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RADII AND THE SAUSAGE CONJECTURE 

KÂROLY BÔRÔCZKY, JR. AND MARTIN HENK 

ABSTRACT. In 1975, L. Fejes Toth conjectured that in Ed, d > 5, the sausage ar
rangement is denser than any other packing of « unit balls. This has been known if the 
convex hull Cn of the centers has low dimension. In this paper, we settle the case when 
the inner w-radius of Cn is at least 0(\nd/m). In addition, we consider the extremal 
properties of finite ballpackings with respect to various intrinsic volumes. 

1. Introduction. In 1975, L. Fejes Toth conjectured (cf. [9]) that the densest pack
ing of n > 2 unit balls in Ed, d > 5, is the sausage arrangement; namely the centers are 
collinear. The conjecture is still open in any dimensions, d > 5, but numerous partial 
results have been obtained. 

Let Bd the unit ball in Ed with volume KJ. Its boundary is the unit sphere Sd~[. The 
symbol Cn always denotes the convex hull of the centers of n unit balls which form a 
packing. Let *}„ be the family of these Cn in Ed. Observe that the segment^ of length 
2(n — 1) is in 3rd. The above mentioned Sausage Conjecture states that for d > 5 and 

(1) V(Sn + Bd)<V(Cn+Bd) 

with equality if and only if Cn = Sn. 
Denote by 9(f the family of convex, compact sets. Let K G %? and 1 <m<d. The 

inner w-radius rm(K) ofK is the radius of the largest m-dimensional ball contained in K. 
The outer m-radius Rm(K) of AT is the minimal circumradius of a (d — m + l)-dimensional 
projection of K. Note that r(K) = rd(K) is the inradius, r\(K) is half of the diameter, 
R(K) — R\(K) is the circumradius and Rd(K) is half of the width of K. In Section 2, we 
review the basic properties of the inner and outer radii. 

Define the function 

*Kd) = 
min{</, 10} if3 <d< U 

l [•£(</- 1)] + 1 ifrf> 19. 

(1) has been verified if either Cn is not too far from being a segment (cf. [3], [4] and 
[16]); namely, 

. d- 1 
dimC„ < i)(d) and R2(C„) < \\ -—-—— 

\d — 1 +Z7T 
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SAUSAGE CONJECTURE 157 

or if Cn is almost a ball (cf. [8]); namely, 

R(Cn) 

V2 
+ A / 2 - 1 <r(Cn) 

for large d. 
Letd>5 and define ip(d) = \p(d) if d ^ 18, and </?( 18) = 11. Note that ^ ( C ) = 0 

implies the Sausage Inequality. We verify the Sausage Conjecture if Cn is not too close 
to a segment; namely, if 

rm(C„) > a(d, m) 

where a(d,m) is finite and decreasing in m for m > min{<^(d),5 \nd}. We prove this 
statement in Section 3 (see Theorem 3.1 and its corollary). Actually, for d = 18, 
no(Ci) = 0 already yields (1) but our method is not able to handle the case (d,m) = 
(18,10). 

The intrinsic volumes Vj(K) ofKe %?', i = 0 , . . . , d, are defined via the formula 

V(K + \Bd) = J2 X^Kd-iVtiK) 
i=0 

of Steiner where A > 0. Note that Vd(K) = V(K) and 2 Vd- \ (K) is the surface area of A". In 
Section 4, we investigate the problem whether some 'sausage properties' hold for specific 
intrinsic volumes; that is, what conditions on dim Cn ensure that Vi(Sn+Bd) < Vi(Cn +Bd) 
forCn£fn

d. 

2. The outer and inner radii. The inner and outer radii have been long considered 
by approximation theorists under the names Berstein and Kolgomorov widths, respec
tively (see [15]). Recently they have attracted more attention from the point of view of 
convex geometry (see [2] and [11]). The work [13] is a systematic study of various no
tions of radii. One of the classical results about the inradius is due to Steinhagen (cf. [7]). 

THEOREM 2.1 (STEINHAGEN). Ford > 2 andK e 9(f> 

\ J*Lrd(K) if dis even 
Rd(K) <\VpdK J J 

[ V drd(K) ifd is odd. 

The paper [17] of S. V. Pukhov contains the following fundamental theorem: 

THEOREM 2.2 (PUKHOV). Letm= 1 , . . . , d and K e %?. Then 
i) rm(K) < Rm(K) < (m + \)rm(K);_ 

2) Rm(K) < yi^/minlm,d-^m+X}rm(K) ifK = -K. 

Actually instead of ii), he proved that if K = — K then Rm(K) < ^y/mrm(K). This 
inequality yields ii) since (cf [11]) if intA^ ^ 0 then 

(2) Rd„m+{(K°) - rm(K) = I 
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where K° is the polar of K. 
The given estimates of this theorem are almost best possible. Consider the regular 

crosspolytope ofOd = conv{±ei,. . . , ± ^ } , where e\,... ,ed form an orthonormal basis 
for Ed. Then it is well-known (cf. [17]) that 

(3) rm(&)=^- and Rm(&) = JLJ!L±1 m 
^m N a 

This shows that the inequality ii) of Theorem 2.2 can not be improved up to a constant. 
Let us remark that the known proofs of (3) use lengthy arguments which yield the radii of 
some more general crosspolytopes. At the end of Section 1 we give a shorter elementary 
proof. 

To show that also inequality i) is amost sharp, extend our basis into an orthonormal ba-
sisei , . . . ,ed+\ of Ed+l. Pukhov deduced for the regular simplex Td = conv{^, . . . ,dd+\} 
that 

(4) tf)^^,^1): d-m+ 1 

Now, assume that d + 1 = m • n for an integer n > 2. Let A = aff{xi,..., xm}, where 

Xi — 

n 
for / = 1, . . . , m. Then A and its orthogonal complement A' in aff {e\,..., ed+\}, respec
tively, show that we have inequality in (4) for R^m+2(T

d) and Rm(Td). In other words, 
equality holds in (4) if either mord — m + 2 divides d + 1. With respect to the inner radii, 
K. Ball has established quite recently (cf. [2]) that 

(5) r^V) = rm(Tm ) = l 

y/m(m+ 1) 

Combining (4) and (5) shows that the estimate of inequality i) is best possible up to a 
constant if m < 7 • d for a fixed 7 E (0,1). 

PROPOSITION 2.3. For 1 < w < d we have 

rm(&)=-±- and Rm(&)-• 
d — m+ 1 

PROOF. We assume d > 2. Let L be an arbitrary (d — m + 1 )-dimensional linear 
subspace with orthonormal basis u\,..., Ud~m+\. For a subset P C EJ let p(P) be the 
orthogonal projection of P onto L. 

Obviously, we have ^(p(O^)) = max{|p(e/)| : \ < i < d} and p(ei) = 
d—m £/-r+ 1(e/,w>y .Thus 

(6) E l ^ ) l 2 = E E te."y)2 - E H = d-m + i, 
/=! /=i y=i y=i 
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which yields R(p(Od)) > y[(d^nT+T)]~d. By the arbitrariness o f ! we get /?m(6^) > 

Ji^-mT^Jd. 
Now assume R ^ ) = R(p(Od)) = \p(e{)\ > ^{d^m+\)Jd and \p(ex)\ > 

\p(e2)\. For a G [0,7r/2] consider the crosspolytopes with vertices ±e\(a), ±e2(ûr), 

d=^3,..., ± ^ with ei (a) = ^i cos a + 2̂ sin a and ^ ( a ) = —ei sin cc + e2 cos a. Note 

that |p(ei(a))| + Ip(e2(<*))| = |p(^0|2 + |pfe)|2 and the function g(a) = Ip(ei(a0)| — 

|p(^2(^))| is continuous with g(0) > 0 andg(7r/2) < 0. Thus there exists a /3 such that 

|P(^I(/^)) | — IP (̂ 2 (/?))| < | p(^i) |, and this contradicts the minimal property of the plane 

L. ThusRmiOi) = ^jtf^m^Yd. 
Let a\,..., «2̂ / be the vertices of the polar cube Wd ofO^. Again, we hweR(p(Wd)) = 

max{|p(a/)| : 1 < / < 2d}. Observe, that any vertex at is in the form (dte\,...,ej). 
With the same method as above we deduce R(p(Wd)) > y/d-m+l and so Rm(Wd) > 
\Jd — m+\. On the other hand, Wd contains a (d — m + 1 )-dimensional cube with edge 
length 2 and thus Rm(Wd) = \/d-m+\. Together with (2), we get r^rf) = \/y/m. m 

3. The fatness of the sausage. Recall from the introduction that 

fmin{d,10} i f 5 < r f < 1 7 
<Kd)= I 11 ifd= 18 

[ [£ (< / -1 ) ] + 1 ifd> 19. 

THEOREM 3.1. Let d > 5, mm{(p(d),5\nd} < m < d and Cn <E J*. Then there 
exists a function a(d,m) such that rm(Cn) > a(d,m) implies V(Sn + Bd) < V(Cn + Bd\ 
For d > 31, one may choose 

3(x/2-H)/ hWxlnJ 
a(d, m) — •=— 1+33 

Jl V m J m 

In order to prove Theorem 3.1, we need some preparation. We frequently use the 
estimate {cf. [4]) 

(7) 
d ^ Kd-\ 

Kd 

LEMMA 3.2. For C e 9<id and\ <m <d} 

N 2ir Kd N 27T 

rf+1 

V rm(Q + 1 ; 

PROOF. We may assume that Ew is embedded into E^ and rBm C C for r — rm(C). 
lfd = m then 

C+VÏBd = C + Bd + (y/2- \)Bd C C + Bd+ * (C + Bd) = rllll(C + Bd) 
r+ 1 r + 1 
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yields the lemma, and hence assume that m <d—\. Denote by L the linear (d—m)-space 
orthogonal to Ew, and for x G Ed, define T(x) = ^^y+^/ïz where y and z, respectively, 
are the projections of x onto Ew and L. We prove that for any/? G Em, 

(8) ^_ M ((p + L) H (C + A / 2 ^ ) ) < Vd-m ((p+L)n T(C + Bd)). 

By Fubini's theorem this yields that 

V{C+\flBd) < V(T{C + Bd)) = f r m ( y }
2) V2d~mV(C + Bd). 

So consider a line / passing through/? G Em and perpendicular to Ew, and assume that 
/ intersects C + y/lBd in conv{jti,x2}. There exists yt G C such that xt G .y/ + 2?rf, and 
denote by z/ the projection of yi onto /. 

Set af = J-y= • a for any point or subset a of E^ and observe that T(l') — /, z\ G /' 

and j>- G C. Denote by M, the point of conv {y-,z-} D C with minimal distance to /'. The 

m-dimensional bally- + ^j^rBm is contained in Cbecause rBm and j / are in C, and that 

diyWi) = ^ i y ^ i l Since 

r + 1 (y/2-\)r 1 
= f - 7=- < —=t 

for 0 < t < y/2, we have d(w/,z-) < -4=rf(y/,z/) < 1, and hence w/ + Bd intersects /'. Let 

v/ be the point of (w/ + bdBd) n /' so that z'l5 z2 G conv{vi, v2}. As d(v/,zz') > 4=d(x/,z/) 

follows by </(«,-, zf') < ^d(yi,Zi), andd(z\,z'2) = ^^rf(zi,z2) > ^d(zi ,z2) , we deduce 

that d(jti,x2) < ûf(r(vi,), T(y2)\ Finally, it also follows that 

max{d(/?,xi),d(p,x2)} < max{d(p,T(vu)),d(p,T(v2))}. 

Now with the help of spherical coordinates, we may write 

1 r rocii^) 
Vd_m((p + L)n(C+ VlBdj) = -[ r \ \p\d-m~] dpdcu and 

Vd-m((p + L)nnC + Bdj) = \ £__, 1^ \p\d-m~] dpdoj 

for suitable oci(u) and/3/(u;) such that a\(cJ) < a2(cj), a\(—oJ) = —a2(cj) and a2(—CJ) = 
—QTI (a;), and similar properties hold for (3i(u). Let LU G Sd~m~l. The considerations above 
show that a2(cj) — cc\{uj) < /32(CJ) — (3\(uS) and 

maxl la .^UaKo;) !} < max{|/32(^)|, |/3i(o;)|}. 

We deduce that 

which in turn yields (8). • 
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According to Blichfeldt's classical formula (see [12] p. 388 or [5]), 

V(Cn + V2B«)>^<-V2d-n. 
a + 2 

Combining this with Lemma 3.2 yields 

I rm(C„) + V2 J d + 2 

PROOF OF THEOREM 3.1. The sausage S„ + Bd is contained in a cylinder of height 
2«, and hence • 

(10) V(Sn+BJ)<2Kd-i-n. 

Let d>2. Note that for any e > 0 there exists a p(e) such that if r(Cn) > p{e) then 

(11) V(CH+l?)>^-e9 

where 6j is the packing density (see [5]). 
Now let d — 5, 6, and hence m — d. Since f- < 2nd-\ according to the table in [6], 

p. 15, (10) and (11) yield the existence of a(d,m). 
So let d > 7 and r — rm{Cn). By (9) and (10), the Sausage Inequality holds if 

(V2r+V2X"2Kd 

which is equivalent to 

(12) (^£)m >^(d + 2). 

Note that the function v2r+jL2 is monotonically increasing, and (12) has a non-negative 

solution if and only if \fl > ^(d+2). This inequality does not hold if (d,m) = (5,5), 
(6,6) or (18,10). 

Let d — 7 , . . . , 30. Then the condition on m becomes m > (f(d) and (12) has some 
non-negative solution. Table 1 contains the minimal r satisfying (12) with m — (f(d), 
and the corresponding lower bound for R^^Cn) which we calculated via Theorems 2.1 
and 2.2. That minimal r can be chosen as a[d, ip{d)} = • • • = oc{d, d). In the case d — 6, 
an improvement on Blichfeldt's method by Rankin {cf. [18]) yields some lower bound 
for re(Cn) which is also contained in Table 1. 

Let d > 31, and hence 5 In d < (f(d). The inequality (7) yields that ^(d+2) < d3/2, 
and so set r to be the solution of the equation 
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162 K. BÔRÔCZKY, JR. AND M. HENK 

With the help of r = ( ~ ^ r , (13) can be rewritten in the form 

3 ln</ 

(14) \+T = e î - . 

Now \nd/m < 1/5 yields 1 + T < e3/10 < \fl, and so (13) has a positive solution 

(15) r=(2 + y/2yr-—±r—. 
i - ( v 2 + \y 

In order to give an upper bound for r, we used the estimates 

é - 1 < (\ + e ~~\~X t)t and — L _ < 1 + —L_ t 

where 0 < t < v < 1. Since \nd/m < 1/5, via (14) and (15) we arrived at 

(16) , < 3 ( ^ - + 1 ) ( l + 3 2 . 5 3 0 5 ^ ) ^ 

which completes the proof of the theorem. • 
By Theorems 2.1, 2.2 and using the estimate (16) we deduce 

COROLLARY 3.3. Letd > 5, min{(f(d), 5 In d} < m < d and Cn e 7d. Then there 
is a P(d, m) such that Rm(Cn) > p(d, m) yields V(Sn + Bd) < V(Cn + Bd\ For d> 31, we 
may choose 

i) / ? ( ^ , m ) = ^ ^ ( l + 3 5 ^ ) l n ^ ; 

Hi) (3{d,m) = 2 ^ ( 1 + 3 3 ^ ) ^ | if dim C„ =m> <p(d). 

Observe that if m is at least, say (In df, then the lower bounds in ii) and iii) of Corol
lary 3.3 approach zero as d tends to infinity. 

4. Some additional sausage properties. Let 2 < k < i < d. We say that the 
sausage property SP(d, /, k) holds if 

for each Cn G ^ f with dim Cn < k. The Sausage Conjecture states that SP(d, d, d) holds 
for d > 5. This notion was introduced in [16], and here we add some new observations 
to the ones in [16]. First we give a complete description of the case k — 2. After this we 
prove that SP(J, /, i) does not hold for 2 < / < ^d (see Theorem 4.2), and finally we deal 
with the case i = d — 1. Note that 

( 17) Kd-i Vt{K + Bd) = g K ~J . ) Kd-j Vj{K) 
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THEOREM 4.1. For d > 3, SP(rf,/,2) holds if and only ifi > 0(d) where 0(d) = 
ft*-1

 KM + \ 
y/3nd_2 

REMARK. (7) yields that 9(d) ~ \[^\fd and 9(d) > yf^y/d. 

PROOF. Let Cn G fjf with dim C„ < 2. According to the inequality of Oler (cf. [14] 
and [10]), 

(18) l + \vl(C„)+^=V2(C„)>n. 

On the other hand, with the help of (17), one can write Vi(S„ + Bd) < Vt(Cn + Bd) as 

(19) ' + \V^+W^W^n-

Denote ^d-\)t\ b y A^d^ - 575 t h e n (19) h o l d s b y ^18) ' S o l e t A(d>*) K 57? a n d 

« > 3. Assume that Cn is the trapezoid such that the sides with lengths 2[(n — 2)/2] and 
2[(n — l)/2] are parallel with distance y/3 apart, and the other sides have length 2. Then 
C G ^ f a n d 

l + ^ i ( Q ) + ^ F 2 ( C , ) - « , 

which in turn yields that (19) does not hold. 
Since ^ ^ is either rational or transcendental, A(dJ) ^ - U . Finally, observe that 

y4(rf, 0 > y j is equivalent to / > ( ^ ^ ~ ' + 1. • 

Let C„ G J„3. According to [3] (see ii) in Section 3), we have V(Sn +B4) < V(Cn+B4) 
in E4. Expanding it with the help of (17) and using similar considerations as in the proof 
of Theorem 4.1 show that SP(</,/,3) holds if d > 4 and / > 3{d^~] + 1 ~ |\/27rrf. 

THEOREM 4.2. SP(d, /, /) does not hold ifd > 4 and 2 < i < \d. 

PROOF. Let 2 < / < m < d. Note that as n tends to infinity, 

(20) Vi{Sn+B>) = i d ) ^ + i d ) ^2(n - 1) ~ ld~ l) *±L • „. 
\d - ij Kd-i \d - l J Kd_i \d~1} Kd-i 

By the definition of the packing density, there exists a sequence {Cn}, Cn G ^ with 
dim Cn = / such that as n tends to infinity, Vi(Cn + Z^) ~ ^ . Combining this with (11) 
and (20) yields that if 

_, (d-\\ 2nd-\ 
(21) <V < , — — then SP(rf, /, /) does not hold. 

\ d - l j KiKd-i 

Set B(d, i) = (̂ "J.) | ^ - . It can be written in the form 

B(d A = OlzL. 1. nflr(iQr(J(</-i)) 
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164 K. BOROCZKY, JR. AND M. HENK 

For t > 1, we have Stirling's formula (see [1]) 

T(0 = Vïïr'f-ï -e 

where 0 < 9 < 1. This and (7) yield that 

dd>2 

B(d Î) > — - e-M+h+fr 

Recall that i < \d. By Theorem 4.1, we may assume / > y/^f \/d, and hence also d > 10. 
Observe that 

(rf-i)(^-o/2/«/2 ^V d-i) i) - ' 

On the other hand, è^x < 2 '"1 according to Minkowski's theorem (see [12]). Now \d > 

i > yfëVd and d > 10 yield 6^ ' < B(d, /), and hence SP(rf, /, /) does not hold by (21 ). • 

Finally, we investigate the property SP(d, d — 1, &), k = 2 , . . . , d — 1. 

PROPOSITION 4.3. SP(d, rf — 1, £) holds if either d > 5 and k < mm{d - 3,9} or 
d > 21 awdA; < -~(rf—3). Oft the other hand, SP(d,d— l,d— I) does not hold if d < 10. 

PROOF. Let dimC„ < d - 2 and Bd~2 be a unit (rf - 2)-ball such that C„, Sn C 
affBd-2. Then we have ^ _ i ( 5 w + ^ ) < ^/_i(C„ + £^) if and only if Vd-2(Sn + Bd~2) < 
Vd-i(Cn + Bd~2) (cf [16]). Hence the first statement follows by [3] and [4] (see i) in 
Section 3). 

Using the table in [6] p. 15, (21 ) yields that S?(d, d-l9d-l) does not hold ifd< 10. • 

THEOREM 4.4. Letd > \4andmin{d- l,6\nd} < m < d - \. If 

rm(Cn) > 2(2+ V2){l+0(^))^ 
V V m J J m 

foraCn e <ftX then Vd-\(Sn + Bd) < Vd.{(C„ + Bd). 

PROOF. Let d = 14 and Cn e f^. Note that by (11) and (17), if ru(Cn) is large 
then V\T,(Cn + Bd) is close to w/c 13/^13, and hence greater than V\i(S„ + Bd) by 20. Here 
we used the table in [6] p. 15 to estimate 613. 

Now assume d > 15. Let Bd~l be a unit (d - l)-ball such that C„, S„ C affBd~l and 
r = rm(Cn). Note that by (9), 

Vd^(Cn+Bd) > Vd^(Cn+Bd-]) > (^L 
V r + 

\/2r+ \fl\m2^d. 
y/2 J d+\ 

1 n. 

On the other hand, (20) and (7) yield that Vd-{(S„ + Bd) < (d - l ) /^_i • n. Thus it is 
sufficient to consider the equation 
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d 

~~6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

<l> = <t>(d) 

6 
7 
8 
9 
10 
10 
10 
10 
10 
10 
10 
10 
11 
11 
12 
12 
13 
13 
14 
15 
15 
16 
16 
17 
17 

lower bound for 

H 1 
1690.3813 

19.6265 
9.2130 
6.0494 
4.5203 
5.7206 
7.3818 
9.8417 
13.8717 
21.7058 
43.6246 

462.5658 
15.2755 
21.4220 
9.2274 
10.9718 
6.6048 
7.3840 
5.1437 
3.9635 
4.2139 
3.3995 
3.5710 
2.9767 
3.1003 

R<f> 

4183.4804 
51.9268 
26.2208 
18.1483 
14.3541 
62.9273 
81.2007 
108.2589 
152.5895 
238.7646 
479.8715 
5088.2239 
183.3061 
257.0645 
119.9569 
142.6342 
92.4679 
103.3760 
77.1558 
63.4168 
67.4236 
57.7916 
60.7080 
53.5810 
55.8059 

TABLE I 

b ^ r n 7T7 •«=«*-»>*-'• «. 
which is equivalent to 

(>/2r+y/2\m _ d2-\ 

I r+^2 J 2 " 
Since A/2 > (d2 — 1)/ 2 because of the conditions m > min{d — 1,6 In d) and d > 15, 
this equation has a non-negative solution. The asymptotic behavior of the solution can 
be derived as it was done in Theorem 3.1, which in turn yields the required lower bound 
for rm(Cn). m 

We note that the analogue of Corollary 3.3 also holds. For example, Rm(Cn) > 
2(2 + V ^ l + O ( ^ ) ) Ind yields Vd_x(S„ + Bd) < Vd^(Cn + Bd). The observations 
suggest that SP(d, d — \,d— 1) holds if d is large enough. 
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