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Abstract

We propose the use of finite Fourier series as an alternative means of representing ovals in projective planes
of even order. As an example to illustrate the method's potential, we show that the set [w1 + wy' + w ~y' :
0 < j < 2;'| c GF(22/1) forms an oval if w is a primitive (2h + l)sl root of unity in GF(22'') and
GF(22'') is viewed as an affine plane over GF(2;'). For the verification, we only need some elementary
'trigonometric identities' and a basic irreducibility lemma that is of independent interest. Finally, we
show that our example is the Payne oval when h is odd, and the Adelaide oval when h is even.

2000 Mathematics subject classification: primary 51E20, 05B25.

1. Introduction

In any finite projective plane of order q, an oval is a set of q + 1 points, no three
of which are collinear. In the classical plane PG(2, q) over GF(g), a nondegenerate
conic is the prototypical oval. If the order of a plane is even, then the tangents to an
oval all pass through a point that is called the nucleus of the oval. We call an oval
together with its nucleus a hyperoval. During the 1950s Beniamino Segre proved that
in PG(2, q),

(1) when q is odd, then there exist no ovals other than the conies, and
(2) when q — 2 \ coordinates may be chosen so that the points of a hyperoval are

the elements of the set

{(*, f{x), 1) | JC G GF(<?)} U {(0, 1,0), (1,0, 0)},

where / is a permutation polynomial of degree at most q — 2 for which / (0 ) = 0,
/ ( I ) = 1, and with the additional property that for all 5 in GF(^), the function /,.
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defined by /,(0) := 0 and fs(x) := [f(x + s) + f(s)]/x for x ^ 0 is a permutation
polynomial.

The first result is a deep and surprising theorem, while the second is merely a
simple observation that reduces the problem of finding examples of hyperovals to
the problem of finding appropriate permutation polynomials. The first result in one
stroke completely classified the ovals in planes coordinatized by a finite field of odd
characteristic, while the second began a search for examples, a search whose ultimate
goal is the classification of the ovals of projective planes over GF(2A). For the past
50 years the classification problem has inspired a lively research, with connections
to number theory, group theory, and combinatorics, as well as to geometry. Progress
toward a classification has been surveyed in expository articles [2, 7] and [9]; recent
progress has been so rapid that a web page [1] is maintained to report the latest
discoveries.

From the start, the study of ovals has grown in step with progress in computational
techniques — inspired ideas in combination with ever-faster computers. Perhaps such
growth is reaching its limit. The latest examples of hyperovals have permutation
polynomials whose presentation requires several lines of typescript. The Payne hy-
perovals [13], discovered in 1985, are featured in our main theorem; their relatively
simple-looking permutation polynomial is f(x) — x15'2""4^6 + x2"~' + x<2*+4>/6. The
permutation polynomial for the Adelaide hyperovals, which also come out of our
theorem, is considerably more elaborate (see [1] or [3]). With perhaps further infi-
nite families waiting to be discovered whose permutation polynomials are yet more
formidable, the time is certainly ripe for an alternative approach. We propose here the
use of finite Fourier series.

In the next two sections we introduce some background and provide a discussion
of finite Fourier series to motivate our method of representing ovals. The theory
remains in the background in this paper; our goal here is simply to introduce the
technique. Only the notation and the lemma from these sections are required for the
main theorem in Section 5, which provides an example of the method's effectiveness.
Section 4 provides the main tools used in proving the theorem. In Section 6, we
identify our oval with two known families, and we use our representation to study the
oval's automorphism group. The final section proposes some first steps of a possibly
broader use of finite Fourier series in the study of hyperovals.

2. Representation of AG(2, 2*)

In this section we specify how we identify AG(2, 2h) with the field GF(22'1), and
we state a criterion for collinearity using this representation.

Let h be a positive integer and write q = 2 \ Since GF(g) -> GF(g), z \-> z1 + z
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is a two-to-one mapping there is S e GF(q) with z2 + z # <$ for all z € GF(q). Hence
the polynomial z2 + z + & is irreducible over GF(q).

We associate the point (x,y) of the affine plane AG(2, q) with the element
z = x + iy of GF{q2), where we have fixed / to be a root of a quadratic equation

z
2 + z + 8 = 0.

We call y the imaginary part or y-coordinate of z and denote it by 3(z). Since / + 1
is the second root of z2 + z + 8, the conjugate of i must be iq = i + 1. Thus the
conjugate of z = x + iy is

(1) z" = (x + y) + iy.

For the verification of our main theorem, the following well-known result is useful.

LEMMA 2.1. Considered as points ofAG(2,q), elements T, U, V ofGF(q2) are
collinear if and only if^{TUq + UV + VT") = 0.

PROOF. Write T = a + ib, U = c + id, and V = e + if. Then

XTW + UV + VTq) = be + ad + de + cf + fa + eb.

Furthermore, 7", U, V are collinear if and only if

c + a e + a _
d+b f+b ~ •

However, this determinant equals be + ad + de + cf + fa + eb. •

3. Finite Fourier series

It will be convenient to consider an oval of AG(2, q) to be a particular type of
(q + l)-gon: an ordered set of q + 1 points,

P = ( P 0 , P \ , • • • . Pq)

with pi e GF(g2). In this way the oval P is a vector in a (q + l)-dimensional vector
space over GF(g2). More correctly, an oval is represented by (q + 1)! vectors, one
for each way of ordering its points. The advantage of using ordered point sets is that
we may identify a linear combination of point sets with the linear combination of the
corresponding vectors. Taking our cue from Fourier analysis, we see that a natural
basis for this vector space will be the 'regular (q + l)-gons'; the oval will be written
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as a linear combination of these basis elements, with the scalars being the associated
finite Fourier coefficients. To define the regular (q +1 )-gons, we fix w to be a primitive
(q + l)sl root of unity in the field GF(q2). The powers of w will be points on a unit
circle (c(f), s(t)), where we use the notation c(t) and s(t) to suggest their relationship
to the cosine and sine functions; more precisely, we define c(t) and s{t) by

w' = c(t) + is(t), 0 < t < q.

Thus, using (1), we have

(2) 1 = w'w"' = [c(t) + is(t)][c(t) + s(t) + is(t)] = c2(t) + c(t)s(t) + Ss2(t)

forevery t. This means that the unitcircle of AG (2, q) consists of the points (c(t), s(t))
of the ellipse x2 + xy + Sy2 + 1 = 0 (where by ellipse we mean a conic whose q + 1
points all lie in the affine plane).

DEFINITION 3.1. The k-regular (q + \)-gon in AG(2, q) is the ordered set (1, wk,
w2k w"k).

Thus, the £>regular (q + l)-gon is the analogue of the regular polygon of the
Euclidean plane whose vertices are points evenly spaced around the unit circle, with
adjacent vertices subtending the angle 2kn/(q + 1) at the center. Its vertices can be
repeated; for example, the 0-regular 9-gon consists of the point 1 repeated nine times,
while the 3-regular 9-gon is a 3-fold repeated triangle. What is relevant here is that the
^-regular (q + l)-gons form a basis for complex (q + l)-space. This claim is actually
a restatement of a standard and easily verified fact about finite Fourier series (see
[10] or [11], for example). More precisely, for a (q + l)-gon P = (p0, pi, ..., pq)
there exists a unique set a0, • • •, aq of q + 1 elements of GF(q2), the finite Fourier
coefficients of P, so that

(3)

for j = 0 , . . . , q. This is immediate ly clear since the coefficient matrix of (3), when
considered as a sys tem of linear equat ions in the unknowns a0, ..., aq, i s anons ingu la r
Vandermonde matrix. Fur thermore , since

^ . ( l , i ff = 0 m o d q + 1,
> w" = \

*—£ [0, otherwise,

we have

(4) ak --
r=0 7=0
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The first hint that finite Fourier series might be applicable to the study of ovals was
the observation that any ellipse of AG(2, q), q even or odd, can be represented by the
series whose yth point is

p, = aw' + bw~j + c

where a, b,c e GF(q2), anda1^1 / bq+\ This means that one can order the points of
an ellipse so that its Fourier representation has only three nonzero coefficients: a0 = c,
a{ = a,aq =b. The element c is the center of gravity of the q + 1 points of the ellipse.
The condition aq+{ ^ M+ l avoids the situation where the q + 1 points are collinear. It
is a straightforward exercise to confirm directly that these points satisfy the equation
of an ellipse, although a deeper explanation of this representation is provided by the
theory of affinely regular polygons (see [4, Theorem 2]). The natural question is: Do
other ovals have particularly nice Fourier representations?

We turned to the computer to find all ovals whose Fourier series have only three
or four nonzero coefficients. It turned out that, up to affine transformations, all such
ovals have the form P = (p0, pu ..., pq) with

Pj•= w>+awjk +bw~jk, a,beGF(q2), k = 2, 3, . . . , q/2.

Only certain choices of a and b yield ovals. We found that for the planes AG(2, q),
q — 8, 16, 32, 64, 128, aside from conies, the only ovals we get in this way are

(5) O r = {wJ + w i i + 2 r + w ~ } j - 4 r , j = 0 , . . . , q ) , r = 0 , l , . . . , g .

For fixed q, the ovals &r, r = 0, 1, . . . , q, are all equivalent:

er = {wJ + wv+2r + w~li'ir, j = 0, . . . , q]

= {wJ~r + wM'-r)+2r + w-M'~r)-4r, j = 0, . . . , q]

= {w-r(w* + w3j + w-y), j = 0, . . . , q)

In fact, €§ is an oval in AG(2, 2'') for all h. To prove this we use a finite analogue of
trigonometry.

4. Trigonometric identities for GF(22A)

We collect here the tools used in our proof of the main theorem. All one needs here
from Section 2 are the identities

r(6) r

(7) w' =

(8) 8s2(t) = \+c2(t) + c(t)s(t).
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From these we will derive a list of 'trigonometric identities' followed by a brief
verification. Our treatment follows [12, Section 2], where further details can be
found. An alternative approach to trigonometry by way of vectors is the subject of
[6]. With a third approach, Payne and Thas [8] recently used such identities to help
find the automorphism group of the Adelaide ovals.

Recall from Section 2 that the domain of the functions c(t) and s(t) consists of the
integers modulo 2* + 1; addition and multiplication of 'angles' are reduced modulo
2h + 1, so that t/2 always has a well-defined value.

Double and half angle formulas

(9)
(10) c2{t/2) = {\+c2(t))/s(t),

(11) s(2t) = s2(t),

(12) s2(t/2) =

Triple angle formulas

(13)

(14) s(3t) = s(t) + s\t).

Formulas involving angle sums and differences

(15) c(t + u) = c(t)c(u) + s(t)s(u)8,

(16) s(t + u)= c(t)s(u) + c(u)s(t) + s(t)s(u),

(17) c(t -u) = c(t)c(u) + c(t)s(u) + s(t)s(u)S,

(18) s(t - u) = s(t)c(u) + c(t)s(u) = s(u - t) = c(t - u) + c(u - f),

(19) c(t)s(u) =c(t + u) + c(t -u),

(20) c(t) + c(u) = c((t + «)/2) s(dt - «

(21) s(t)s(u) =s(t + u) + s(t-u),

(22) *(0 + s(u) = s((t + «)/2)s((t - K)

(23) s(t)s(u)s(v) = s(t + u + v) + s(-t + u + v)

+ s(t - u + v) + s(t + u - v),

(24) s(t) + s(u) + s(v) = s((t + M)/2)S((U + v)/2) s((v + 0/2) + s(t + u + v).

Proof of (9) through (12)

w2' = (c2(t) + s2(t)S) + s2(t)i by (6)

= (1 + c(0*(0) + (s2(t))i by (8).
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This shows (9), (11) and (12). To get (10), we compute

c{t)2 + 1 c(t)2 + 1
= 7 ^ = ̂ r by(12)>

Proofof(13)and(14)

u,3' = (c(t) + c2(t)s(t) + s3(t)S) + (s(t) + s\t))i by (6)
= (c(t) + s(t) + c(t)s2(t)) + (s(t) + s3(t))i by (8).

Proof of (15) through (24)

w'w" = (c(t) + s(t)i)(c(u) + s(u)i)

= (c(t)c(u) + s(t)s(u)8 + (c(t)s(u) + c(u)s(t) + s(t)s(u))i,
w'w-" = w'(wy = (c(t) + s(t)i)(c(u) + s(u) + s(u)i)

= (c(t)c(u) + c(t)s(u) + s(t)s(u)8) + (s(t)c(u) + c(t)s(u))i.

This proves (15) through (18). The remaining identities follow from (15)—(18) and
the observation s(—t) = s(t) for all t. •

We use the following notation:

fa := x2 + x + a e GF(2A)[;c] for a e GF(2A).

Note that /„ is a two-to-one mapping on GF(2'1), and thus |/a(GF(2'"))| = 2h~\ The
following is well known, see [5, Section 1.4, (iiie)]. For the convenience of the reader,
we include a proof.

LEMMA 4.1. The polynomial fa+fi is irreducible over GF(2A) if and only if exactly
one of fa, fp is irreducible over GF(2A).

PROOF. The sufficiency of the conditions is obvious. Necessity: If both /„ and fp
have roots in GF(2A), then so has fa+p and thus is reducible. If /„ and fp are both
irreducible, then their images on GF(2A) both do not contain 0 and hence intersect.
Thus there are a, b e GF(2A) with a2 + a + a = b2 + b + fi, that is,

(a + b)2 + (a + b) + a + fi = 0.

This shows that fa+p is reducible. •
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To prove our main theorem, we need one basic lemma, a result that seems to be
of interest in its own right. In fact, it was observed also in [8, Section 5], where the
authors need it for computations similar to ours.

LEMMA 4.2. For any nonzero element s of GF(2h), the quadratic polynomial z2 +
sz + 1 is irreducible over GF(2A), if and only if s is the nonzero y-coordinate of a
point of the unit circle wwq = 1 in AG(2, 2h).

PROOF. Note that z2 + sz + 1 is irreducible over GF(2*) if and only if / 1 / ( ! is
irreducible over GF(2A) (put z = sx). By Lemma 4.1, f]/s2 is irreducible if and only
if /i+i/.s2 is reducible, since fs is irreducible by the choice of S. However, /s+i/!2 is
reducible if and only if z2 + sz + Ss2 + 1 is reducible (put x = z/s). This is the case
if and only if there is c € GF(2*) with c2 + sc + Sc2 + 1. By (2), this holds if and
only if s is the nonzero y-coordinate of a point of the unit circle in AG(2, 2h). •

5. The main theorem

THEOREM 5.1. The point set &0 = {wj + wij + w'v :0<j<2h] is an oval of

AG(2, 2h) whose nucleus is the origin.

PROOF. Write pj = wj + w3j + w-ij. Since

wij + w'1J = (c(3y) + c(3y) + *(3y)) + (s(3j) + s(3y))i =

we have

(25) P;

Let 0 < f < M < u < 2 ' ' b e arbitrary. We have to show that p,, pu, and pv are not
collinear. By Lemma 2.1 this is equivalent to

(26)

Using (25),

s(k) + s(3k) + s(k)i)]

= c(j)s(k) + s(3j)s(k) + s(j)c(k) + s(j)s(3k).

Hence the collinearity of p,, pu, pv is equivalent to

(27) s(3t)[s(u) + s(v)] + s(3u)[s(t) + s(v)] + s(3v)[s(u) + s(t)]

= c(t)[s(u) + s(v)] + c(u)[s(t) + s(v)] + c(v)[s(u)
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We must therefore show that (27) never holds. We first compute the left-hand side
of(27)

M) + s(v)] + s(3u)[s(t) + s(v)] + s(3v)[s(u) + s(t)]

= s3(t)[s(u) + s(v)] + s3(u)[s(t) + s(v)] + *3(U)[S(M) + s(t)] by (14)

= (s(t) + *(«)) (s(t) + s(v)) (s(u) + s(v)) (s(t) + s(u) + s(v))

Note that s(x) = 0 if and only if x = 0 mod (2h + 1). For the right-hand side of (27)
we get

c(t)[s(u) + s(v)] + c(u)[s(t) + s(v)] + c(v)[s(u) + s(t)]

= (c(t)s(u) + c(u)s(t)) + (c(u)s(v) + c(v)s(u)) + (c(v)s(t) + c(t)s(v))

= s(t-u) + s(u-v) + s(v-t) by (18)

' m b y < 2 4 )

Since t < u < v, the last product cannot equal zero, so (27) is equivalent to

+ v
(28)

\ i / \ i / \ / /
f {1 A- u\ / u A- v\ /vA-t\

Write w = t + u + v and z = s((t + u)/2)s((t + v)/2)s((u + v)/2). Then (28)
reads

(29) z2 + s(w)z+ 1 =0.

If w ^ 0 mod (2* + 1), then (29) has no solution z by Lemma 4.2 since s(w) is a
nonzero ^-coordinate of a point on the unit circle. Now assume w = 0 mod (2h + 1).
Then s(u + v) = s(—t) = s(f), s(u + 0 = *(—M) = s(u) and thus

z2 =

= s(t + u)s(u + v)s(v + t) by (11)
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= s(t + u)s(t)s(u)

= s(t + u)[s(t + u) + s(t -u)] by (21)

= s2(t + u) + s(t - u)s(t + u).

Since s(t — u) is a nonzero ^-coordinate of a point of the unit circle, Lemma 4.2
implies z2 ^ 1. Since s(w) = 5(0) = 0, this shows that (29) has no solution.

In summary, we have shown that (28) and hence (27) never holds. This completes

the proof that ^ 0 is a n oval-
It remains to prove that 0 is the nucleus of &Q. Assume to the contrary that two

points of the oval, p, and pu, are collinear with 0. Then (27) with c(v) = s(v) = 0
implies

0 = c(t)s(u) + c(u)s(t) + s(3t)s(u) + s(3u)s(t)
= s(t -u) + (s3(t) + s(t))s(u) + s(t)(s\u) + s(u)) by (18), (14)
= s(t -u) + s(t)s(u)(s2(t) + s2(u))
= s(t -u) + s(t)s(u)(s(t) + s(u))2

= s(t -u) + (s(t + u)+ s(t - u))s2 ( ^ ) *2 C-2^) b y ( 2 1 ) ' ( 2 2 )

= s(t - u) + (s(t + u) + s(t - u))s(t + u)s(t - u) by (11)

= s(t - u){\ + s2(t + u)+ s(t - u)s(t + «)).

As we saw earlier in the proof, 1 + s2(t + u) + s(t — u)s(t + u) cannot be zero and,
of course, neither can s(t — u). We therefore conclude that no two points of the oval
can be collinear with 0, and the theorem is proved. •

6. Payne and Adelaide ovals and their automorphism group

The ovals described in the previous section are not new. When h is odd they belong
to the family discovered by Stanley Payne in 1985; when h is even they belong to the
Adelaide family. This development comes as a double surprise: first it is somewhat
surprising that what was believed to be two families turns out to be just one; second,
it is very surprising that there should be such an easy description of these families.
The Adelaide hyperovals in particular caused enormous difficulties, with nearly nine
years separating their discovery by computer search in 1995 from the proof that
they constitute an infinite family [3]. One can easily identify our ovals after having
determined the equation their points must satisfy.

LEMMA 6.1. The points of the oval 0O satisfy the sixth degree equation

V6 + / + xy + x2 + 8y2 + 1 = 0 ,
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where 8 is chosen as described in Section 2.

PROOF. We saw in the proof of Theorem 5.1 that points of the oval are of the form
(x, y) = (c + s3 + s, s) where c and s satisfy (8). Plugging s — y and c = x + y3 + y
into (8) produces the desired sixth degree equation. •

If we replace x by x/z, y by y/z, and multiply by z6, we get our equation in
projective coordinates

/ + yV + z\xy + x2 + by2) + z6 = 0.

We prove that our oval belongs to the Payne and Adelaide families by showing that
the sixth degree equation satisfied by the points of the oval is projectively equivalent
to equations that had previously been obtained for the known families.

THEOREM 6.2. The hyperoval 0O U {0} is the Payne hyperoval when h is odd and
the Adelaide hyperoval when h is even.

PROOF. When h is odd, we can take 8 = 1. The equation used by Thas, Payne and
Gevaert in [13] to represent the Payne ovals is v6 = tu(t + u + v)A. Set t = x + y,
u = x, and v = y + z into their equation to reduce it to ours (with 5 = 1).

When h is even, to represent the Adelaide oval, Payne and Thas ([8, Lemma 5.1])
used the equation s2v6 — (t + v)4(t2 + stu + u2), where 5 = w + w~l and w is defined
in our Section 2. Set t — y, u = sx, and v = y + z to reduce their equation to ours
with 8 = 1 + \/s2.

It remains to show that x2 + x + 1 + s~2 is irreducible over GF(2'1). We use the
notation from Lemma 4.1. Note that

S = ( C ( l ) + S ( \ ) i ) + ( C ( l ) + S ( \ ) + 5 ( l ) i ) = S ( l )

is a nonzero y-coordinate of a point of the unit circle of AG(2, 2h). Thus, f\/si is
irreducible over GF(2/l) by the proof of Lemma 4.2. Since h is even, f\ is reducible
over GF(2/|). Now Lemma 4.1 implies that x2 + x + 1 + s'2 — f\+\/s'- is indeed
irreducible over GF(2/l). •

Our representation somewhat simplifies the task of determining the automorphism
group of these hyperovals. It is clear that the automorphism z y-> z2 of GF(22'')
determines a collineation of the affine plane that permutes the points of the oval (?0.
This field automorphism induces a cyclic collineation group of order 2/i that preserves
the oval. Note that z y-* z2" can be viewed as complex conjugation in GF(22''); it
represents an affine transformation in AG(2, 2h), namely the shear (x, y) H-> (x+y, y).
This shear and the identity are the only collineations in the stabilizer of the oval
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that belong to PGL(3, 2A); the other 2h - 1 elements of the stabilizer belong to
PTL(3, 2h) \ PGL(3, 2h). To show that when h > 5 the ovals have no further
automorphisms, the authors in [8] and [13] analyzed properties of the oval's sixth
degree equation. The hard work lies in showing that the curve is absolutely irreducible.
To achieve this goal, a key observation that is easily verified here, was that the nucleus
(x, y) = (0, 0) belongs to the hyperoval, but does not satisfy the equation of the oval,
while the point at infinity of the line y = 0 satisfies the projective equation (and
therefore lies on the algebraic curve determined by the oval), but does not belong to
the hyperoval.

7. Applications of Fourier series to the study of ovals

One can program a computer to find further examples of ovals with Fourier expan-
sions that have most coefficients equal to zero or, perhaps, that are nice in some other
way. Although it might be possible to provide a proof that the computer is finding
further infinite families of ovals, this should not be the ultimate goal. More important
is finding a necessary and sufficient condition on the Fourier coefficients for a set of
q + 1 points to form an oval. Here is a promising approach to that goal.

The first step might be to label the points of a given oval from 0 to q in a 'canonical'
way. Of the (q + 1)! possible orders, it seems natural to place the nucleus at the origin
and use the order inherited from the unit circle: define Pj to be the point of the oval
on the line joining the origin to wj.

THEOREM 7.1. Let q be a power of 2 and let w be a primitive (q + 1)" root of unity
in G¥(qz). A set [p0, P\, ..., pq) of q + 1 points in GF(q2) \ {0} is labeled so that
pj is on the line joining the origin to wi if and only if the Fourier coefficients of the
point set satisfy ak = a\_k where the subscripts are taken modulo q + 1.

PROOF. Let k denote the generator of the multiplicative group of the small field
GF(q). Each nonzero element of GF(q2) can be uniquely written as khwc for a pair
of integers b, c satisfying 0 < b < q — 1 and 0 < c < q + 1. The conjugate of khwc

is (kbwc)q = khw~c. A point Pj is on the line joining 0 to w' if and only if

(30) pj=kb'wi

for some bh 0 < bj < q — 1. If (30) holds, then (3) yields

at = ^2 (kb'wJ) w~jk = J2khjw~iik~[) and

<*2-k =
t

J
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Thus ak — a\_k as claimed.
Conversely, assume ak — a\_k for all k. Write ak — kdkwCk. Note that 2 — k runs

through 0, - 1 , . . . , (2 - q)/2 mod (q + 1) when k runs through 2, 3 , . . . , (q + 2)/2.
Also note that at e GF(q) since a, = a\_x = af. This implies

i

Pj=alW> + J2ukwJk

k=0

<<7+2)/2

+ J^ at(w;^ + wia~k))
k=2

(9+2)/2

(
Since A., a, € GF(^) and w' + w~' = w' + w'q e G¥(q) for all f, this implies
Pj = xw> with x e GF(^r). Hence (30) holds. •

If 0 is the centroid of the points pj (that is, £ Pj = 0), then a0 = «2 = 0-
Moreover, as we saw in the above proof, a* is in GF(^r): ai = ^kd'. Further, the
theorem provides a necessary and sufficient condition for an arbitrary set of q + 2
points to form a hyperoval: for each of the q + 2 translations that take one of the
given points to the origin, the Fourier series of the set formed by the remaining q + 1
points has its coefficients paired (with ak = al_k) if and only if the given pj form a
hyperoval. Unfortunately, to apply the theorem one must, for each choice of nucleus,
label the remaining q + 1 points in the appropriate order. There seems to be no obvious
relationship among the q + 2 resulting orderings. We do not yet know if there is a
simple underlying pattern; nor do we know if there is some other condition that would
enable Fourier series to provide a meaningful classification of ovals. Until such a
condition is discovered, the use of Fourier series will be limited to searching for new
families of ovals and, perhaps, shedding light on the known ovals.
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