
generates A and (g1)

2 · · · (g−k)2 = 1. For convenience, let

F(B−k; A)

= {(g1, g2, . . . , g−k) ∈ A−k : {g1, g2, . . . , g−k} generates A and (g−k)2 = 1
}
.

Define a function f : C1(Bak ↪→ Sk; A) → F(B−k; A) by

f (g1, . . . , g−k) = (g1, . . . , g−k−1, g1 · · · g−k).

Then f is well defined, because (g1)
2 · · · (g−k)2 = (g1 · · · g−k)2 in the abelian group A.

Now, it is not hard to see that f is a bijection. Hence we have

Isoc(Sk, ∅; A) = |C1(Bak ↪→ Sk; A)|
| Aut(A)| = |F(B−k; A)|

| Aut(A)| .

By the classification theorem of finite abelian groups, one can express a finite abelian group
A as follows.

A = Ao ⊕ Ae =
(

⊕s
i=1 ⊕ti

j=1mijZpi�ij

)⊕(
⊕�
k=1mkZ2tk

)
,

where pi are odd primes and pi �= pi′ if i �= i′; that is, Ae is the subgroup of A consisting
of all elements of order a power of 2. Let θ(A) denote the number of direct summands of
A whose orders are multiples of 4, and let ω(A) denote the number of direct summands
of A whose orders are 2. Notice that λ(A) = θ(A) + ω(A). For example, Z8 ⊕ Z10 =
Z8 ⊕ Z2 ⊕ Z5, θ(Z8 ⊕ Z10) = 1 and ω(Z8 ⊕ Z10) = 1.
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Clearly, (|Ao|, |Ae|) = 1 for any abelian group A and, by Lemma 6,

Isoc(Sk, ∅; A) = Isoc(Sk, ∅; Ao) · Isoc(Sk, ∅; Ae).

Note that the order of Ao is odd. In an abelian group of odd order, g2 = 1 implies that g = 1,
and hence F(B−k; A0) = |C(B−k−1; A0)|. Now, using Lemma 6 and a computational
method similar to [13, Lemma 3.3], one can obtain

|F(B−k; A)|

= 2−k − 2θ(A)

(2−k − 1)2
∑�
k=1 mk(tk−1)

|C(B−k−1; Ao)||C(B−k; Ae)|

=




2θ(A)
(
2−k−θ(A) − 1

)
2−k−(θ(A)+ω(A)) − 1

|C(B−k−1; A)|, if θ(A)+ ω(A) < −k,

2−k − 2θ(A)

(2−k − 1)2
∑�
k=1 mk(tk−1)

|C(B−k−1; Ao)||C(B−k; Ae)|, if θ(A)+ ω(A) = −k
and θ(A) �= −k,

0, otherwise.

We summarize our discussions as follows.

Lemma 7. Let Sk be a surface of genus k, and let A be any finite abelian group. Then the
following statements hold.

(a) , k � 0, then Isoc(Sk, ∅; A) = Isoc(B2k; A).

(b) If k < 0, then

Isoc(Sk, ∅; A)

=




2θ(A)
(
2−k−θ(A) − 1

)
2−k−(θ(A)+ω(A)) − 1

Isoc(B−k−1; A) if θ(A)+ ω(A) < −k,

2−k − 2θ(A)

(2−k − 1)2
∑�
k=1 mk(tk−1)

Isoc(B−k−1; Ao) Isoc(B−k; Ae), if θ(A)+ ω(A) = −k
and θ(A) �= −k,

0, otherwise,

where A = Ao ⊕ Ae =
(

⊕s
i=1 ⊕ti

j=1mijZ
p
�ij
i

)⊕(⊕�
k=1 mkZ2tk

)
.

Corollary 3. Let Sk be any nonorientable surface, and let A be any finite abelian group.
Then the following statements hold.

(a) If A does not contain Z2 as its direct summand, then

Isoc(Sk, ∅; A) =
{

2θ(A) Isoc(B−k−1; A), if θ(A) < −k,
0, otherwise.

In particular, if the order of A is odd, then Isoc(Sk, ∅; A) = Isoc(B−k−1; A).

(b) If A is mZ2, then Isoc(Sk, ∅;mZ2) = Isoc(B−k;mZ2).
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6. Explicit enumeration of some regular coverings

Recall that one can explicitly enumerate the total number Isoc(Sk, B; n) of connected
n-fold branched coverings of a surface by Theorem 2, but it is not easy to enumerate
explicitly the number IsocR(Sk, B; n) of regular n-fold branched surface coverings of a
given surface Sk with branch setB. In this section, we compute the number IsocR(Sk, B;p),
IsocR(Sk, B; 2p) or IsocR(Sk, B;p2) for any prime number p, as possible cases.

First, we compute IsocR(Sk, B;p) for any prime p. It is already known [13] that for any
prime p, Isoc(Bm; Zp) = (pm − 1)/(p − 1). Since every group of order p is isomorphic
to the cyclic group Zp, it follows that IsocR(Sk, B;p) = Isoc(Sk, B; Zp) for any k and
any finite subset B of Sk . Now, by applying Theorem 5, Lemma 7 and Corollary 3, one can
obtain the following theorem.

Theorem 7. Let B be a b-subset of a surface Sk , and let p be a prime. Then the number
IsocR(Sk, B;p) of non-isomorphic regular connected branched p-fold coverings of Sk

with branch set B is

IsocR(Sk, B;p) =




p2k − 1

p − 1
, if k � 0 and b = 0,

p2k−1((p − 1)b−1 + (−1)b
)
, if k � 0 and b �= 0,

2−k − 1, if k < 0, b = 0 and p = 2,

2−k−1
(
1 + (−1)b

)
, if k < 0, b �= 0 and p = 2,

p−k−1 − 1

p − 1
, if k < 0, b = 0 and p �= 2,

p−k−1(p − 1)b−1, if k < 0, b �= 0 and p �= 2.

Notice that IsocR(Sk, B;p) has already been computed in [7], [14] and [16], but the
computational methods used there are different from that given in this paper.

Next, to compute IsocR(Sk, B;p2) for any primep, recall that every finite group of order
p2 is abelian and is isomorphic to Zp2 or Zp × Zp. It is known [13] that for any prime p,

Isoc(Bm; Zp2) = p2m−1 − pm−1

p − 1

and

Isoc(Bm; Zp ⊕ Zp) = p2m−1 − pm−1(p + 1)+ 1

(p2 − 1)(p − 1)
.

By Lemma 7 and Corollary 3, we can have

Isoc(Sk, ∅; Zp2) =




p4k−1 − p2k−1

p − 1
, if k � 0,

2−2k−2 − 2−k−1, if k < 0 and p = 2,

p−2k−3 − p−k−2

p − 1
, if k < 0 and p �= 2,
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and

Isoc(Sk, ∅; Zp × Zp) =




p4k−1 − p2k−1(p + 1)+ 1

(p2 − 1)(p − 1)
, if k � 0,

2−2k−1 − 3 · 2−k−1 + 1

3
, if k < 0 and p = 2,

p−2k−3 − p−k−2(p + 1)+ 1

(p2 − 1)(p − 1)
, if k < 0 and p �= 2.

By using these formulas and Theorem 5, we have the following theorem.

Theorem 8. Let B be a b-subset of a surface Sk . Then the number IsocR(Sk, B; 4) of
nonisomorphic regular connected branched 4-fold coverings of Sk with branch set B is

IsocR(Sk, B; 4) =


(1/3)
(
24k+1 + 1

)− 22k, if k � 0 and b = 0,

22k−1
[
22k
(
3b−1 + (−1)b

)− (1 + (−1)b
)]
, if k � 0 and b �= 0,

(1/3)
(
5 · 2−2(k+1) + 1

)− 2−k, if k < 0 and b = 0,

2−k−1
[
2−k−1

(
2 · 3b−1 + (−1)b

)− (1 + (−1)b
)]
, if k < 0 and b �= 0.

Theorem 9. LetB be a b-subset of a surface Sk , and letp be an odd prime. Then the number
IsocR(Sk, B;p2) of non-isomorphic regular connected branched p2-fold coverings of Sk

with branch set B is

IsocR(Sk, B;p2)

=




(
p2k+1 − 1

) (
p2k − 1

)
(p2 − 1)(p − 1)

, if k � 0 and b = 0,

p2k−1

p − 1

[
(p − 1)b−1

(
p2k(p + 1)b−1 − 1

)
+ (−1)b

(
p2k − 1

)]
, if k � 0 and b �= 0,

(
p−k − 1

) (
p−k−1 − 1

)
(p2 − 1)(p − 1)

, if k < 0 and b = 0,

p−k−1(p − 1)b−2
[
p−k(p + 1)b−1 − 1

]
, if k < 0 and b �= 0.

Finally, we compute IsocR(Sk, B; 2p) for any odd primep. Recall that every finite group
of order 2p (where p is an odd prime) is isomorphic to the cyclic group Z2p = Z2 × Zp or
the dihedral group Dp. It is known [13] that for any odd prime p,

Isoc(Bm; Z2p) = (2p)m − pm − 2m + 1

p − 1

and

Isoc(Bm; Dp) = 2 · (2p)m−1 − pm−1 − 2m + 1

p − 1
.
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By Lemmas 6 and 7, and Corollary 3, one can have

Isoc(Sk, ∅; Z2p) =



(2p)2k − p2k − 22k + 1

p − 1
, if k � 0,

2 · (2p)−k−1 − p−k−1 − 2−k + 1

p − 1
, if k < 0.

The number Isoc(Sk, ∅; Dp) is already known, as follows (see [12]):

Isoc(Sk, ∅; Dp) =




4 · (2p)2k−2 − p2k−2 − 4 · 22k−2 + 1

p − 1
, if k � 0,

4 · (2p)−k−2 + p−k−2(p − 2)− 2−k + 1

p − 1
, if k < 0.

Now, the following theorem follows from these facts and Theorem 5.

Theorem 10. Let B be a b-subset of a surface Sk and let p be an odd prime. Then the
number IsocR(Sk, B; 2p) of non-isomorphic regular connected branched 2p-fold coverings
of Sk with branch set B is

IsocR(Sk, B; 2p)

=




1

p − 1

(
22k − 1

) (
(p2 + 1)p2k−2 − 2

)
, if k � 0 and b = 0,

22k−1p2k−2

p − 1

[
(2p − 1)b(p + 1)+ (−1)b

(
2p2 − p + 1

)]
−22k

(
1 + (−1)b

)
p − 1

− p2k−2
[
(p − 1)b−1(p + 1)+ (−1)bp

]
, if k � 0 and b �= 0,

1

p − 1

[
2−k (p−k−1 − 1

)
+ 2
(
p−k−2 − 1

) (
2−k−1 − 1

)]
, if k < 0 and b = 0,

2−k−1p−k−2

p − 1

[(
(2p − 1)b + (−1)b

)
(p + 1)

]

−2−k (1 + (−1)b
)

p − 1
− p−k−2

[
(p − 1)b−1(p + 1)− (−1)b

]
, if k < 0 and b �= 0.
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