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In this work we focus on expected flow in porous formations with highly conductive
isolated fractures, which are of non-negligible length compared with the scales of interest.
Accordingly, the definition of a representative elementary volume (REV) for flow and
transport predictions may not be possible. Recently, a non-local kernel-based theory for
flow in such formations has been proposed. There, fracture properties like their expected
pressure are represented as field quantities. Unlike existing models, where fractures are
assumed to be small compared with the scale of interest, a non-local kernel function is used
to quantify the expected flow transfer between a point in the fracture domain and a poten-
tially distant point in the matrix continuum. The transfer coefficient implied by the kernel
is a function of the fracture characteristics that are in turn captured statistically. So far the
model has successfully been applied for statistically homogeneous cases. In the present
work we demonstrate the applicability for heterogeneous cases with spatially varying
fracture statistics. Moreover, a scaling law is presented that relates the transfer coefficient
to the fracture characteristics. Test cases involving discontinuously and continuously
varying fracture statistics are presented, and the validity of the scaling law is demonstrated.

Key words: porous media

1. Introduction
Flow and transport simulations of fractured formations are relevant in many applications
such as nuclear waste deposition (Hartley & Joyce 2013; Joyce et al. 2014), CO2
subsurface storage (Shao et al. 2021, 2022), enhanced geothermal systems (Olasolo
et al. 2016), groundwater management (Kitanidis 2015) and oil recovery processes
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(Srinivasan et al. 2021). With fractures often representing highly conductive flow
conduits, they have a significant effect on flow and transport in natural porous media.
Moreover, fractures can cover a wide range of scales starting at the grain level with
microfractures (Anders, Laubach & Scholz 2014). These fractures merge and form
increasingly larger structures leading to a hierarchy that may span several orders of
magnitude (Bonnet et al. 2001).

Different approaches have been put forward to simulate flow and transport in fractured
formations. On one hand, there are methods that resolve fractures with specialised fracture-
conforming finite-element (Juanes, Samper & Molinero 2002) or finite-volume grids
(Ding, Basquet & Bourbiaux 2006; Karimi-Fard & Durlofsky 2016) or combinations
thereof (Matthäi et al. 2007). While some of these methods neglect matrix flow, which led
to the discrete fracture network (DFN) method (Hyman et al. 2015; Huang et al. 2021), the
discrete fracture matrix (DFM) method accounts for it; see e.g. (Viswanathan et al. 2022,
figure 8). Depending on the level of resolution, DFM methods may resolve all fractures
from a wide range of scales, or only large fractures while homogenising small ones and
treating them as part of the matrix continuum. The resolved fractures are either presented
as arrays of grid elements or reduced to lower-dimensional manifolds (Lei, Latham &
Tsang 2017). To reduce the geometrical complexity of the finite element/volume grids,
methods have been devised that embed fractures in Cartesian meshes (Lee, Lough &
Jensen 2001). A popular example from this group of methods is the embedded discrete
fracture model (EDFM) (Li & Lee 2008; Hajibeygi, Karvounis & Jenny 2011; Formaggia
et al. 2014; Moinfar et al. 2014; Schwenck et al. 2015; Flemisch, Fumagalli & Scotti 2016;
Jiang & Younis 2017). While the EDFM adopts non-conforming meshes and reduces
the complexity in this regard, it comes at the expense of a more complex fracture-
matrix coupling formulation (Wong et al. 2021). However, since in DFN, DFM and
EDFM simulations the fractures need to be explicitly resolved, the high accuracy of these
methods comes at a price that becomes prohibitive for formations with wide fracture length
distributions and/or high fracture densities (Berre, Doster & Keilegavlen 2019, figure 4 or
Joyce et al. 2014, p. 1240). Viswanathan et al. (2022) state for example in their recent
review: ‘. . . even the latest and cutting-edge DFN/DFM simulators can only resolve tens
of thousands of fractures, not the millions present at field sites, although it can be argued
that fracture locations will rarely be known at a field site at all relevant length scales’.

As an alternative to fracture-resolving methods, approaches have been devised
that combine the flow transmissibility of fracture networks (and the matrix) into
effective (tensor) permeabilities. These approaches are suitable for small, densely located
(connected) fractures and are referred to as effective porous media (EPM) models. They
rely on analytical (Oda 1985) or numerical methods (e.g. Liu et al. 2016; Romano et al.
2020) for the extraction of effective permeabilities. However, given the large range of
length scales that fractures typically span, homogenisation volumes – also referred to as
representative elementary volumes (REV) – may not exist for the definition of effective
permeabilities: For example, Lee et al. (2001, p. 1) write ‘. . ., in a naturally fractured
formation, REVs can be too large to model with sufficient detail’. Despite these challenges,
the EPM concept is widely used, since it allows for low-cost simulations of fractured
formations, which has led to several EPM-based models: Firstly, DFM methods shall
be mentioned that include a DFN description for large-scale fractures and couple it
with an EPM representation for the matrix and unresolved fractures. Furthermore, there
exist single continuum models, where matrix flow is typically neglected (e.g. Romano
et al. 2020) and multi-continua models typically referred to as multi-rate mass transfer
(MRMT) models (Haggerty & Gorelick 1995; Harvey & Gorelick 1995). The latter are a
generalisation of the dual porosity resp. mobile/immobile model. Despite the increasing
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level of refinement of these models, local effective parameters may generally not exist.
For example, Berre et al. (2019) state in their recent review ‘. . ., there is generally no
separation of length scales in fracture sizes; thus, upscaling into average properties often
results in poor model quality’.

Given the limitations of existing methods, we focus in this work on formations with
disconnected, highly conductive fractures that are of a size not much smaller than the
scale of interest (Shapiro 1987; Taylor, Pollard & Aydin 1999). Such fractures pose a
particular challenge to existing approaches and were found in experiments to induce
considerable secondary permeability (Su, Nimmo & Dragila 2003). Since corresponding
fractures typically appear in large numbers with their precise locations and characteristics
being uncertain, we rely on a statistical description to determine the fractures. More
specifically, our work is based on a non-local theory of porous media flow/transport that
accounts for large-scale flow conduits, which first has been introduced at the pore scale
(Delgoshaie et al. 2015; Jenny & Meyer 2017; Meyer & Gomolinski 2019). Later, that non-
local methodology has been adapted by Jenny (2020) for fractured formations leading to
a new non-local dual media model. This model represents isolated fractures as contracted
points with associated kernel functions that describe the expected flow exchange between
fractures and matrix. The support of the kernel functions corresponds to the physical extent
of the fractures. With the precise characteristics of the fractures being uncertain, the theory
(Jenny 2020) does not provide the flow and pressure fields of fully resolved fractured
formations but instead mean or expected flow and pressure fields that would result from
an ensemble of formations sharing the same underlying fracture statistics. Further, it
is assumed in Jenny (2020) that the expected flow exchange between the fractures and
the matrix is proportional to the expected pressure difference between the two domains
with the magnitude of the kernel function providing the proportionality factor. The latter
can be understood as a transfer coefficient that depends on the fracture statistics and the
permeability of the porous matrix.

In the previous work, this transfer coefficient has been determined empirically by
running Monte Carlo simulations (MCS) on an infinitely large domain with homogeneous
fracture statistics. More specifically, a finite-size domain with periodic boundary
conditions was used as an analogue to an infinite domain and the transfer coefficient could
be extracted from the mean flow rate in the fractures. In this work, we aim to expand
the model to account for statistical fracture distributions that are a function of space.
Thus fractures are no longer homogeneously but instead heterogeneously distributed.
Specifically, we present statistically one-dimensional cases, where the fractures are
modelled as parallel plates with a spatially non-uniform distribution. For such fracture
statistics, it is not possible to determine the transfer coefficient in the same way as periodic
boundary conditions do not allow for arbitrary fracture statistics. Through numerical
experiments using MCS, it was found, however, that the transfer coefficient at a location
in the domain depends primarily on the statistics of fractures that have their centre points
at that same location. Therefore, one can determine the transfer coefficient at an arbitrary
point by running MCS on a periodic domain with homogeneous statistics being identical
to the fractures at the point in question. In order to determine the transfer coefficient in the
entire heterogeneous domain, MCS need to be repeated for all statistical states arising in
the domain. This becomes prohibitive if the variation of these parameters is continuous.
To alleviate this problem, a scaling law for the transfer coefficient will be presented, which
allows us to determine transfer coefficients by running just two MCS and a single fracture
simulation in total. With the resulting scaling law, spatially varying fracture statistics can
be accounted for in the kernel-based model.
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The rest of this work is divided into the following sections: § 2 first introduces the
set-up of the MCS used for generating reference data. In particular, § 2.1 provides a
detailed explanation of the implementation of the reference MCS, included for the sake
of completeness (readers focusing on our new model generalisations may skip this
subsection). Then the kernel-based model proposed by Jenny (2020) is restated and the
extension to heterogeneous fracture statistics is discussed. In § 2.3 the scaling law for
the transfer coefficient is derived. In § 3.1 we compare the transfer coefficients calculated
from the scaling law with those obtained from MCS data. In §§ 3.2 and 3.3 the proposed
scaling law is applied for test cases where the fracture statistics vary discontinuously and
continuously, and we compare the results from the model with the reference MCS data.

2. Method
We consider incompressible single-phase flow through a porous medium with embedded,
isolated and highly conductive fractures. The flow is driven by a pressure gradient and the
flow governing equation reads

∂φ

∂t
− ∂

∂xi

(
ki j

μ

∂p

∂x j

)
= 0, (2.1)

where φ is the porosity of the fractured porous medium, ki j is the permeability tensor, μ is
the viscosity of the fluid and p is the pressure. Einstein summation notation is employed,
wherein repeated indices are implicitly summed over the three spatial dimensions. We
assume that the porosity is stationary and the viscosity constant, which leads to

∂

∂xi

(
ki j

∂p

∂x j

)
= 0, (2.2)

or in normalised form to
∂

∂ x̂i

(
k̂i j

∂ p̂

∂ x̂ j

)
= 0 (2.3)

and

ûi = −k̂i j
∂ p̂

∂ x̂ j
(2.4)

with

x̂ = x

lref
, k̂i j = ki j

l2
ref

, ûi = ui

uref
and p̂ = p

μuref
, (2.5)

where lref is the reference length, ρref the reference density of the fluid and uref the
reference velocity. From now on we focus on non-dimensional quantities and therefore,
for the sake of simplicity, the hat symbol in (2.3) is omitted. In this work we focus on
statistically one-dimensional scenarios, where all fractures have the same orientation. As
shown in figure 1, a Cartesian coordinate system is considered with its x-coordinate
aligned with the fracture orientation. A mean pressure gradient in the x-direction is
imposed, and the fracture statistics vary only along the x-coordinate. In the y-direction,
periodic boundary conditions are imposed, and spatial homogeneity in z-direction is
considered (no pressure change or flow in z-direction).

2.1. Monte Carlo simulation
In the MCS we consider a finite domain Ω = [0, Lx ] × [0, L y] of length Lx and height
L y with periodic boundary conditions in the y-direction. A mean pressure gradient is
1012 A25-4
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y

pl pr

xz

Figure 1. Porous medium with embedded, isolated, parallel fractures. The fractures are abstracted as line
segments, where the black dots mark the fracture centres. The x-direction of the Cartesian coordinate system is
aligned with the fracture orientation. A mean pressure gradient is imposed in the x-direction, and the fracture
statistics may vary along the x-coordinate. The pressure imposed on the left and right boundary is denoted as
pl and pr respectively. In the y-direction, periodic boundary conditions are imposed.

imposed in the x-direction. The fracture centres are randomly placed within the sampling
region Ωsampling = [−l f,max/2, Lx + l f,max/2] × [0, L y], which extends Ω at the left
and right boundaries by half the length of the longest possible fracture l f,max . This
extended sampling domain is required to account for fractures with centres lying outside of
the domain but intersecting with the domain boundaries. With the set-up being statistically
homogeneous inthe y-direction, the sampling region in the x-direction was divided into
thin slices dΩ(x) being parallel to the y–z plane. With the fracture centres being uniformly
distributed in the sampling region, the number of fractures N f (x) lying within a slice
dΩ(x) follows a binomial distribution with the probability mass function

f (N f ) =
( 1

p ρ f |dΩ|
N f

)
pN f (1 − p)

1
p ρ f |dΩ|−N f , (2.6)

where p is the probability that a randomly sampled fracture lies inside dΩ(x) in a
Bernoulli experiment, which is a freely chosen parameter and should approach zero. In
all the MCS, p was chose to be 0.1 and the slice thickness was set to |dΩ(x)| = 0.001Lx .
Note that the expected number of fractures given by (2.6) is E(N f ) = ρ f (x)|dΩ(x)| and
the variance is V(N f ) = ρ f (x)|dΩ(x)|(1 − p). Placing fractures in this way, rather than
distributing ρ f (x)|dΩ(x)| fractures within dΩ(x), is important in order to account for
the fact that the fracture number density ρ f (x) is the expected number of fractures per
unit volume, while the actual number varies between single realisations. For each slice
dΩ(x), we sample the number of fractures N f (x) according to (2.6). The resulting N f (x)

fractures are distributed randomly and uniformly within dΩ(x) with the extra constraint
that they do not intersect with each other.

For the numerical flow computations, i.e. to solve (2.3), a classical cell-centred finite
volume method with a uniform Cartesian nx × ny grid was used. The grid has the same
spacing in x- and y-directions, i.e. h = Lx/nx = L y/ny . The upscaled permeability tensor
in a cell is

k =
[

kx 0
0 ky

]
, (2.7)

where

kx = k f a f + km(h − a f )

h
(2.8)

and

ky = h
a f

k f
+ h − a f

km

, (2.9)
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x
y

p
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Figure 2. Realisations of two pressure fields with space-stationary fracture statistics.

if the cell is intersected by a fracture with aperture a f , and

kx = ky = km (2.10)

otherwise; see (Renard & De Marsily 1997) and (Kasap & Lake 1990). Note that k f and km
represent the fracture and matrix permeabilities, respectively, and are constants such that
k f /km � 1 (Phillips 1991). Further, we assume that a f does not vary along a fracture and
is not larger than the grid spacing h. To determine the numerical fluxes at cell interfaces,
harmonically averaged permeability values are employed, and a direct solver is employed
to solve the resulting linear system. Figure 2 shows realisations of two pressure fields with
space-stationary fracture statistics. The solution of each realisation gets partitioned into
the matrix and fracture pressure fields

p(i)
m (x, y) =

{
p(x, y) if (x, y) ∈M(i)

0 else
(2.11)

and

p(i)
f (x, y) =

{
1

|V f (x,y)|
∫

V f (x,y)
p(x, y)dV f (x, y) if (x, y) ∈F (i)

0 else,
(2.12)

respectively, and correspondingly into the matrix and fracture flow fields

u(i)
m (x, y) =

{
u(x, y) if (x, y) ∈M(i)

0 else
(2.13)

and

u(i)
f (x, y) =

{
u(x, y) if (x, y) /∈M(i)

0 else.
(2.14)

Here M(i) and F (i) are the sets of matrix points and fracture centres of the i th realisation,
and V f (x, y) denotes the volume of the fracture with its centre at (x, y). The partitioned
fields are averaged to obtain the mean fields (expectations)

p̄m(x) = p̄m(x, y) = lim
n→∞

∑n
i=1 IM(i) (x, y) p(i)

m (x, y)∑n
i=1 IM(i) (x, y)

, (2.15)

p̄ f (x) = p̄ f (x, y) = lim
n→∞

∑n
i=1 IF (i) (x) p(i)

f (x, y)∑n
i=1 IF (i) (x, y)

, (2.16)
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ūm(x) = ūm(x, y) = lim
n→∞

∑n
i=1 IM(i) (x, y)u(i)(x, y)

n
(2.17)

ū f (x) = ū f (x, y) = lim
n→∞

∑n
i=1

(
1 − IM(i) (x, y)

)
u(i)(x, y)

n
(2.18)

on the respective domains. Note that

IA(x) =
{

1 if x ∈ A
0 else

(2.19)

is an indicator function. In the numerical implementation the matrix and fracture pressures
in cell (I, J ) of realisation (i) are set to

p(i)
m (I, J ) =

{
0 if (I, J ) is intersected by a fracture
p(I, J ) else

(2.20)

and

p(i)
f (I, J ) =

{
p(I, J ) if (I, J ) is a fracture centre
0 else,

(2.21)

respectively. Note that it is assumed that the average pressure inside a fracture is
approximately equal to the pressure at its centre, which is reasonable for highly conductive
fractures (as seen for example in figure 2).

2.2. Kernel-based model
Because of the domain set-up introduced previously, the expected fracture and matrix
pressures, p̄ f (x) and p̄m(x), respectively, are functions of the x-coordinate only. Note
that by definition p̄ f (x) refers to the mean pressure of all fractures with their centres at
x from an infinitely large ensemble. We follow the approach by Jenny (2020, p. 4), that
is, the expected flow exchange between fractures with centres at x ′ and the location x in
the matrix domain is assumed to be proportional to p̄ f (x ′) − p̄m(x). As outlined in Jenny
(2020), for a domain Ω = [0, Lx ] this leads to the mass balance

0 =
∫ Lx

0
ĝ(x, x ′)

(
p̄m(x ′) − p̄ f (x)

)
dx ′

+ k̂(x, 0)
pl − p̄ f (x)

x

+ k̂(x, Lx )
pr − p̄ f (x)

Lx − x
(2.22)

in the fracture domain at location x and to the balance

0 =
∫ Lx

0
ĝ(x ′, x)

(
p̄ f (x ′) − p̄m(x)

)
dx ′

+
∫ 0

−∞
ĝ(x ′, x) (pl − p̄m(x)) dx ′

+
∫ ∞

Lx

ĝ(x ′, x) (pr − p̄m(x)) dx ′

+ ∂

∂x

(
k̄m

∂ p̄m(x)

∂x

)
(2.23)
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at point x in the matrix domain. Note that these are coupled integro-differential equations
employing the kernel functions ĝ(x, x ′) and k̂(x, x ′), where the shape of the kernel
depends on the geometry of the fractures. In this work, like in Jenny (2020, p. 11), we
adopt kernels with the top-hat shape, that is,

ĝ(x, x ′) =
{

ḡ if
∣∣x − x ′∣∣< l f

2
0 else

(2.24)

and

k̂(x, x ′) =
{

k̄ if
∣∣x − x ′∣∣< l f

2
0 else,

(2.25)

where l f is the fracture length. Flow exchange between fracture and matrix domains
is described by the first right-hand-side terms in (2.22) and (2.23); as argued, they are
linear in the pressure difference p̄ f (x ′) − p̄m(x). The second and third right-hand-side
terms in (2.22) account for direct connections of fractures centred at x with the left and
right boundaries, respectively; note that pl and pr denote the corresponding boundary
pressure values. Similarly, the second and third right-hand-side terms in (2.23) account
for boundary effects in the mean matrix mass balance. More precisely, they consider the
exchange between the matrix domain and fractures with centres outside of the domain;
note their similarity with the first term in (2.23). Finally, the last right-hand-side term
in (2.23), with the effective mean matrix permeability k̄m , accounts for Darcy-type flow
exchange between a point in the matrix domain with its immediate neighbourhood.

For statistically homogeneous cases, as in Jenny (2020, p. 13), the effective mean matrix
permeability k̄m and the kernel amplitudes k̄ and ḡ are obtained as

k̄m = (1 − ρ f l f a f )km, (2.26)

k̄ = ρ f a f k f , (2.27)

ḡ = 12 |ū∞
f |

l3
f |∇∞

x p| , (2.28)

respectively, where ∇∞
x p and ū∞

f denote mean pressure gradient and mean flow rate
through the fracture in an infinitely large domain with isolated fractures of the same
length. The scalar ḡ relates the expected flow exchange between the fractures and the
porous matrix to the expected pressure difference between the two domains and can be
understood as a transfer coefficient. It is worth pointing out that the only empirical value
required for model closure is the normalised mean volumetric flow rate (|ū∞

f |)/(|∇∞
x p|)

through the fractures in an infinitely long domain subjected to a mean pressure gradient.
In practice we resorted to a long periodic domain with an imposed pressure gradient in the
x-direction. More details about the model for homogeneous fracture statistics and about
the numerical solution algorithm can be found in Jenny (2020).

For spatially variable fracture statistics – being the focus of the present paper – the
average volume occupied by the matrix domain (quantified by the first factor in (2.26))
varies, and thus (2.26) needs to be generalised as

k̄m(x) =
(

1 −
∫ ∞

−∞
ρ f (x)a f (x)I f (x, x ′)dx ′

)
km, (2.29)
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with

I f (x, x ′) =
{

1 if
∣∣x − x ′∣∣< l f (x)

2
0 else.

(2.30)

The integral term represents the effective fracture volume fraction at point x . However, as
fractures are assumed to occupy only a small volume fraction, we typically have k̄m ≈ km .
The kernel amplitude k̄(x) can be calculated in the same way as in (2.27). Instead of
taking a constant value, it varies as the fracture statistics vary. The transfer coefficient
ḡ(x) can no longer be determined in the same way as in the statistically homogeneous
case, since a periodically repeating domain may not be compatible with arbitrarily varying
statistics. It was found, however, that at any given point x , ḡ(x) depends primarily on the
parameters of the fractures with centres at x (for evidence, please refer to § 3). One can
therefore determine the transfer coefficient g(x) for every point x according to (2.28),
which implies running MCS with long, statistically homogeneous domains and the same
fracture statistics as at point x .

2.3. Scaling law for the transfer coefficient
In order to avoid the need of many expensive MCS studies to determine the kernel
parameters for a potentially wide range of fracture statistics in the heterogeneous domains,
analytical relations respectively scaling laws shall be derived next. From dimension
analysis, it can be shown that [

ḡ
]= [

L−1
]
. (2.31)

here, L denotes the dimension of length. According to the Buckingham theorem, the
dependency of ḡ on the parameters (ρ f , l f , a f , k f , km) can be reduced to the dependency
of the following dimensionless variables

ḡl f ∼
(
ρ f l2

f

)α
(

km

l2
f

)β (
l f

a f

)γ ( k f

km

)δ

. (2.32)

α, β, γ and δ are real-valued exponents determining the influence of each dimensionless
group. As we assume that k f � km and l f � a f , the fracture permeability and the aperture
do not influence the flow exchange significantly. Thus we keep k f

km
and a f

l f
fixed here, and

(2.32) reduces to

ḡl f ∼
(
ρ f l2

f

)α
(

km

l2
f

)β

. (2.33)

According to (2.28), ḡ depends linearly on the mean flow rate ū∞
f through the fractures,

and due to the linearity of the governing equation (2.3), ū∞
f depends linearly on the

permeability, from which follows that β = 1 and

ḡl f ∼
(
ρ f l2

f

)α
(

km

l2
f

)
. (2.34)

Rearranging (2.34) leads to

ḡl3
f

km
∼
(
ρ f l2

f

)α

(2.35)
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Figure 3. Pressure fields around fractures with (a) small and (b) large relative distance between each other.
Fractures are indicated as red lines. Panel (c) shows transverse pressure profiles (blue line, case with high
fracture number density; orange, case with low fracture number density).

with α being the only scaling parameter. Note that the dimensionless geometrical parame-
ter ρ f l2

f describes the average spacing between fractures in relation to their length, and to
determine α, we consider the following thought experiment. For very small values of ρ f l2

f
in an infinitely large domain with an imposed pressure gradient ∇∞

x p, the fractures are far
apart from each other, such that the flow exchange between a single fracture and the matrix
is not influenced by other fractures. Therefore, the mean volumetric flow rate through the
fracture domain ū∞

f is simply proportional to the number of fractures in the domain, i.e.

ḡl3
f

km

(
2.28

)
= 12|ū∞

f |
km |∇∞

x p| ∼ ρ f , (2.36)

and thus α = 1 for ρ f l2
f → 0. However, as ρ f l2

f grows the fractures are packed closer to
each other. Figure 3 shows pressure profiles from solutions with high (panel (a)) and low
(panel (b)) fracture number densities, which correspond to the two limiting cases of our
scaling analysis. In figure 3(c), transverse pressure profiles across two fractures are shown:
as fractures are acting like sinks (upstream side) and sources (downstream side), the
pressures inside the fractures whose centres are downstream (upstream) of a given location
are lower (higher) than the average matrix pressure at that location. Moreover, in the limit
of high fracture number density, the transverse pressure profile tends to be linear, while in
the limit of low fracture number density the pressure distribution around a single fracture
is nearly undisturbed by neighbouring fractures. Based on this observation we assume a
piecewise linear pressure profile in the limiting case of high fracture number density. The
expected longitudinal pressure gradient in the matrix is equal to ∇∞

x p, while the average
slope within a fracture is Cλ∇∞

x p (with Cλ being the ratio between the pressure gradient
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y

lf

Ly

x

Figure 4. Fractures intersecting with a vertical line of length L y ; the expected number of intersections is
Nintersection = ρ f l f L y .

inside the fracture and the far field pressure gradient, 0 � Cλ � 1), and the expected pres-
sure field in the matrix around a fracture with its centre at (x ′, y′) can be approximated as

p̄(x, y) = p̄m(x ′) + ∇∞
x p(x − x ′)

(
Cλ + (1 − Cλ)

|y − y′|
λ

)

for x ′ − l f

2
< x < x ′ + l f

2
, y′ − λ

2
< y < y′ + λ

2
, (2.37)

where the length λ is the mean transverse distance between two fractures. As shown in
figure 4, the number of fractures that intersect with a vertical line of length L y is

Nintersection = ρ f l f L y (2.38)

and it follows that the expected distance between two fractures is

λ= L y

Nintersection
= 1

ρ f l f
. (2.39)

Recall the definition of ḡ as the transfer coefficient that relates the expected fracture-
matrix flow exchange to the expected pressure difference between two points of the
respective domains. With the pressure profile from (2.37) the expected flow from a matrix
location x to fractures with centres at x ′ is

q̄m→ f (x, x ′) = ρ f︸︷︷︸
number of fractures

km

(
lim

y→0+

∣∣∣∣∂p

∂y

∣∣∣∣+ lim
y→0−

∣∣∣∣∂p

∂y

∣∣∣∣
)

︸ ︷︷ ︸
flow rate normal to the fracture-matrix interface

= 2ρ f km∇∞
x p(1 − Cλ)

x − x ′

λ

= 2ρ2
f l f km∇∞

x p(1 − Cλ)(x − x ′). (2.40)

From (2.40), (2.22) and (2.23), definition (2.24) and by replacing ∇∞
x p with the local

approximation

∇∞
x p = p f (x ′) − pm(x)

x ′ − x
, (2.41)

one obtains

ḡ = q̄m→ f (x, x ′)
p̄m(x) − p̄ f (x ′)

= 2ρ2
f l f km(1 − Cλ), (2.42)
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or in normalised form

ḡl3
f

km
= 2(1 − Cλ)(ρ f l2

f )
2 ∼ (ρ f l2

f )
2, (2.43)

with α = 2; see (2.35). Thus to summarise, the parameter α in (2.35) takes two asymptotic
values, i.e. α → 1 for ρ f l2

f → 0 and α → 2 for ρ f l2
f → ∞, and the normalised transfer

coefficient obeys the following scaling law:

ḡl3
f

km
∼
{

ρ f l2
f ρ f l2

f → 0

(ρ f l2
f )

2 ρ f l2
f → ∞ . (2.44)

Note that for ρ f l2
f → 0 the scaling parameter can be determined from a single fracture

simulation and for ρ f l2
f → ∞ one derives it analytically, provided Cλ is known (for highly

conductive fractures Cλ→ 0).

3. Results

3.1. Validation of the scaling law
To validate the scaling law proposed in § 2.3, we performed MCS as described in § 2.1 on
a domain of size Lx × L y = 10 × 5, which is discretised into nx × ny = 1000 × 500 cells.
Periodic boundary conditions are imposed in both directions, with an enforced pressure
difference pl − pr = 1 in the x-direction. The fracture aspect ratio (l f )/(a f ) is kept at
103, the fractures and matrix permeabilities are k f = 105 and km = 1, respectively, the
fracture number density ρ f varies from 10 to 100 with stepsize 10, and the fracture
length l f varies from 0.11 to 1.01 with stepsize 0.02. For each combination of ρ f
and l f , 1000 realisations were simulated to estimate the mean volumetric flow rate ū∞

f
through the fracture domain. Note that from the mean volumetric flow rate the transfer
coefficient ḡ = (12)/(l3

f )|(ū∞
f )/(∇∞

x p)| can be calculated. Figure 5 shows the normalised
transfer coefficient ḡl3

f /km against the dimensionless parameter ρ f l2
f in log-log scale. As

expected, two asymptotes can be identified, i.e.

log

(
ḡl3

f

km

)
=
{

log(ρ f l2
f ) + C1 ρ f l2

f → 0
2log(ρ f l2

f ) + C2 ρ f l2
f → ∞,

(3.1)

which is consistent with the derived scaling law expressed by (2.44).
We assume that the transition between the two asymptotes takes the form of a

hyperbola:
AX2 + 2B XY + CY 2 + 2DX + 2EY + F = 0 (A > 0) or

Y = − B X + E

C
+
√

(B X + E)2 − (AX2 + 2DX + F)C

C
(3.2)

where X = log(ρ f l2
f ) and Y = log((ḡl3

f )/(km)). The coefficients A, B and C are
determined by the slopes of the asymptotes. To determine D, E and F , at least one
DFM simulation with a single fracture in a very large domain and one MCS study with
appropriate value of ρ f l2

f are needed. The single fracture simulation, corresponding to the
limiting case where ρ f l2

f → 0, fixes a point on the lower asymptote with slope one, and for
highly conductive fractures with Cλ→ 0 the other asymptote can be obtained analytically
as (ḡl3

f )/(km) = 2(ρ f l2
f )

2 according to (2.43). The MCS is only required for the remaining
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Figure 5. Normalised transfer coefficient (ḡl3
f )/(km) as a function of ρ f l2

f in log-log scale; red dots, MCS
data; blue curve, fitted hyperbola; black dashed lines, asymptotes log((ḡl3

f )/(km)) = log(ρ f l2
f ) + C1 and

log(ḡl3
f /km) = 2log(ρ f l2

f ) + C2.

data point with an intermediate value of ρ f l2
f . With these three values, the transfer

coefficient can be derived for any combinations of matrix permeability km , fracture
number density ρ f and fracture length l f ; we found the hyperbola coefficients to be

A = 0.620,

B = −0.465,

C = 0.310,

D = 0.677,

E = −0.364,

F = −0.080. (3.3)

Henceforth, in all the following simulations based on our non-local model, ḡ is taken from
(3.2) with the coefficients from (3.3).

3.2. Case study: discontinuous fracture statistics
In order to assess the capabilities of the outlined non-local model for spatially varying
fracture statistics, the first two test cases with discontinuous changes of the statistics in
the middle of the domain were examined. In the first test case, the fracture length is kept
constant at l f = 0.25, while the number density ρ f is 10 and 50 on the left and right
halves of the domain, respectively. In the second test case, the fracture number density is
kept constant at ρ f = 30, but the fracture length l f was set to 0.11 and 0.21 on the left and
right halves of the domain, respectively. In both cases the domain height L y is 1, while the
domain length Lx varies from 0.1 to 0.3 with steps of 0.02 and from 0.3 to 1.5 with steps
of 0.1. Dirichlet boundary conditions were imposed at the left and right boundaries with
pl = 1 and pr = 0. Reference solutions were obtained with MCS using 1000 independent
realisations per test case, each employing a grid resolution of h = 0.01. The model
equations (2.22)–(2.25) were solved using the ḡ values obtained from the scaling law
given by (3.2). The results are presented next and further discussions will follow in § 4.
Figure 6 shows the mean pressure profiles of the first case with changing fracture density.
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Figure 6. Mean pressure profiles in a fractured porous medium with discontinuous fracture statistics. The
fracture number density ρ f on the left half of the domain is 10 and on the right half it is 50. The upper row
shows mean pressure profiles in the matrix domain and the lower row mean pressure profiles in the fracture
domain. The three columns correspond to Lx ∈ {0.3, 0.6, 0.9} (left, middle and right, respectively). Red dots,
MCS data. Blue curves, kernel-based model results.
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Figure 7. Normalised flow rates through a fractured porous medium with discontinuous fracture statistics. The
fracture length l f on the left half of the domain is 0.11 and on the right half is 0.21. Red dots, MCS data. Blue
curves, kernel-based model results.

The upper and lower rows show the mean pressure profiles in the matrix and fracture
domains, respectively, while the three columns correspond to Lx ∈ {0.3, 0.6, 0.9} (left,
middle and right, respectively). Figure 7 shows the mean volumetric flow rates through
the domain of the first case. Similarly, mean pressure profiles and mean volumetric flow
rates of the second case are shown in figures 8 and 9, respectively.

3.3. Case study: continuous fracture statistics
In a second study, two test cases with continuously varying fracture statistics are presented.
In the first test case, the fracture length is kept constant at l f = 0.25, while the number
density ρ f = 50(x/Lx ) + 10 varies linearly with respect to the x-coordinate. In the
second test case, the fracture number density is kept constant at ρ f = 30 and the fracture
length l f = 0.4(x/Lx ) + 0.11 varies linearly with respect to the x-coordinate. All other
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Figure 8. Mean pressure profiles in a fractured porous medium with discontinuous fracture statistics. The
fracture length l f on the left half of the domain is 0.11 and on the right half is 0.21. The upper row shows mean
pressure profiles in the matrix domain and the lower row mean pressure profiles in the fracture domain. The
three columns correspond to Lx ∈ {0.3, 0.6, 0.9} (left, middle and right, respectively). Red dots, MCS data.
Blue curves, kernel-based model results.
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Figure 9. Normalised flow rates through a fractured porous medium with discontinuous fracture statistics. The
fracture length l f on the left half of the domain is 0.11 and on the right half is 0.21. Red dots, MCS data. Blue
curves, kernel-based model results.

parameters are the same as for the discontinuous test cases. Figures 10 and 11, respectively,
show mean pressure profiles and mean volumetric flow rates for the first continuous test
case. Figures 12 and 13 show the same for the second continuous test case.

4. Discussion and conclusions
The results presented in §§ 3.2 and 3.3 show close agreement between model predictions
and the MCS reference. This demonstrates that the kernel-based model is capable of
simulating flow in fractured porous media with spatially instationary fracture statistics.
Moreover, it was found that the transfer coefficient that relates the expected fracture-
matrix exchange rate to the expected pressure difference between the two domains only
depends on the local fracture statistics. The determination of the transfer coefficient
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Figure 10. Mean pressure profiles in a fractured porous medium with continuously varying fracture statistics.
The fracture number density ρ f = 50(x/Lx ) + 10 varies linearly with respect to the x-coordinate. The upper
row shows mean pressure profiles in the matrix domain and the lower row mean pressure profiles in the fracture
domain. The three columns correspond to Lx ∈ {0.3, 0.6, 0.9} (left, middle and right, respectively). Red dots,
MCS data. Blue curves, kernel-based model results.
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Figure 11. Normalised flow rates through a fractured porous medium with continuously varying fracture
statistics. The fracture number density ρ f = 50(x/Lx ) + 10 varies linearly with respect to the x-coordinate.
Red dots, MCS data. Blue curves, kernel-based model results.

requires the expected volumetric flow in the fracture domain, which is based on one
empirical value derived from an MCS study. If the fracture statistics vary continuously,
the transfer coefficient becomes a field value, but based on the previously presented
scaling analysis it becomes an algebraic function of the local fracture statistics. In the
limit of very small fracture number density, the transfer coefficient scales linearly with
the number density while in the limit of infinitely large number density – due to the
interference between the fractures – the flow exchange across the fracture-matrix boundary
is intensified and the transfer coefficient scales quadratically with the number density. To
determine the constants in the scaling law, only one single fracture simulation and two
MCS studies (one MCS study if the fractures are highly conductive) are needed. With the
proposed scaling law, the non-local kernel-based model can be applied to any fractured
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Figure 12. Mean pressure profiles in a fractured porous medium with continuously varying fracture statistics.
The fracture length l f = 0.4(x/Lx ) + 0.11 varies linearly with respect to the x-coordinate. The upper row
shows mean pressure profiles in the matrix domain and the lower row mean pressure profiles in the fracture
domain. The three columns correspond to Lx ∈ {0.3, 0.6, 0.9} (left, middle and right, respectively). Red dots,
MCS data. Blue curves, kernel-based model results.

0.5 1.0 1.5

Lx

0

200

100|u|
/|�

x 
  p

|
–

∞

300

Figure 13. Normalised flow through a fractured porous medium with continuously varying fracture statistics.
The fracture length l f = 0.4(x/Lx ) + 0.11 varies linearly with respect to the x-coordinate. Red dots, MCS
data. Blue curves, kernel-based model results.

porous medium with spatially heterogeneous fracture distributions. In the current work
statistically one-dimensional test cases were presented, but the model formulation is valid
for two- and three-dimensional scenarios as well. Equations (2.22) and (2.23) represent a
simplified formulation as opposed to (3.1), (3.2), (3.3) in the last author’s previous work
(Jenny 2020), where the conceptual incorporation of percolated fracture networks was
also outlined. To increase the real-world applicability of the model, extensions involving
tilted fractures, fracture clusters as well as percolated fracture networks are planned.
While preparatory work in connection with percolated fracture networks has been included
in the previous study (Jenny 2020), the generalisation to two- and three-dimensional
configurations in connection with tilted fractures will be challenging.
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