Study of the Molybdenum Oxide Rods Sulfidation Process

C. Ornelas^{1,3}*, K.G. Guerrero-Hernández², J. Lara-Romero¹, C. Leyva-Porras³ and F. Paraguay-Delgado³.

- ^{1.} Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia Mich., 58000, México.
- ²Área Electromecánica industrial, Universidad Tecnológica de Tulancingo, Camino a Ahuehuetitla 301, C. Las Presas, C.P. 43642, Tulancingo, Hgo, México
- ^{3.} Centro de Investigación en Materiales Avanzados SC (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes No.120, C.P. 31136, Chihuahua, Chih., México.
- * Corresponding author: carlos.ornelas@cimav.edu.mx

Molybdenum sulfide (MoS₂) is widely used as a catalyst, semiconductor, and tribology. MoS₂ has a laminar crystalline structure with Van der Waals forces between S-Mo-S layers in (002) direction. Different molybdenum compounds synthesis methods and morphologies have been reported [1, 2]. Some of these get molybdenum morphologies as oxides, following sulfidation process to obtain MoS₂ [1]. The stability of oxide structures and the formation of intermediate suboxides hinder the sulfidation process of the material [3]. Different conditions were studied to achieve complete molybdenum sulfidation.

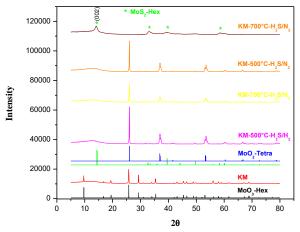
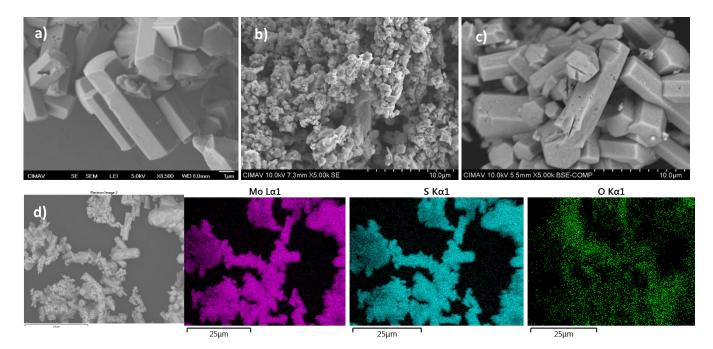

Molybdenum oxide (MoO3) was synthesized by the microwave-assisted hydrothermal method (MAHM) previously reported by Paraguay-Delgado et al [4]. To synthesize MoO₃, an aqueous solution of ammonium heptamolybdate 0.3 M was heated in NAHM at 200°C and 41 bar for 20 minutes. To obtain MoS₂, the MoO₃ was treated in a tubular furnace in the sulfur atmosphere. Sulfidation conditions like heating rate, temperature, atmosphere and time of treatment were adjusted to obtain complete MoS₂. The materials were characterized by TGA-DTA, XRD, SEM, EDS and HRTEM techniques.

Figure 1 shows the XRD of KC obtained by NAHM and MoO₃ after sulfidation process. The MAHM synthesis gives a hexagonal MoO₃ and no other phases were detected. Figure 2 a) shows the SEM images of KC, which present hexagonal rod morphology with 11.9 μm long and 3.3 μm diameter averages. Traditionally sulfidation conditions (KM-500°C-H₂S/H₂) resulted in low sulfurized molybdenum oxide with 7.4% of MoS₂ according to EDS analyses, high-temperature sulfidation (700°C) in the same conditions (KM-700°C-H₂S/H₂) give just 26.6% of MoS₂. According to XRD traditionally synthesis at 500°C and 700°C samples have phase change to MoO₂ (figure 2), complete reduction of MoO₃ to MoO₂ was done. Complete sulfuración was achieved at 700°C with H₂S/N₂ flow (KM-700- H₂S/H₂) showed in figure 2 d).


References:

- [1] C. Ornelas, F. Paraguay-Delgado and J. Lara-Romero, J. Mater. Res. Technol 4 (2019), p. 3672–3680
- [2] P. Kumar, et al, J. Alloys Compd., 671 (2016), p. 440–445.
- [3] T. Leisegang, et al, Cryst. Res. Technol. 40 1–2 (2005), p. 95–105.

[4] M. Santos-Beltran, et al, J Mater Sci: Mater Electron 28, I 3 (2017), p. 2935-2948

Figure 1. Molybdenum oxide X-ray diffraction.

Figure 2. SEM micrographs of a) KM b) KM-700°C-H₂S/H₂ c) KM-700°C-H₂S/N₂ and d) KM-700°C-H₂S/N₂ elemental mapping.