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Abstract

We investigate the Pexider-type functional equation

max{ f (x + y), f (x − y)} = f (x)g(y) + h(y), x, y ∈G,

where f , g, h are real functions defined on an abelian group G. We solve this equation under the
assumptions G = R and f is continuous.
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1. Introduction

In [3] we introduced two Pexider functional equations:

max{ f (x + y), f (x − y)} = f (x)g(y) + h(y) (1.1)

and
max{ f (x + y), f (x − y)} = f (y)g(x) + h(x), (1.2)

with f , g, h : G→ R, where G is an abelian group. These are common generalizations
of two functional equations:

max{ f (x + y), f (x − y)} = f (x) + f (y) (1.3)

and
max{ f (x + y), f (x − y)} = f (x) f (y). (1.4)

For the solution of (1.2) see [3, Theorem 1.1]. Here, in Theorem 3.1, we are going
to describe the solutions of (1.1) under the additional assumptions that G = R and f is
continuous. However, some results concerning this equation in more general settings,
that is for an arbitrary abelian group G and f , g, h : G→ R, will be given in Section 2.
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2. Equation (1.1) on groups

As we will see, there is a relationship between solutions of (1.1) and (1.2). First,
for a given f : G→ R, we introduce the following functions:

F(x) := max{ f (x), f (−x)}, x ∈G;

f̃ (x) := f (x) − f (0), x ∈G;

F̃(x) := max{ f̃ (x), f̃ (−x)} = F(x) − f (0), x ∈G.

Of course, F and F̃ are even; moreover, f̃ (0) = 0 and F̃(0) = 0.

L 2.1. Let G be an abelian group, and let f , g, h : G→ R satisfy (1.1). Then

max{ f̃ (x + y), f̃ (x − y)} = f̃ (x)g(y) + F̃(y), x, y ∈G. (2.1)

Moreover, if g ≥ 0 then F, g, h and F̃, g, F̃ satisfy (1.1).

P. With x = 0 in (1.1) we obtain

max{ f (y), f (−y)} = f (0)g(y) + h(y),

whence
h(y) = F(y) − f (0)g(y), y ∈G. (2.2)

Therefore,
max{ f (x + y), f (x − y)} = f (x)g(y) + F(y) − f (0)g(y),

and by subtracting f (0) from each side we get

max{ f̃ (x + y), f̃ (x − y)} = f̃ (x)g(y) + F̃(y).

Further, assume that g ≥ 0. We have

max{F(x + y), F(x − y)} = max{max{ f (x + y), f (−x − y)}, max{ f (x − y), f (−x + y)}}

= max{max{ f (x + y), f (x − y)}, max{ f (−x − y), f (−x + y)}}

= max{ f (x)g(y) + h(y), f (−x)g(y) + h(y)}

= max{ f (x), f (−x)}g(y) + h(y) = F(x)g(y) + h(y).

This implies

max{F̃(x + y), F̃(x − y)} = max{F(x + y), F(x − y)} − f (0)

= F(x)g(y) + h(y) − f (0) = F(x)g(y) + F(y) − f (0)g(y) − f (0)

= F̃(x)g(y) + F̃(y).

This concludes the proof. �

We proceed with the following simple observations.

R 2.2. Let G be an abelian group and consider f , g, h : G→ R. Then, f , g, h
satisfy (1.2) if and only if f , g, h satisfy (1.1) and f is even.
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P. First assume that f , g, h satisfy (1.2). If f is constant, g is an arbitrary function
and h(x) = f (x)(1 − g(x)), then f is obviously even and (1.1) is fulfilled by f , g, h.
However, if f is not constant, then f , g, h are even (see [3, Remark 3.1]), and we have

max{ f (x + y), f (x − y)} = max{ f (−x − y), f (x − y)}

= f (x)g(−y) + h(−y) = f (x)g(y) + h(y).

Now, assume that f , g, h satisfy (1.1) and f is even. Then,

max{ f (x + y), f (x − y)} = max{ f (−x − y), f (x − y)}

= f (−y)g(x) + h(x) = f (y)g(x) + h(x).

This concludes the proof. �

R 2.3. Let G be an abelian group, and consider x0 ∈G and f , g, h : G→ R. Then
f , g, h satisfy (1.1) if and only if f (· − x0), g, h satisfy (1.1).

We can formulate the following corollary.

C 2.4. Let G be an abelian group, and consider x0 ∈G and f , g, h : G→ R.
If f , g, h satisfy (1.2) then f (· − x0), g, h satisfy (1.1).

In view of [3, Theorem 1.1] we have the following solutions of (1.1):

(1)


f (x) = b,
g is an arbitrary function,
h(x) = b(1 − g(x)),

where b ∈ R;

(2)


f (x) = cφ(x − x0) + b,
g(x) = φ(x),
h(x) = b(1 − φ(x)),

where x0, c, b ∈ R, c > 0, and φ : G→ R is a solution of (1.4);

(3)


f (x) = cφ(x − x0) + b,
g(x) = φ(x),
h(x) = b(1 − φ(x)),

where x0, c, b ∈ R, c < 0, and φ : G→ R is a solution of

min{φ(x + y), φ(x − y)} = φ(x)φ(y); (2.3)

(4)


f (x) = φ(x − x0) + b,
g(x) = 1,
h(x) = φ(x),

where x0, b ∈ R, and φ : G→ R is a solution of (1.3).
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For solutions of (1.3), (1.4) and (2.3) see [3, Section 2]. Nevertheless, as we will
see, these are not all solutions to (1.1).

Other partial results can be derived from [3, Theorem 1.1], Lemma 2.1 and
Remark 2.2, as in the following corollary.

C 2.5. Let G be an abelian group and suppose that f , g, h : G→ R
satisfy (1.1). Suppose also that g ≥ 0. Then:

(1)


F(x) = b,
g is an arbitrary function,
h(x) = b(1 − g(x)),

where b ∈ R; or

(2)


F(x) = cφ(x) + b,
g(x) = φ(x),
h(x) = b(1 − φ(x)),

where c, b ∈ R, c > 0, and φ : G→ R is a solution of (1.4); or

(3)


F(x) = cφ(x) + b,
g(x) = φ(x),
h(x) = b(1 − φ(x)),

where c, b ∈ R, c < 0, and φ : G→ R is a solution of (2.3); or

(4)


F(x) = φ(x) + b,
g(x) = 1,
h(x) = φ(x),

where b ∈ R, and φ : G→ R is a solution of (1.3).

We finish this section with one more simple observation, in view of, for
example, (2.1) and (2.2).

C 2.6. Suppose that f , g, h : G→ R satisfy (1.1) and f is not constant. Then
g(0) = 1 and g and h are even.

3. Solution of (1.1) on R

In this section we are going to show the main result of this paper, that is, the
following theorem.

T 3.1. Let f , g, h : R→ R satisfy equation (1.1) and assume that f is
continuous. Then the functions f , g, h are of one of the following forms:

(1)


f (x) = b,
g is an arbitrary function,
h(x) = b(1 − g(x)),

where b ∈ R;
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(2)


f (x) = cea|x−x0 | + b,
g(x) = ea|x|,
h(x) = b(1 − ea|x|),

where x0, b ∈ R, ac > 0;

(3)


f (x) = a|x − x0| + b,
g(x) = 1,
h(x) = a|x|,

where b, x0 ∈ R, a > 0;

(4)


f (x) = ceax + b,
g(x) = esgn(c)|ax|,
h(x) = b(1 − esgn(c)|ax|),

where a, b, c ∈ R;

(5)


f (x) = ax + b,
g(x) = 1,
h(x) = |ax|,

where a, b ∈ R.

Conversely, if f , g, h are of one of the forms (1)–(5), then they satisfy (1.1).

The ‘if’ part of this theorem (the converse) can be checked directly. The remainder
of the paper is concerned with proving that if f , g, h : R→ R satisfy (1.1) and f is
continuous then f , g, h are of the forms (1)–(5). First notice that if f ≡ b is constant
and g is an arbitrary function then h(y) := b(1 − g(y)). So, from now on, we will work
under the assumptions

f , g, h : R→ R, satisfy (1.1), and f is continuous and not constant. (H)

R 3.2. Suppose (H). Then the functions g and h are continuous.

P. By (2.1) with x0 ∈ R such that f̃ (x0) , 0,

g(y) =
max{ f̃ (x0 + y), f̃ (x0 − y)} − F̃(0)

f̃ (x0)
.

Therefore g is continuous. Moreover, from (2.2), h is continuous, too. �

L 3.3. Suppose (H). Then g ≥ 0.

P. We consider three cases.
(I) F̃ ≡ 0. Since f is not constant, we can find an x0 , 0 such that f̃ (x0) < 0. The

inequality g(y) < 0 for some y ∈ R implies, by (2.1),

0 ≥max{ f̃ (x0 + y), f̃ (x0 − y)} = f̃ (x0)g(y) + F̃(y) = f̃ (x0)g(y) > 0,

which is impossible. Hence, g ≥ 0.
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(II) F̃ ≤ 0 and F̃ . 0. Suppose that g(y) = 0 for some y ∈ R. Since g(0) = 1 and g is
continuous and even, we can define y0 := min{y > 0 : g(y) = 0}. We have, using (2.1)
again,

max{ f̃ (x + y0), f̃ (x − y0)} = f̃ (x)g(y0) + F̃(y0) = F̃(y0), x ∈ R. (3.1)

Putting x = −y0 in the above, we obtain

0 = f̃ (0) ≤max{ f̃ (0), f̃ (x − y0)} = F̃(y0) ≤ 0.

Hence we have proved that
F̃(y0) = 0. (3.2)

Now we will prove the implication

F̃(x) < 0⇒∀z∈(x−y0,x+y0) f̃ (z) < 0. (3.3)

Fix an x with F̃(x) < 0 and y ∈ (−y0, y0). By (2.1) we have

max{ f̃ (x + y), f̃ (x − y)} = f̃ (x)g(y) + F̃(y) < 0,

as f̃ (x) < 0, g(y) > 0 and F̃(y) ≤ 0. Therefore, we have proved (3.3).
Now fix an x0 such that F̃(x0) < 0. By (3.1) and (3.2) we have

max{ f̃ (x0 + y0), f̃ (x0 − y0)} = 0.

Suppose, without loss of generality, that

f̃ (x0 − y0) = 0. (3.4)

For an arbitrary x1 ∈ (x0 − y0, x0) we have f̃ (x1) < 0 (see (3.3)). Hence, using (3.3) for
x1 we infer that f̃ (z) < 0 for z ∈ (x1 − y0, x1 + y0). But x0 − y0 ∈ (x1 − y0, x1 + y0), so
f̃ (x0 − y0) < 0, which is a contradiction with (3.4). Therefore g > 0.

(III) F̃(z0) > 0 for some z0 ∈ R. If g > 0 then the proof is finished. So, assume that
it is not the case. Then, by continuity of g, the fact that g is even and g(0) = 1, we can
define

y0 := min{y > 0 : g(y) = 0}.

Put M := sup{ f̃ (x) : x ∈ R}. We have, of course, M > 0. Moreover,

M = F̃(y), y ∈ g−1({0}). (3.5)

Indeed, by (2.1),

max{ f̃ (x + y), f̃ (x − y)} = f̃ (x)g(y) + F̃(y) = F̃(y), x ∈ R, y ∈ g−1({0}). (3.6)

This implies
f̃ (x) ≤ F̃(y), x ∈ R, y ∈ g−1({0}).

Hence M ≤ F̃(y), for every y ∈ g−1({0}). Therefore, by the definition of M and F̃ we
infer that M = F̃(y), for every y ∈ g−1({0}). Now, (3.6) implies

[ f̃ (x) < M and y ∈ g−1({0})]⇒ f̃ (x + 2y) = f̃ (x − 2y) = M. (3.7)
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In particular, since f̃ (0) = 0 < M,

f̃ (2y) = f̃ (−2y) = M, y ∈ g−1({0}). (3.8)

Put

δ := min{ε > 0 : f̃ (−ε) = M},

η := min{ε > 0 : f̃ (ε) = M}.

This means that f̃ (−δ) = f̃ (η) = M and f̃ (x) < M for x ∈ (−δ, η). We also have

F̃(−δ) = F̃(η) = M. (3.9)

By (3.7), f̃ (x + 2y0) = M for every x ∈ (−δ, η). Hence F̃(x + 2y0) = M, for x ∈ (−δ, η).
Continuity of F̃ assures us that we also have

F̃(2y0 − δ) = F̃(2y0 + η) = M. (3.10)

Using (2.1) we get

max{ f̃ (2y0 + η), f̃ (2y0 − η)} = f̃ (2y0)g(η) + F̃(η).

This, together with (3.10), (3.8) and (3.9), gives g(η) = 0. However, from the definition
of y0, this means that y0 ≤ η, but, from the definition of η,

f̃ (x) < M, x ∈ [0, y0). (3.11)

Similarly,
max{ f̃ (2y0 + δ), f̃ (2y0 − δ)} = f̃ (2y0)g(−δ) + F̃(−δ).

This, together with (3.10), (3.8) and (3.9), gives g(−δ) = 0. However, from the
definition of y0, this means that y0 < δ, but, from the definition of δ,

f̃ (x) < M, x ∈ (−y0, 0).

This, together with (3.11), means that f̃ (x) < M for every x ∈ (−y0, y0). Now, in view
of (3.7) (and the continuity of f̃ ), we infer

f̃ (x) = M, x ∈ [y0, 3y0]. (3.12)

On account of (2.1),

max{ f̃ (3y0 − x), f̃ (3y0 + x)} = f̃ (3y0)g(x) + F̃(x), x ∈ R,

and hence, by (3.12),
g(x) = 0, x ∈ [y0, 2y0]. (3.13)

Moreover, from the definition of y0 and g(0) = 1, we know that

g(x) > 0, x ∈ [0, y0). (3.14)

Now, we will prove the implication

g(y) = 0⇒ g(2y) = 0, y ∈ R. (3.15)
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Notice that in view of (3.13), (3.15) together with (3.14) (and the fact that g is even),
implies that g(x) > 0 for x ∈ (−y0, y0) and g(x) = 0 for x ∈ (−∞, −y0] ∪ [y0,∞). Hence,
proving (3.15) will complete the proof.

Suppose that g(y) = 0. By (3.5) we have F̃(y) = M. Let x ∈ R be such that
0 < f̃ (x) < M (such an x exists, since f̃ (0) = 0 and F̃(y0) = M). Therefore, using (2.1),

max{ f̃ (x), f̃ (x + 2y)} = f̃ (x + y)g(y) + F̃(y).

This implies f̃ (x + 2y) = M, since f̃ (x) < M, g(y) = 0 and F̃(y) = M. Using (2.1) again,
we obtain

max{ f̃ (x + 2y), f̃ (x − 2y)} = f̃ (x)g(2y) + F̃(2y).

Consequently, g(2y) = 0, since f̃ (x + 2y) = M, f̃ (x) > 0 and F̃(2y) = M (see (3.8)). The
proof of (3.15) is complete. �

L 3.4. Suppose (H). Then F̃ is not constant.

P. Suppose, on the contrary, that F̃ ≡ 0. Since f is not constant, there exists an
x0 , 0 such that f̃ (x0) < 0. Without loss of generality, we can assume that x0 > 0.
Let z0 ≥ 0 be such that f̃ (z0) = 0 and f̃ (x) < 0 for every x ∈ (z0, x0]. For an arbitrary
x ∈ (z0, x0], by (2.1),

0 = max{ f̃ (2x − z0), f̃ (z0)} = f̃ (x)g(x − z0) + F̃(x − z0) = f̃ (x)g(x − z0).

In view of f̃ (x) < 0 we infer g(x − z0) = 0. Passing with x to z0, on account of the
continuity of g, gives g(0) = 0. However, we know from Corollary 2.6 that g(0) = 1.
This is a contradiction. �

We now reformulate Corollary 2.5 under the assumption (H) (see [3, Section 2]).

C 3.5. Suppose (H). Then we have one of the following cases:

(U)


F̃(x) = C(eA|x| − 1),
F(x) = C(eA|x| − 1) + f (0),
g(x) = eA|x|,
h(x) = ( f (0) −C)(1 − eA|x|),

where A,C > 0;

(V)


F̃(x) = A|x|,
F(x) = A|x| + f (0),
g(x) = 1,
h(x) = A|x|,

where A > 0;

(W)


F̃(x) = C(1 − e−A|x|),
F(x) = C(1 − e−A|x|) + f (0),
g(x) = e−A|x|,
h(x) = ( f (0) + C)(1 − e−A|x|),

where A,C > 0.
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In particular, g(x) > 0, x ∈ R, and F and F̃ are strictly decreasing on (−∞, 0] and
strictly increasing on [0,∞).

We see that it is enough to determine the formula for f in each of the cases (U), (V)
and (W). Now, we are going to prove four technical lemmas, which will be summarized
in Corollary 3.10.

L 3.6. Suppose (H). Then we have the following results.
• If there exists an x0 < 0 such that f̃ (x0) < F̃(x0), then

f̃ (x) < F̃(x), x ∈ (−∞, 0),

f̃ (x) = F̃(x), x ∈ [0,∞).

• If there exists an x0 > 0 such that f̃ (x0) < F̃(x0), then

f̃ (x) < F̃(x), x ∈ (0,∞),

f̃ (x) = F̃(x), x ∈ (−∞, 0].

P. Let us assume that there exists an x0 < 0 such that f̃ (x0) < F̃(x0) (the second
implication can be considered analogously). Suppose that there is a y < x0 such
that f̃ (y) = F̃(y). We can choose x1 < 0 and y1 > 0 with x1 + y1 < 0, f̃ (x1) < F̃(x1)
and f̃ (x1 − y1) = F̃(x1 − y1). Using (2.1), the positiveness of g, the fact that F̃, g, F̃
satisfy (1.1) and the monotonicity of F̃, we have

F̃(x1 − y1) = f̃ (x1 − y1) ≤max{ f̃ (x1 + y1), f̃ (x1 − y1)}

= f̃ (x1)g(y1) + F̃(y1) < F̃(x1)g(y1) + F̃(y1)

= max{F̃(x1 + y1), F̃(x1 − y1)} = F̃(x1 − y1).

This is a contradiction. Hence, we have proved that if f̃ (x) < F̃(x), for some x < 0,
then f̃ (y) < F̃(y), for every y < x. Let z := sup{x < 0 : f̃ (x) < F̃(x)}. We have

f̃ (z) = F̃(z) (3.16)

and
f̃ (x) < F̃(x), x < z. (3.17)

Let y > −2z. Hence, −z − y < z ≤ 0. Therefore, f̃ (−z − y) < F̃(−z − y) = F̃(z + y).
Hence,

f̃ (z + y) = F̃(z + y). (3.18)

Using the inequalities 0 < z + y ≤ y − z, the fact that F̃ is even and the results
concerning its monotonicity from Corollary 3.5, we obtain

F̃(z + y) ≤ F̃(z − y). (3.19)

Suppose that
F̃(z + y) < F̃(z − y). (3.20)
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Using (2.1), (3.16), Lemma 2.1 and (3.19), we obtain

max{ f̃ (z + y), f̃ (z − y)} = f̃ (z)g(y) + F̃(y)

= F̃(z)g(y) + F̃(y) = max{F̃(z + y), F̃(z − y)} = F̃(z − y).

However, since we have shown (3.18) and assumed (3.20), then it follows that
f̃ (z − y) = F̃(z − y), which is impossible, as z − y < z and (3.17) holds. There-
fore, (3.20) leads to a contradiction. Hence, in view of this and (3.19) we find
F̃(z + y) = F̃(z − y), which, due to the properties of F̃, implies z = 0. Hence, by (3.17),
we have proved that f̃ (x) < F̃(x), for x < 0 and, consequently, f̃ (x) = F̃(x), for x ≥ 0. �

L 3.7. Suppose (H). For any c ∈ R define function Hc : R→ R by the formula
Hc(x) := cg(x) + F̃(x). Then we have the following results.
• For every x0 < 0 and c ∈ [0, F̃(x0)],

Hc(x − x0) > F̃(x), x ≥ 0.

• For every x0 > 0 and c ∈ [0, F̃(x0)],

Hc(x − x0) > F̃(x), x ≤ 0.

P. Using the formulas for g and F̃ from Corollary 3.5, we can directly check the
inequalities in each of the cases (U), (V) and (W). We omit the calculations here. �

L 3.8. Suppose (H). Then the following implications hold true.
• If there exist x0, x1 < 0 such that f̃ (x0) ≥ 0 and f̃ (x1) < F̃(x1), then f̃ (x0 − y) =

H f̃ (x0)(y) for y ≥ |x0|.
• If there exist x0, x1 > 0 such that f̃ (x0) ≥ 0 and f̃ (x1) < F̃(x1), then f̃ (x0 + y) =

H f̃ (x0)(y) for y ≥ |x0|.

P. We will prove only the first part. From Lemma 3.6 we infer

f̃ (x) = F̃(x), x ∈ [0,∞). (3.21)

Fix y ≥ |x0|. Using (2.1) we obtain

max{ f̃ (x0 − y), f̃ (x0 + y)} = f̃ (x0)g(y) + F̃(y) = H f̃ (x0)(y). (3.22)

Since x0 + y ≥ 0, by (3.21) and Lemma 3.7 we obtain

f̃ (x0 + y) = F̃(x0 + y) < H f̃ (x0)(x0 + y − x0) = H f̃ (x0)(y),

which together with (3.22) gives

f̃ (x0 − y) = H f̃ (x0)(y).

This concludes the proof. �

https://doi.org/10.1017/S0004972711002693 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711002693


212 B. Przebieracz [11]

L 3.9. Suppose (H). The following implications hold true.
• If there exists a y < 0 such that f̃ (y) < F̃(y) then f̃ (x) < 0 for x ∈ (−δ, 0) for some

δ > 0.
• If there exists a y > 0 such that f̃ (y) < F̃(y) then f̃ (x) < 0 for x ∈ (0, δ) for some

δ > 0.

P. Again, we will prove the first part only. From Lemma 3.6 we infer

f̃ (x) < F̃(x), x ∈ (−∞, 0). (3.23)

Suppose, on the contrary, that there is an increasing sequence (xn : n ∈ N) tending to 0
as n→∞, and such that f̃ (xn) ≥ 0 for n ∈ N. Choose z ≤ 2x1. We have xn − z ≥ |xn|,
n ∈ N. Using Lemma 3.8 we obtain

f̃ (z) = H f̃ (xn)(xn − z) = f̃ (xn)g(xn − z) + F̃(xn − z).

Letting n→∞ in the above, we get f̃ (z) = F̃(z), contrary to (3.23). �

Up to now, we have shown the following corollary.

C 3.10. Suppose (H). Then we have the following possibilities:

(i) f̃ = F̃;

(ii)


f̃ (x) = F̃(x), x ∈ [0,∞),

f̃ (x) < F̃(x), x ∈ (−∞, 0),

f̃ (x) < 0, x ∈ (−δ, 0), for some δ > 0;

(iii)


f̃ (x) = F̃(x), x ∈ (−∞, 0],

f̃ (x) < F̃(x), x ∈ (0,∞),

f̃ (x) < 0, x ∈ (0, δ), for some δ > 0.

In view of Corollary 3.5 we can consider further only cases (ii) and (iii). Moreover,
in each case we distinguish two possibilities:

(1) either f̃ is negative on the whole half line R−, R+, respectively; or
(2) it is not.

Finally, we will determine the formula for f̃ (and f ) according to cases (U), (V) and
(W). Namely, we consider the following possibilities.
(1U(ii)) F̃, F, g and h are given by (U), (ii) holds and f̃ (x) < 0 for every x ∈ (−∞, 0).
(1V(ii)) F̃, F, g and h are given by (V), (ii) holds and f̃ (x) < 0 for every x ∈ (−∞, 0).
(1W(ii)) F̃, F, g and h are given by (W), (ii) holds and f̃ (x) < 0 for every x ∈ (−∞, 0).
(1U(iii)) F̃, F, g and h are given by (U), (iii) holds and f̃ (x) < 0 for every x ∈ (0,∞).
(1V(iii)) F̃, F, g and h are given by (V), (iii) holds and f̃ (x) < 0 for every x ∈ (0,∞).
(1W(iii)) F̃, F, g and h are given by (W), (iii) holds and f̃ (x) < 0 for every x ∈ (0,∞).
(2U(ii)) F̃, F, g and h are given by (U), (ii) holds and there is x < 0 such that

f̃ (x) = 0.
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(2V(ii)) F̃, F, g and h are given by (V), (ii) holds and there is x < 0 such that
f̃ (x) = 0.

(2W(ii)) F̃, F, g and h are given by (W), (ii) holds and there is x < 0 such that
f̃ (x) = 0.

(2U(iii)) F̃, F, g and h are given by (U), (iii) holds and there is x > 0 such that
f̃ (x) = 0.

(2V(iii)) F̃, F, g and h are given by (V), (iii) holds and there is x > 0 such that
f̃ (x) = 0.

(2W(iii)) F̃, F, g and h are given by (W), (iii) holds and there is x > 0 such that
f̃ (x) = 0.

First, we deal with (1U(ii)). Fix x < 0. By (2.1) we obtain

max{ f̃ (2x), f̃ (0)} = f̃ (x)g(x) + F̃(x),

whence, since f̃ (2x) < 0 = f̃ (0) and g(x) > 0,

f̃ (x) = −
F̃(x)
g(x)

, x < 0. (3.24)

Therefore,

f̃ (x) = −
CeA|x| −C

eA|x|
= −C + CeAx, x < 0;

but
f̃ (x) = F̃(x), x ≥ 0, (3.25)

so

f̃ (x) = −C + CeAx, x ∈ R,

f (x) = −C + CeAx + f (0), x ∈ R.

Similarly, using formulas (3.24) and (3.25), we obtain

(1V(ii)) f (x) = Ax + f (0), x ∈ R,

(1W(ii)) f (x) = C −Ce−Ax + f (0), x ∈ R.

Analogously, one can show that in cases (1U(iii)), (1V(iii)) and (1W(iii))

f̃ (x) = −
F̃(x)
g(x)

, x > 0,

and
f̃ (x) = F̃(x), x ≤ 0;

hence

(1U(iii)) f (x) = −C + Ce−Ax + f (0), x ∈ R,
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(1V(iii)) f (x) = −Ax + f (0), x ∈ R,

(1W(iii)) f (x) = C −CeAx + f (0), x ∈ R.

Compare points (4) and (5) from Theorem 3.1.
Secondly, we will consider case (2U(ii)). Put

x0 := 1
2 max{x < 0 : f̃ (x) = 0}.

Of course, x0 < 0, f̃ (2x0) = 0 and f̃ (x) < 0 for x ∈ (2x0, 0). We will calculate the
formula for f̃ in a few steps.
– We already know that

f̃ (x) = F̃(x), x ≥ 0. (3.26)

– Suppose x < 2x0. Notice that

f̃ (2x0 + y) < F̃(y), y > 0. (3.27)

Indeed, either y ∈ (0, −2x0) and then 2x0 + y < 0, whence

f̃ (2x0 + y) < 0 < F̃(y);

or y ≥ −2x0 and then 2x0 + y ≥ 0, so consequently

f̃ (2x0 + y) = F̃(2x0 + y) < F̃(y),

as F̃ increases on [0,∞).
From (2.1) we have

max{ f̃ (2x0 + y), f̃ (2x0 − y)} = f̃ (2x0)g(y) + F̃(y) = F̃(y).

On account of (3.27) we infer

f̃ (2x0 − y) = F̃(y), y > 0,

which can be reformulated as

f̃ (x) = F̃(2x0 − x), x < 2x0. (3.28)

Therefore,
f̃ (x) = C(eA|2x0−x| − 1), x < 2x0.

– Suppose x ∈ (x0, 0). Choose y ∈ (−x, x − 2x0). By (2.1) we have

max{ f̃ (x + y), f̃ (x − y)} = f̃ (x)g(y) + F̃(y). (3.29)

Since x + y > 0 we have f̃ (x + y) = F̃(x + y) > 0; moreover, x − y ∈ (2x0, 0), and hence
f̃ (x − y) < 0. Therefore, (3.29) implies

F̃(x + y) = f̃ (x)g(y) + F̃(y).

Consequently,

f̃ (x) =
F̃(x + y) − F̃(y)

g(y)
, x ∈ (x0, 0), y ∈ (−x, x − 2x0). (3.30)
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Hence
f̃ (x) = C(eAx − 1), x ∈ (x0, 0).

– Suppose x ∈ (2x0, x0) and choose y ∈ (x − 2x0, −x). Then

max{ f̃ (x + y), f̃ (x − y)} = f̃ (x)g(y) + F̃(y).

Hence, because f̃ (x + y) < 0 (since x + y ∈ (2x0, 0)) and f̃ (x − y) > 0 (we have x − y
< 2x0, and so f̃ (x − y) = F̃(2x0 − (x − y)) > 0), we infer f̃ (x − y) = f̃ (x)g(y) + F̃(y).
Therefore,

f̃ (x) =
F̃(2x0 − (x − y)) − F̃(y)

g(y)
, x ∈ (2x0, x0), y ∈ (x − 2x0, −x). (3.31)

We can calculate that

f̃ (x) = C(eA(x0−x) − 1), x ∈ (2x0, x0).

– Of course, we also have f̃ (x0) = C(eAx0 − 1).
Finally, we can summarize the formula for f̃ :

f̃ (x) = C(eA(|x−x0 |+x0) − 1), x ∈ R.

Therefore,

(2Uii) f (x) = C(eA(|x−x0 |+x0) − 1) + f (0), x ∈ R.

Similarly, in cases (2V(ii)) and (2W(iii)), using (3.26), (3.28), (3.30) and (3.31), we
obtain

(2V(ii)) f (x) = A(|x − x0| + x0) + f (0), x ∈ R,

(2W(ii)) f (x) = C(1 − e−A(|x−x0 |+x0)) + f (0), x ∈ R.

Analogously, in cases (2U(iii)), (2V(iii)) and (2W(iii)), with x0 := 1
2 min{x > 0 :

f̃ (x) = 0}, we get the formulas:

f̃ (x) = F̃(x), x ≤ 0;

f̃ (x) = F̃(x − 2x0), x > 2x0;

f̃ (x) =
F̃(x − y) − F̃(y)

g(y)
, x ∈ (0, x0), y ∈ (x, 2x0 − x);

f̃ (x) =
F̃(x + y − 2x0) − F̃(y)

g(y)
, x ∈ (x0, 2x0), y ∈ (2x0 − x, x).

Hence,

(2U(iii)) f (x) = C(eA(|x−x0 |−x0) − 1) + f (0), x ∈ R,
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(2V(iii)) f (x) = A(|x − x0| − x0) + f (0), x ∈ R,

(2W(iii)) f (x) = C(1 − e−A(|x−x0 |−x0)) + f (0), x ∈ R.

Compare points (2) and (3) from Theorem 3.1.
This completes the proof. �

References

[1] J. Aczél and J. Dhombres, Functional Equations in Several Variables, Encyclopedia of Mathematics
and its Applications, 31 (Cambridge University Press, Cambridge, 1989).

[2] K. Baron and P. Volkmann, ’Characterization of the absolute value of complex linear functionals by
functional equations’, Seminar LV, No. 28 (2006), 10 pp., http://www.math.us.edu.pl/smdk.

[3] B. Przebieracz, ‘On some Pexider-type functional equations connected with the absolute value of
additive functions, Part I’, Bull. Aust. Math. Soc. 85(2) (2012), 191–201.

[4] R. Redheffer and P. Volkmann, ‘Die Funktionalgleichung f (x) + max{ f (y), f (−y)} = max{ f (x + y),
f (x − y)}’, in: General Inequalities, 7 (Oberwolfach, 1995), International Series of Numerical
Mathematics, 123 (Birkhäuser, Basel, 1997), pp. 311–318.

[5] A. Simon (Chaljub-Simon) and P Volkmann, ‘Caractérisation du module d’une fonction à l’aide
d’une équation fonctionnelle’, Aequationes Math. 47 (1994), 60–68.

BARBARA PRZEBIERACZ, University of Silesia,
ul. Bankowa 14, 40-007 Katowice, Poland
e-mail: barbara.przebieracz@us.edu.pl

https://doi.org/10.1017/S0004972711002693 Published online by Cambridge University Press

http://www.math.us.edu.pl/smdk
http://www.math.us.edu.pl/smdk
http://www.math.us.edu.pl/smdk
http://www.math.us.edu.pl/smdk
http://www.math.us.edu.pl/smdk
http://www.math.us.edu.pl/smdk
http://www.math.us.edu.pl/smdk
http://www.math.us.edu.pl/smdk
http://www.math.us.edu.pl/smdk
http://www.math.us.edu.pl/smdk
http://www.math.us.edu.pl/smdk
http://www.math.us.edu.pl/smdk
http://www.math.us.edu.pl/smdk
http://www.math.us.edu.pl/smdk
http://www.math.us.edu.pl/smdk
http://www.math.us.edu.pl/smdk
http://www.math.us.edu.pl/smdk
http://www.math.us.edu.pl/smdk
http://www.math.us.edu.pl/smdk
http://www.math.us.edu.pl/smdk
http://www.math.us.edu.pl/smdk
http://www.math.us.edu.pl/smdk
http://www.math.us.edu.pl/smdk
http://www.math.us.edu.pl/smdk
http://www.math.us.edu.pl/smdk
http://www.math.us.edu.pl/smdk
http://www.math.us.edu.pl/smdk
http://www.math.us.edu.pl/smdk
http://www.math.us.edu.pl/smdk
http://www.math.us.edu.pl/smdk
https://doi.org/10.1017/S0004972711002693

