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PF-RINGS OF GENERALISED POWER SERIES

ZHONGKUI L1u

Let R be a commutative ring and (8, <) a strictly ordered monoid which satisfies
the condition that 0 < s for every s € S. We show that the generalised power
series ring [[R5'<]] is a PF-ring if and only if R is a PF-ring.

1. INTRODUCTION AND PRELIMINARIES

Let R be a commutative ring. Recall that R is a PF-ring if every projective R-
module is free. A famous result of Quillen and Suslin independently states that for a
field F, every finitely generated projective F(z1,...,z,]-module is free. In [1], it was
proved that R[[z1,...,Zn]] is a PF-ring if and only if R is a PF-ring. In this paper, we
shall prove that the generalised power series ring [[R 'S]] is a PF-ring if and only if R is
a PF-ring, where (S, <) is a strictly ordered monoid which satisfies the condition that
0 < s for every s € S. As an application, we obtain some new examples of PF-rings.

All rings considered here are commutative with identity. Any concept and notation
not defined here can be found in (5, 6,7]. For a ring R, we denote by U(R) and J(R)
the multiplicative group of units, and the Jacobson radical of R, respectively.

Let- (S, <) be an ordered set. Recall that (S, <) is Artinian if every strictly de-
creasing sequence of elements of S is finite, and that (S, <) is narrow if every subset of
pairwise order-incomparable elements of S is finite. Let S be a commutative monoid.
Unless stated otherwise, the operation of S shall be denoted additively, and the neutral
element by 0. The following definition is due to [5, 6, 7].

Let (S,<) be a strictly ordered monoid (that is, (S,<) is an ordered monoid
satisfying the condition that, if s,s',t € S and s < s’, then s+t < s’ +¢), and R
a commutative ring. Let A = [[RS'<]] be the set of all maps f : S — R such that
supp(f) = {s € S| f(s) # 0} is Artinian and narrow. With pointwise addition, A is
an Abelian additive group. For every s € S and fi,..., fm € A, let X ;(f1,..., fm) =
{(ur, ... um) €S™ | s=ur + -+ um, fi(w1) #0,..., fm(um) # 0}. It follows from
{6, 1.16] that X,(f1,..., fm) is finite. This fact allows us to define the operation of
convolution:

U= 3 fwe).

(v,v)EXs(f.9)
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With this operation, and pointwise addition, A becomes a commutative ring, which is
called the ring of generalised power series. The elements of A are called generalised
power series with coeflicients in R and exponents in S.

For example, if S =N and < is the usual order, then [[RN<]] 2 R[[z]], the usual
ring of power series. If S is a commutative monoid and < is the trivial order, then
[[RSS]] = R[S], the monoid-ring of S over R. Further examples are given in [5]. Many
results on [[R5'S]] have been obtained in (2, 3,4,5,6,7).

We shall use the following notations introduced by Ribenboim in [5].

Let a € R. Define a mapping c, € [[R5<]] as follows:

ca(0) =a, «cu(s)=0, O0#seSb.
Let s € S. Define a mapping e, € [[R5<]] as follows:

es(s)=1, e(t)=0, s#teS.

Then R is canonically embedded as a subring of [[R5'<]], and § is canonically embed-

ded as a submonoid of ([[RS<]] — {0}, ). It is easy to see that ey is the identity of
[[R<]].

2. MAIN RESULTS

We shall henceforth assume that (S, <) is a strictly ordered monoid which satisfies
the condition:

(SO) 0< s forevery s€&.

LEMMA 2.1. [6] Let f € [[RS<]]. Then f € U([[RS<])) if and only if f(0) €
U(R).

COROLLARY 2.2. Let f € [[R5S]]. Then f isin J([[RS<]]) if and only if f(0)
isin J(R).

ProOF: Suppose that f(0) € J(R). Then 1—rf(0) € U(R) for every r € R. For
each g € [[R5<]], we have (gf)(0) = Y g(u)f(v) = g(0)f(0) by the condition
(u,v)€Xo(g.f)

(S0). Thus (eo — gf)(0) = eo(0) — (gf)(0) =1 — g(0)f(0) € U(R). By Lemma 2.1, it
follows that ep — gf € U([[RS'<]]), which means that f € J([[RS<])).

Conversely suppose that f € J([[RS'S]]). Forevery r € R, eg—c,f € U([[RSS])).
Thus, by Lemma 2.1, 1 — 7£(0) = (eo — ¢-f)(0) € U(R), and so f(0) € J(R). 0

PROPOSITION 2.3. There exists a group isomorphism Kg[[R5S]] = KoR.
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PrOOF: Since (S,<) satisfies the condition (S0), it is easy to see that for any

f,9 € [[R5S]), (fg)(0) = 3 f(u)g{w) = f(0)g(0). Thus there exist ring
(u,v)eXo(f.9)
homomorphisms

a:[[RS<)) — R
£ £(0)
and
8:R— [[RS<]

T Cyp.

Clearly af3 = 1g. Thus Kjpa is a surjective homomorphism. Let f € Ker (¢). Then
f(0) = 0 € J(R). By Corollary 2.2, it follows that f € J([[R5'<]]). This means that
Ker (@) C J([[RS<]]). Thus, by [8, Proposition 9], Koa is a monomorphism. Now the
result follows. 1]

We note that the group isomorphism above is also a ring isomorphism since the
rings we considered are commutative (see [1]).

A ring R is called a Hermite ring provided for every (ry,...,7,) € R"™, if there
exists (py,-..,Pn) € R™ such that rip; +---+ r,p, = 1, then there exists a n x n
matrix M over R with first row (rq,...,7,) and det (M) a unit in R.

PROPOSITION 2.4. [[R5<]] is a Hermite ring if and only if R is a Hermite

ring.

PrOOF: Let [[RS<]] is a Hermite ring. Suppose that (ry,...,r,) and (p1,...,Pn)
are in R™ such that rp; + -+ + mpn = 1. Since (¢ cp + -+ CrpCpa)(8) =

n

Y (ericp)(8) = zn: 3 cr;(U)ep,(v) = 0 = eg(s) when s # 0, and

i=1 =1 (u,0)€X5(cr; p;)
(cflcpl + U + c"ncpn)(o) = (CTICPI)(O) + Tt + (cfncpn)(o) = rlpl + cUt + Tnpn = 1 =
e0(0), we have

CriCpy +* + CraCpn = €0-

Since [[R5'<]] is a Hermite ring, there exists a n X n matrix M over [[R*<]] with first
row (cr,,...,cr,) and det (M) a unit in [[RS<]]. Suppose that

Cry Cry - Crg
fa f2 oo fon
M= . .. .
fnl fn2 fnn
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Denote
™ T2 e Tn

f21(0)  f22(0) ... f2n(0)

Fa1(0) £2(0) e fan(0)

Since S satisfies the condition (S0), it is easy to see that

det (M)(0) = ( Z (—1)"(i1"'i")0r,vlf2i2 ---fm'n>(0)

£1...8n

= > (1) £25,(0) . fin (0) = det (N).

i1..n

By Lemma 2.1, it follows that det (N) € U(R). Thus R is a Hermite ring.
Conversely suppose that R is a Hermite ring. Assume that (fy,...,f,) and

(g1,.--,9n) are in [[RSS]|™ such that Y figi = e, the identity of ring [[RS<]].
i=1
Then

n
> £i(0)g:(0) = 1.
i=1
Since R is a Hermite ring, there exists a n x n matrix

f1(0)  f2(0) ... fo(0)

21 T22 AP Ton
P =

Tnl Tn2 cvo Tan

over R with first row (f1(0),..., fn(0)) and det(P) € U(R). Let

fl f2 v fn

- Cra1 Cryg -+ Cryy
Q= . .

c"nl c"n2 <o+ Cran

Then, by condition (S0), it is easy to see that (det (Q))(0) = det (P) € U(R). Thus,
by Lemma 2.1, it follows that det(Q) € U([[RS<]]). This means that [[RS<]] is a
Hermite ring. 1

Now we have:
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THEOREM 2.5. Let (S, <) be a strictly ordered monoid which satisfies the con-
dition that 0 < s for every s € S. Then [[R5<]] is a PF-ring if and only if R is a
PF-ring.

PROOF: It is well-known that a commutative ring A is a PF-ring if and only if 4
is a Hermite ring and there exists a ring isomorphism KgA = Z (see, for example, [9]).
Thus the result follows from Proposition 2.3 and 2.4. 0

COROLLARY 2.6. (1] R[[z,,...,zy]] is a PF-ring if and only if R is a PF-ring.

PrOOF: Let S = Nx---xN (n copies) with the product qf the usual order. Then
[[RSS]] = R[[z1,...,Tn]]. Now the result follows from Theorem 2.5. 0

The following corollaries will give other examples of PF-rings.

COROLLARY 2.7. Let Q+—{aeQ|a 0},R* ={a€ R|a>0}. Then the
rings [[ZN<]), [[Z2"<]] and [[ZR"<]] are PF-rings, where < is the usual order.

CoroLLARY 2.8. Let (S51,<1),---,(Sn,<n) be strictly ordered monoids which
satisfy the condition that 0 <; s for every s € S;,i=1,...,n. Denote by (lex <) and
(revlex <) the lexicographic order, the reverse lexicographic order, respectively, on the
monoid Sy X --- x S,. Then R is a PF-ring if and only if [[R51%"*5n:(lez<)]] js 4
PF-ring if and only if [[RS1% " XSn.(reviez<)]] js a PF-ring.

PRrOOF: It is easy to see that (S X --- x Sy, (lex <)) is a strictly ordered monoid
which satisfies the condition that (0,...,0){lez <)(s1,...,8n) for every (s1,...,8,) €
S1 % -+ x S,. Thus, by Theorem 2.5, R is a PF-ring if and only if [[R51%"*5n.(lez<)])
is a PF-ring.

The proof of the another assertion is similar. 0

Let R be a ring, and consider the multiplicative monoid N3;, endowed with the

usual order <. Then A = [[RN>1'S]] is the ring of arithmetical functions with values
in R, endowed with the Dirichlet convolution:

(f9)(n) = f(d)g(n/d), foreach n>1.

din
COROLLARY 2.9. [[RN>1'S]] is a PF-ring if and only if R is a PF-ring.
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