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Summary

Equal variances within quantitative trait locus (QTL) groups in the segregating population are a
usual simplifying assumption in QTL mapping. The objective of this paper is to demonstrate the
advantages of taking into account potential variance effect of QTLs within the framework of
standard interval mapping approach. Using backcross case as an example, we show that the
resolution power of the analysis may be increased in the presence of variance effect, if the latter is
allowed for in the model. For a putative QTL (say, A/a) one can compare two situations,
(0 °la = <TL = al an<3 (ii) o"L + °"aa- It w a s found that, if the variance effect of A/a is large enough,
then in spite of the necessity to evaluate an increased number of parameters, the more correctly
specified model provides an increase in the resolution power, as compared to the situation (i). This
is not unexpected, if either <r2a or o-aa in (ii) is lower than <j\ from (i). But our conclusion holds
even if <r2 a > cr2^ = <j\ or <raa > <T\a = a\. These advantages are illustrated on sweet corn data (F3

families of F2 genotypes). In particular, the log-likelihood test statistics and the parameter
estimates obtained for a QT locus in the distal region of chromosome 2 show that the allele
enhancing the trait is recessive over the opposite allele simultaneously for the mean value and
variance.

1. Introduction

The resolution capacity of marker analysis of quan-
titative traits (QTs) is the major factor affecting the
practical importance of QT loci (QTL) mapping. A
detailed discussion of the issues concerning the power
of tests for detecting linkage can be found in many
publications (e.g. Demenais et al. 1988; Lander &
Botstein, 1989; Soller & Beckmann, 1990; Carbonell
et al. 1993). The precision of the parameter estimates
depends on the effect of the QTL in question relative
to the total phenotypic variance of the trait in the
mapping population. In other words, the higher the
discrepancy between the distribution densities of the
QTL groups (say,/aa(x) andfAa(x), for a backcross),
the better is the expected resolution. Among several
possibilities to improve the precision of mapping, it is
worth mentioning selective sampling (Lebowitz et al.
1987; Carey & Williamson, 1991; Darvasi & Soller,
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1992), replicated progeny testing (Soller & Beckmann,
1990), sequential experimentation (Boehnke & Moll,
1989; Motro & Soller, 1993), multi-interval analysis
(Jansen & Stam, 1994; Zeng, 1994) and multi-trait
analysis (Korol et al. 1994, 1995; Ronin et al. 1995).

With few exceptions (Zhuchenko et al. 1979; Korol
etal. 1981, 1994; Weller, 1986, 1987), variance effects
of QTLs have not been considered previously.
However, as rightly pointed out by Weller & Wyler
(1992), the effect of a QTL on the variance is sometimes
likely to be economically more critical than on the
mean (e.g. for earliness, flowering time, ripening time
under machine harvesting, time to hatching in
chicken). The same applies to QTLs related to fitness
traits in natural populations, e.g. seed dormancy, or
flowering time. Clearly, this aspect of the problem
might be very important in supporting climatic
adaptive radiation into increasingly hostile conditions.

The objective of this paper is to demonstrate the
advantages of taking into account potential variance
effects of QT loci within the framework of the standard
interval mapping approach. Using backcross case as
an example, we show that the resolution power of the
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marker analysis of QTL may be increased in the
presence of the variance effect, if the latter is allowed
for by the model. This advantage is demonstrated on
sweet corn data (F3 families of F2 genotypes) (Tadmor
et al. 1994).

2. Interval analysis of QTL

(i) Mixture-model formulation

Assume that the putative QT locus A/a resides in an
interval flanked by two marker loci, M1/m1 and
M2/m2, with recombination rates rx and r2 in intervals
M1/m1 — A/a and A/a — M2/m2. Many modes of
interference in the interval could be considered, but
we assume no interference, so that r = r1 + r2 — 2r1r2,
where r is the recombination rate between Ml/m1 and
M2/m2. Based on the marker scores and measurements
of the QT of interest (say, x) for individuals from the
mapping population, we should test whether or not
variation of x indeed depends on the interval
M1/m1 — MJm2, and, if so, identify the corresponding
locus A/a. For a backcross case, the expected
distributions of the trait in each of the four marker

groups, Um a(x) =
UmlM2(x) = U3(x) and
written as:

UMlm2(X) = U2(X),

2(x) = U4(x) can be

Ut(x) = njaa(x) + (1 - nt)fAa(x), i = 1,4, (1)

the proportions n, = n^r^ r2) depending on the un-
known rates of recombination rx and r2. With no
interference,

n3 = l—7T2; a n d TT4 = 1 — TJX.

The specification of the densities faa{x) and fAa(x)
depends on the assumptions made about the genetic
control of the trait. Thus, if one anticipates that no
other oligogenes affecting x are segregating or, by
contrast, that the number of such loci is not too small,
then normal density could be a good approximation,

fAa(X) =
xaa and xAa are the expected mean values of x in
groups aa and Aa, and <raa and aAa are the standard
deviations.

(ii) Lod-score test and parameter estimation

Assuming that locus A/a belongs to the interval
M1/m1 — M2/m2, the log-likelihood for a sample of

measurements xk in marker groups with sizes ni (i =
1,4) can be written as:

lnL(0sl)=S £/<(**)

= S S

where 0 s l is the vector of st unknown parameters,
specifying recombination rates and distribution of the
trait x in the QTL groups aa and Aa. The assumption
of no effect of genes from the interval M1/m1 — M2/m2

on x can formally be presented by another set of
parameters, 0 = 0sO (the null hypothesis {Ho: 0 =
0sO}) as contrasting to the alternative one {Hj: 0 =
0sl}). According to the likelihood ratio test approach
(Wilks, 1962), if Ho is true, the statistic

X* = 2 In [max L(0sl)/max L(0J ] (2)

is distributed asymptotically as chi-square with st — s0

degrees of freedom, where So and Sx are the parameter
spaces corresponding to Ho and Hj, respectively. The
null hypothesis Ho is rejected if x2 exceeds some
critical value, corresponding to a preset level of
significance. Then, the numerical values of the
parameters that provide maximum to L(&sl) could be
considered as maximum likelihood estimates charac-
terizing our QT locus A/a (Knott & Haley, 1992).
However, the suitability of the chi-square approxi-
mation for the above test statistic remains an open
question (e.g. Churchill & Doerge, 1994). In the multi-
interval formulation of the QTL mapping problem,
the exact asymptotic distribution of the log-likelihood
ratio is also unknown (Lander & Botstein, 1989;
Zeng, 1994). In such a case, Monte Carlo simulation
for a given Ho allows us to obtain an empirical critical
value of the test statistics (2) (Knott & Haley, 1992;
Ooijen, 1992; Zeng, 1994).

3. Dependence of the likelihood ratio on variance
effect of the QT-locus

Let us estimate the joint effect of non-equal variances
and averages in the putative QT locus groups of a
backcross on the resolution of the lod-score test. For
the sake of simplicity we consider the case of a very
small marker interval, so that an approximation to
no-recombination between marker loci and the puta-
tive QTL is suitable (r = 0). We assume also that the
estimates xaa, aaa, xAa, and <rAa are replaced by their
expectations. For such a simplified situation the
likelihood ratio will be as follows:

1
-exp[-(xa-xaa)

2/2cr;
1 "

L] n
J i-l

1
-exp[-(xi2-xAa)

2/2<r2
Aa]

U {exp [ - (x(k - 0-5(xoa + xAa)r/G]/VnG}
= B/C,

;
i-l.n
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Fig. 1. The expected likelihood ratio (L) of QTL-marker analysis as a function of the variance effect a = (<TAJ(rall) and
mean value effect S = d/aaa of the putative QT locus, assuming very close linkage between marker loci spanning the
QTL, and 250 individuals in the sample: (a) dependence of L on a, given fixed value of 8; (b) dependence of L on S,
given fixed value of a.

where d = xAa—xaa, In = N is the size of the mapping
population, so that n is the expected size of the two
marker subgroups, and G = {<r2

aa + aAa + 0-5d2) is twice
the phenotypic variance of the trait in the population.
Let us now calculate the expected mean value of
logB/C = logB—log C = L. We will have separately:

log 5 = -log(2n<raa<rAa)

= -n\og(2naaaaAa)-n

= -«[l+log(277<7aa<0];

logC = — nlogrrG

\Aik'

= -n(\+\og-nG).

Finally,

L = \og(B/Q = « log g(a + O = L(a,S),

where S = d/aaa and a = <rAJ<raa. This measure shows
a monotonic increase with distance between the trait
means of the QTL groups (8) and a non-monotonic
(in general) dependence on the variance ratio of the
groups (a) (Fig. 1).

4. Simulation study

The above analysis, conducted for the case of a very
close linkage between the marker loci spanning the
putative QTL, revealed a surprising dependence of the
test statistics (lod-score) on trait variance ratio.
Namely, given any fixed value of the variance in one
of the QTL groups, the test statistic may grow with
increasing values of the variance in the other groups.
It is of primary interest to see whether this effect holds

also under looser linkage between the flanking
markers. Such an examination was done by Monte
Carlo simulations.

(i) Generating the data

Monte Carlo simulations were used to produce the
'observations'. For each situation studied, 200 re-
peated backcross populations were generated. Normal
distribution was used for the trait groups aa and Aa.
For comparative analysis of different situations we
used, where possible, one and the same set of data.
The composition of the marker groups (mixtures Ut,
i = 1,4) were modelled as binomial distributions with
proportions n^r^r^ and 1—TT,^, r2). Clearly, this
restriction is not principal. For most of the experi-
ments, the parameter values used were in the range:
0-5 ^dt = xAa-Xao ^0-75, <raa = \, \^arAa^2,
sample size N = 250; the length of the marker interval
was 20 cM with the QT locus in the middle. No
interference was assumed in our model (and Haldane's
mapping function is suitable).

(ii) Obtaining numerical solutions

The target of this work was to estimate the gain in the
test power and estimation accuracy when the variance
effect of the putative QTL is taken into account.
Therefore, we do not dwell in this study on problems
of numerical procedures of multidimensional opti-
mization. The main objective here was to check how
the difference of the QTL groups with respect to trait
variance affects the detection power of the likelihood
ratio test and closeness of the optimal points (repre-
senting the estimate of the parameter vector 0) to the
true parameter set. For this specific goal, we do not
have to search the solution starting from arbitrary
points. The simplest way to obtain the necessary
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Table 1. Resolution power of the LOD score test and precision of the parameter estimates in internal mapping
of a QTL with a variance effect (results of Monte Carlo simulations)

Assumption

0'aa = aAa

d

LOD

P
r

d
"a

V*

(X

LOD

LODe

P
P*
r
sr

d

a i

Situation

"„=!

0-25

0-98

4

0-088
0069

78

0-243
0140

58

0-994
0045
4-5

1-23

0-84

2
2

0091
0071

78

0-237
0-143

60

0-982
0069
70

1004
0065
6-5

0-50

2-90

41

0092
0053

58

0-483
0136

28

0-995
0044
4-4

313

3-29

38
36

0092
0053

58

0-481
0137

28

0-984
0068
6-9

1003
0064
6-4

0-75

5-90

91

0093
0041

44

0-729
0138

19

0-995
0044
4-4

613

7-14

88
88

0093
0-042

45

0-728
0139

19

0-985
0067
6-8

1003
0064
6-4

<?! = V2

0-25

0-76

2

0085
0071

84

0-244
0178

73

1-221
0058
4-7

3-92

3-76

52
50

0095
0055

58

0-222
0179

81

0-985
0067
6-8

1-417
0089
6-3

0-50

2-05

19

0090
0059

66

0-483
0167

35

1-222
0-057
4-7

516

5-41

77
77

0095
0048

51

0-473
0177

37

0-987
0067
6-8

1-416
0-089
6-3

0-75

411

72

0092
0048

52

0-724
0169

23

1-223
0057
4-7

7-21

806

96
97

0094
0041

44

0-724
0174

24

0-988
0068
6-9

1-416
0089
6-3

£ = 2
0-25

0-59

1

0-087
0073

84

0-242
0-239

99

1-580
0085
5-4

11-32

12-45

100
100

0094
0035

37

0-214
0-220

103

0-984
0069
70

2005
0-122
61

0-50

1-37

8

0088
0064

73

0-485
0-219

45

1-581
0085
5-4

1204

13-45

100
100

0094
0034

36

0-465
0-220

47

0-986
0070
7-1

2005
0-123
61

0-75

2-64

34

0090
0056

62

0-722
0-217

30

1-582
0085
5-4

13-29

1508

100
100

0093
0032

34

0-717
0-220

31

0-987
0071
7-2

2004
0123
61

In simulation of backcross progeny (200 runs with 250 plants in each) the QT locus was assumed to reside in the middle of
the marked interval (total length 20 cM); d = xAa — xaae[0,1] is the QTL effect on mean value of the trait, a = crAa/<raae
[1,2] is variance effect. LOD is the mean value of the maximum lod-score in the interval averaged over the runs, LODe is the
predicted value of LOD for the case of very close linkage; s@ and v@ = ( s e /0) 100% are the standard deviation and
coefficient of variation of the estimated parameter 0 ( 0 = r, d, <raa or aAa); /?(%) is the power of the QTL detection test at
the 0-1 % level of significance based on the asymptotic chi square distribution, while /?*(%) is the corresponding estimation
based on Monte Carlo simulation of the distribution of the test statistic under Hn.

estimates is to use as an initial point in the optimization
procedure the parameter values equal to the 'true'
ones of the considered sample (e.g. Titterington et al.
1985). Based on numerical analysis, we found that for
the studied combinations of the model parameters this
initial point lies in the domain of the attraction of the
global maximum of the ML-functional. Of course, it
could not be true for small sample sizes (Titterington
et al. 1985). In case of simulation of the test statistic
distribution under Ho (see below) different starting
points were used to ensure convergence to the global
maximum. As tools for local optimization we
employed different modifications of the gradient and
Newton methods.

(iii) Estimation of the power of the test

In order to estimate approximately the power of the
log-likelihood ratio test we used the critical level of the
test statistics (2) x2 = Afcnucai based on the asymptotic
distribution (chi square with D.F. = st—s0), where s1 is
the number of parameters in the model corresponding
to Hj and s0 the number of parameters for the model
Ho (Wilks, 1962; Knott & Haley, 1992). In order to
check whether the real distribution of the test statistic
under Ho is approximated by the asymptotic one,
Monte Carlo simulations were conducted allowing us
to obtain an empirical significance threshold. The
proportion of cases where the QT locus was revealed
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when it really exists was measured using both the
asymptotic and empirical critical values.

(iv) Estimating the accuracy of obtained solutions

Usually, standard errors of the estimates are employed
as a means for accuracy comparison of the estimation
procedures. However, in addition to random fluctu-
ations around the mean, another possible source of
disturbances, the bias of the estimates, should also be
taken into account. Thus, one should simultaneously
take care of the estimation variance and estimate bias.
These two measures are reflected in the average and
standard deviation of the estimates.

(v) Resolution power as a function of the variance
effect of QTL

For the backcross case, we have simulated and
analysed some situations when a QT locus (A/a)
residing in a marked interval (M1/m1 — M2/m2) affects
both mean and variance of the QT in question. In
order to show the advantage of including the variance
effect into the QTL detection and estimation model,
we compared the resulting characteristics (test power
and precision of estimates) with those obtained under
assumption of equal variances and with the results
when the putative QTL does not affect the trait
variance (Table 1).

Consider the situation when equal variance as-
sumption (<r2

aa = aAa) is made. Then, as one could
expect, an increase in one of the variances (say, aAa)
leads to reduction in the power of the LOD test and
in estimation precision of the genetic parameters. But
much less expected are the results obtained for the
same variants when the fact that <r2

aa # <rAa is taken
into account in the model. In such circumstances a
substantial increase in resolution can be achieved, as
compared both with the last result and with the
situation when A/a does not affect the trait variance
(compare the corresponding columns in Table 1).

It is worthwhile to recall the foregoing conclusion
for the limiting case of no recombination between the
putative QT locus and flanking markers (see Fig. 1).
Here the prediction of an increase in the resolution
power of the LOD test for QTL detection due to the
variance effect of the QT locus in question is verified
by simulations for the more general case of non-zero
recombination. It is interesting that the expected
values of LOD obtained for r = 0 (see the above
expression L(oc, S)) are, in fact, a good representation
of the corresponding situations with non-zero re-
combination. One could easily come to this conclusion
by comparison of LODe = L(a, S) values in the last
column of Table 1 with the LODs obtained from
Monte Carlo simulations when the variance effect
(a2

aa 4= (r'Aa) is included into the model. Thus, besides
biological importance (see Introduction), variance
effect may help to improve the sensitivity and precision

of the interval analysis, of course with an appropriate
model. However, one may ask whether strong enough
variance effects are possible in practice, to allow for
their detection and a rise in the resolution power in
spite of increased number of parameters in the model
specifying the variance effect. An example of ap-
plication of the proposed procedure to real data
provided below shows that both questions can be
answered positively.

5. An example of application

The following analysis of real data obtained in a study
of sweet corn quantitative traits illustrates the points.
A part of that study was devoted to reveal QTLs
responsible for differences in sucrose content (Tadmor
et al. 1994). Only an isolated example of Tadmor et al.
(1994) results are presented here; the full analysis will
be published elsewhere.

(i) Experimental design and the estimation procedure

Plants of an F2 population resulting from a cross
between two sweet corn inbreds (IL731a and W6786)
were scored for 93 markers (mainly RFLPs) from all
10 chromosomes. In order to obtain reliable estimates
of the quantitative traits in question, each of the 214
F2 genotypes was represented by mean trait values of
its F3 family (no less than 30 plants per family).
However, beside an increased resolution, such a design
complicates to some degree the estimation procedure.

Indeed, let us consider some QT locus A/B from an
interval M1/m1 — M2/m2. If one takes from F2 a
homozygote for this locus, either AA or BB, then for
this locus the genotype of the entire F3 family will be
the same, with the expected variance aAA/p or o-BB/p,
respectively, where p is the family size. But for a
heterozygote AB, the selfed F3 progeny will involve a
mixture of three classes. Assuming no interaction
between A/B and loci from other chromosomes, the
expected mean value of the QT in question is xF3{F2_AB)

= 0-25x/1/l +0-5x^,8+ 025xBB. The expected variance
can then be presented as:

- xBBr + (xBB - xAAf]/32}/p.

Thus, each of the nine marker groups for the interval
Ml/ml — MJm2 of our mapping F2 population is a
mixture of three components, fAA(x), fAB(x), and

XAA> *F3(F2- AB) = X(XAA> XAB> XBB)>

and xBB, respectively, and variances crAA/p, cr|3(F2 =
AB), alJp:

U&x) = nufAA(x) + n2ifAB(x)

Here the proportions nJt of the components depend
on the position of A/B within the interval M1/
m, — M2/m2, and the chosen mapping function. Then
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for any set of parameters @sl specifying the recom-
bination rates and distribution of the trait x in the
QTL groups A A, AB, and BB, one can define the log-
likelihood as

log£(0s l )= S SlnC/f(*t),

and employ the log-likelihood ratio test (see eqn 2).
The above procedure was applied to our data on

sucrose content in dry kernels (40 d after pollination).
The importance of the variance effect is demonstrated
in the behaviour of the respective statistics obtained
for the interval from umc36a to sel which was scored
phenotypically (La Bonte & Juvik, 1990; Tadmor et
al. 1994). This interval was shown to explain a major
portion of sucrose content variation in dry seeds and
was suggested to include the se gene itself (Tadmor et
al. 1994). Our numerical analysis showed that along
the considered portion of the chromosome 2 the log L
is a unimodal function of &. The extremum can easily
be obtained by an algorithm which involves scanning
for r within the umc36a-sel interval with gradient
optimization for other parameters of the set &.

(ii) Results

We considered 12 versions of the QT-locus dominance
effect specification derived from three possibilities for
inter-allele relationships with respect to trait mean
value and four possibilities for the variance effect
(Table 2). In each of these formulations the Ho

hypothesis assumes ' no effect on the trait mean value
and trait variance'. Several conclusions may be derived
from the presented tests and estimates. Let us denote
by A the allele of the putative QTL from the umc36a-
sel interval corresponding to the lower trait value, and
by B the enhancing allele.

Consider first the general model, with no constraints
either for trait mean effect or for the variance effect
(model 1, or M,, Table 2). The obtained estimates
allow one to assume that the trait value of hetero-
zygotes lies between the homozygotes with a clear
tendency of A to dominate. For the variance effect,
the QTL group homozygote for the enhancing allele
(BB) has higher variance than the alternative homo-
zygote group A A, while the heterozygote group AB
has the lowest variance. The last fact may reflect higher
homeostatic ability of heterozygotes (Lerner, 1954).
Comparison of the three cases presented in the first
column of Table 2 allows one to conclude that with
respect to the effect on the trait mean value the
attenuating allele A is dominant over the enhancer B
(the respective model 2 fits the data as well as the full
model 1). The opposite assumption of dominance of B
is rejected at high level of significance (x2 for M, as
against M2 is 81-70 — 53-93 = 27-77, D.F. = 1).

The next step was to consider the variance effect. As
before, we can start with the full model for mean value

effect, i.e. to contrast different models of the first row.
Comparison of M, and M4 clearly demonstrates the
importance of the variance effect: x2 = 81-70 — 42-83
= 38-87 (D.F. = 2). Thus, beside losing biologically
important information, neglecting this effect results in
a very serious reduction in the resolution power. In
addition, some bias in the estimation of the QTL
position within the interval is also possible. Further,
comparison of the full model M! with M7 and Mi0

leads to the conclusion that allele A tends to be
dominant over B with respect to the variance effect.
Taking into account also the above result concerning
the mean trait effect, we can expect that the most
economic description of the putative QT locus will be
a model with allele A dominant for both trait mean
and variance effects. And indeed, the results presented
in Table 2 and Fig. 2 confirm this expectation (the
model M8 provides nearly the same LOD value as the
full model M, employing a lower number of para-
meters).

Notably, the se phenotype was originally described
as dependent on a recessive gene (Ferguson et al.
1978). In our LOD score based identification of the
putative QTL (A/B) the interval umc36a-sel was the
most distal one available on chromosome 2. The
estimates obtained indicate that the revealed locus
A/B lies within this interval close to sel. To come to a
final decision whether or nor A/B indeed coincides
with sel, one more interval, distal to sel, is required.

6. Discussion

Equal variances of the trait in question within the QT
locus groups are a usual simplifying assumption in
marker analysis of quantitative traits, both for single
marker analysis and interval mapping. The depen-
dence of resolution power of marker analysis of QTs
on the assumption of ' no effect of the putative QT
locus on trait variance' was considered recently for
single marker cases (Weller & Wyler, 1992; Korol et
al. 1994; Ronin et al. 1995). The conclusions we drew
for such situations earlier, and confirmed here for
interval mapping, seem to contradict the intuitive
expectations. Indeed, consider a simple example of a
QTL segregating in a backcross progeny. One can com-
pare two situations, <j\& = <x̂  = 1 and <r|a =1= cr|a = 1.
Clearly, if the last inequality is a2

A& < a2^, and the
inequality of the variances is allowed by the model,
then an increase in resolution is expected (compared
to the situation with a2

Aa = a2^ = 1) and this definitely
will be the case. But what will be the consequences of

an opposite situation, <rA = 1, if the variance
effect is included in the model? Clearly, the situations
°Ha < ^L = 1 a n d "la > ""L = 1 a r e non-equivalent:
in the first one the relative distance of the means of the
QTL groups is larger and in the second one smaller
than in case of cr̂ a = a2^ = 1. We found that if the
effect of the putative QTL on trait variance is large,
then allowing for er* a # o^ in the model increases the
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Table 2. LOD score analysis of 12 models specifying mode of action of a putative QT locus (interval umc36a-sel of the
chromosome 2) affecting sucrose content in dry kernels of sweet corn. The most suitable marginal models (M2 and M1) as
well as the best final model (Mg) are boxed.

Assumption aAA * aAB * aBB aAA aAB aaAA AB aBB aAA ~ aAB * aBB

Ma

aAA * aAB aBB

AA
AB
BB

No constraints
r
LOD
*2(D.F

AA
AB
BB

Dominant A — -
r
LOD
*2(D.F

Mean a
35-7 10 8
38-4 7-4
57-4 14-4

0080
17-74

.) 81-7(5)

M 2

Mean a
380 114
380 7-3
57-3 174

0076
17-41

.) 80-2(4)

M4

Mean a
35-4 118
39-6 118
551 118

0090
9-30

42-8(3)

M5

Mean a
38-4 11-8
38-4 118
55-6 118

0086
8-69

40-0(2)

M7

Mean a
34-9 8-3
38-7 8-3
57-4 17-5

0077
16-81
77-4(4)

M8

Mean a
37-6 8-5
37-6 8-5
57-4 17-4

0078
15-98
73-6(3)

Mean a
350 8-3
39-9 12-7
54-7 12-7

0088
10-61
48-8(4)

Mn

Mean a
37-9 8-9
37-9 12-6
551 12 6

0083
9-38

43-2(3)

Af,12

AA
AB
BB

r
LOD
*2(D.F.

Mean a
35-9 111
391 7-5
391 25-2

0076
11-71

) 53-9(4)

Mean a
35-1 13-2
43-7 13 2
43-7 13 2

0078
2-37

10-9(3)

Mean a
34-8 8-4
39-7 8-4
39-7 24-9

0075
1102
50-8(3)

Mean a
350 81
43-8 14-3
43-8 14-3

0074
4-90

22-6(3)

005
Recombination fraction

010

Fig. 2. Comparison of several models specifying the mode
of action of a QTL affecting sucrose content in dry
kernels. The log-likelihood test and the estimation
procedure were applied to the most distal available
interval (umc36a-se/) of the chromosome 2. For the
description of the models see Table 2.

resolution also in the case a\& > cr^ = 1, as compared

These results are in agreement with our previously
suggested explanation of an analogous effect of non-

equal variances cr|a 4= <r\& in single marker analysis
(Korole?a/. 1994). It employs a notion of'discrepancy
of the QT locus group distributions', D(faa(x),fAa(x)),
as a function of d = xAa — xaa and <r\J(j\a. We found
that both D(faa(x),fAa(x)) and the resolution power
may grow not only with increasing d = xAa — xaa

(which is quite expected), but also with increasing
^L/^L' provided d is relatively small. As one could
easily see from Fig. 1B, for any large enough a =
crAa/aaa > 1, a range of values S = d/a^ could be
found, so that within this range the power of the test
is higher than for the corresponding case with a — 1
(in spite of the increased number of parameters). The
last fact may help to understand better the seemingly
paradoxical behaviour of the resolution power as a
function of a = <rAa/'a\a. The putative QT locus could
affect either the mean value of the trait x or its
variance, or both. Thus, even if d « 0, one could try to
identify the effect of a— > A substitution on the trait
variance. It is natural to expect that with small d the
resolution should grow with increasing effect of the
locus Ala on the trait variance, i.e. with increased
deviation of a from unity, e.g. due to increase of crAa

given fixed craa.
Using sweet corn data on sucrose content in dry
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kernels, we demonstrated the possibility of extracting
important biological information concerning the mode
of QTL effect on trait mean and variance. In particular,
the conducted log-likelihood tests and obtained
parameter estimates show that the allele enhancing
the trait is recessive over the opposite allele sim-
ultaneously for the mean value and variance. In spite
of the necessity to evaluate an increased number of
parameters, the more correctly specified model allowed
us to achieve a serious increase in the power of the test
and better precision of the resulting estimates.

It is likewise important that variance effect of QTLs
may be of primary biological interest and the target of
mapping efforts (Zhuchenko et al. 1979; Korol et al.
1981, 1994; Weller & Wyler, 1992). Of special interest
may be variance effects of loci involved in control of
fitness related quantitative traits in natural popu-
lations, like seed dormancy, or flowering time. Clearly,
this aspect might be very important in supporting
climatic adaptive radiation into increasingly hostile
and unpredictive condition.
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partly supported by the Israeli Ministry of Science (grant
No. 3675-1-91), the Institut Alain de Rothschild and the
Wolfson Family Charitable Trust, to which we express our
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