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Linear interaction analysis (LIA) is routinely used to study the shock–turbulence
interaction in supersonic and hypersonic flows. It is based on the inviscid interaction of
elementary Kovásznay modes with a shock discontinuity. LIA neglects nonlinear effects,
and hence it is limited to small-amplitude disturbances. In this work, we extend the LIA
framework to study the fundamental interaction of a two-dimensional vorticity wave with
a normal shock. The predictions from a weakly nonlinear framework are compared with
high-order accurate numerical simulations over a range of wave amplitudes (ε), incidence
angles (α) and shock-upstream Mach numbers (M1). It is found that the nonlinear
generation of vorticity at the shock has a significant contribution from the intermodal
interaction between vorticity and acoustic waves. Vorticity generation is also strongly
influenced by the curvature of the normal shock wave, especially for high incidence angles.
Further, the weakly nonlinear analysis is able to predict the correct scaling of the nonlinear
effects observed in the numerical simulations. The analysis also predicts a Mach number
dependent limit for the validity of LIA in terms of the maximum possible amplitude of the
upstream vorticity wave.
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1. Introduction

The interaction of a shock wave with turbulence is a problem of fundamental interest,
as well as practical relevance in high-speed flows. Turbulence affects the structure of
the shock and, in return, shock significantly amplifies the turbulent fluctuations passing
through it (Andreopoulos, Agui & Briassulis 2000). Shock–turbulence interaction has
various applications in critical engineering problems such as scramjet propulsion (Liu,
Sheng & Sislian 1995; Livescu & Ryu 2016), inertial confinement fusion (Lele & Larsson
2009; Livescu & Ryu 2016) and cosmic events like supernovae explosions (Ranjan, Oakley
& Bonazza 2011). A lot of scientific effort has been spent to understand the physics of
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the problem and to predict the post-shock turbulence field accurately. The majority of
the research is theoretical (Mahesh et al. 1995; Wouchuk, de Lira & Velikovich 2009;
Huete Ruiz de Lira, Velikovich & Wouchuk 2011; Donzis 2012a,b; Huete Ruiz de Lira,
Wouchuk & Velikovich 2012; Quadros, Sinha & Larsson 2016b; Chen & Donzis 2019)
and computational (Lee, Lele & Moin 1993; Mahesh, Moin & Lele 1996; Larsson & Lele
2009; Larsson, Bermejo-Moreno & Lele 2013; Ryu & Livescu 2014; Chen & Donzis 2019),
while a limited number of experimental studies (Barre, Alem & Bonnet 1996; Auvity,
Barre & Bonnet 2002) have also been reported.

Small fluctuations in compressible turbulence can be represented using three
fundamental modes (Kovásznay 1953): vorticity, entropy and acoustics. A theoretical
method that uses this decomposition to study the interaction of homogeneous isotropic
turbulence with a normal shock wave is known as linear interaction analysis (LIA) (Moore
1954; Ribner 1954). LIA is linear and inviscid and uses concepts from wave physics to
study the interaction between flow disturbances in one or more fundamental modes and a
normal shock. The analysis assumes that the shock wave is a gas-dynamic discontinuity
in the flow. LIA also relies on the assumption that the interaction time scales are small
compared with the time scales of the turbulent fluctuations.

Interaction of a single vorticity wave with a shock is an elementary problem routinely
used to understand the broader features of the shock–turbulence interaction. Disturbances
in vorticity, with some orientation to the free stream on interacting with the shock,
produce wave disturbances in all three modes, which can be analysed independently.
Inter-modal interactions are not considered in LIA. The amplitudes of the modal
disturbances downstream of the shock are evaluated using Rankine–Hugoniot (R-H)
equations. Superposition of the modal disturbances downstream of the shock manifests
the required flow fluctuations approximately for low amplitudes of the upstream vorticity
wave.

Moore (1954) and Ribner (1954) independently laid the basis for LIA several decades
ago. Using Kovasznay mode decomposition (Kovásznay 1953), Moore (1954) studied
the unsteady interaction of an acoustic wave with a normal shock and Ribner (1954)
investigated the interaction of a vorticity wave with a normal shock. Chang (1957)
extended LIA by supplementing the necessary expressions for the case of interaction
of entropy disturbances with a normal shock. McKenzie & Westphal (1968) later
implemented LIA theory to investigate the effect of small amplitude fluctuations in the
flow interacting with an oblique shock.

In recent times, LIA has been used extensively to investigate the physical mechanisms
responsible for turbulence amplification by shocks. Mahesh et al. (1996) analysed the
interaction of disturbances in vorticity and entropy with a normal shock, where they
considered the effect of upstream entropy fluctuations on the post-shock flow-field.
Subsequently, Fabre, Jacquin & Sesterhenn (2001) analysed the interaction of an entropy
spot with a normal shock using LIA, where elementary waves of entropy fluctuations were
used to construct the entropy spot. A similar approach was followed by Griffond (2005) to
study the effect of a mixture of gases (represented as elementary waves of fluctuating
concentration) interacting with a normal shock. Recently, Quadros et al. (2016b)
investigated the turbulent energy flux generated by a normal shock and Farag, Boivin &
Sagaut (2019) studied the interaction of entropy spots with heat absorbing/releasing shock
waves using LIA.

Numerical simulations provide a complementary approach to study the shock–turbulence
interaction. Zang, Hussaini & Bushnell (1984) computed the solutions for planar waves
of each of the fundamental Kovásznay modes interacting with normal shocks of
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varying strengths. Their analysis was restricted to incident waves making an angle of 30◦
with the shock-normal direction. Mahesh et al. (1996) investigated individual interaction
of acoustic and vorticity–entropy waves with a normal shock using direct numerical
simulation (DNS). Results for turbulent kinetic energy (TKE) and vorticity variances
from computations matched qualitatively with results from LIA. Recently, the works
of Sethuraman, Sinha & Larsson (2018), Tian et al. (2017), Quadros, Sinha & Larsson
(2016a), Quadros et al. (2016b), Livescu & Ryu (2016), Ryu & Livescu (2014), Larsson
et al. (2013) and Larsson & Lele (2009) have computed the post-shock statistics of various
second-moments for a range of shock Mach numbers. Results obtained from DNS are
compared with LIA and a good match is found for cases with relatively low amplitude
turbulent fluctuations upstream of the shock.

It is generally accepted that LIA predictions are valid in the limit of vanishing turbulent
Mach number and infinite Reynolds number. Here, turbulent Mach number is given
by Mt = √

2k/ā, k is the turbulent kinetic energy and ā is the mean speed of sound.
Many of the comparisons of LIA and DNS, either for varying Mt (Ryu & Livescu
2014) or by artificially removing viscous dissipation (Larsson et al. 2013), show this
qualitative trend. However, very few quantitative estimates exist for the bounds of validity
of LIA. The question as to within what range of governing parameters the results from
LIA can be considered reliable is still open (Chen & Donzis 2019). This question has
become particularly relevant in recent times, where LIA is being used as a surrogate
to numerical simulations in regions of shock waves (Braun, Pullin & Meiron 2019) and
LIA-based turbulence models are increasingly being used in practical applications (Sinha,
Mahesh & Candler 2005; Pasha & Sinha 2012; Roy, Pathak & Sinha 2018; Vemula &
Sinha 2020).

Lee et al. (1993) studied the interaction of isotropic quasi-incompressible turbulence
with a weak shock wave using DNS for 1.05 ≤ M1 ≤ 1.2. They found that the results
from LIA compare well with the DNS solution for the condition M2

t < 0.1(M2
1 − 1).

They asserted that inside the stated limit, the amplification mechanism for turbulent
kinetic energy and vorticity is linear. The specified limit is valid for weak shock waves
only. Similarly, Ryu & Livescu (2014) proved that the LIA solution for shock–turbulence
interaction converges to DNS as Mt tends to smaller values. This work shows the reliability
of LIA for problems involving a notable separation between turbulence scales (η) and
shock width (δ), i.e. for small δ/η � 7.69Mt/Re0.5

λ (M1 − 1), which is a criteria for scale
separation first given by Donzis (2012a). Here, Reλ represents Taylor Reynolds number
and M1 is the shock Mach number. At fixed Reλ and M1, the convergence of LIA to DNS
is governed by Mt → 0. At higher Mt, the amplification of Reynolds stresses and vorticity
is found to significantly deviate from LIA predictions, which shows the importance of
nonlinear effects.

Chen & Donzis (2019) discussed a universal scaling parameter K for the amplification
factor of streamwise velocity, which leads to the criteria for the viability of LIA. It
involves the combined effect of Mt, upstream Mach number M1 and an account of the
viscous effects through the Reynolds number. The scaling parameter K is defined as
K = δl/η, where δl is the shock thickness and η represents the Kolmogorov length scale.
For low values of K, results approach the limits specified by LIA; i.e. the amplification
factor becomes a function of M1 only. Furthermore, Grube & Martín (2021) studied the
redistribution of energy between the transverse and streamwise Reynolds stresses in the
shock–turbulence interaction using LIA and DNS. They developed a model for nonlinear
interactions using LIA and the eddy viscosity approximation to quantify the redistribution
of energy between transverse and streamwise Reynolds stresses.
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The objective of the current work is to address the open questions concerning LIA
by analysing the elementary interaction of a vorticity wave with a normal shock both
numerically and theoretically. Vorticity fluctuations are fundamental to turbulence, and
they constitute one of the fundamental modes in compressible turbulence (Kovásznay
1953). Understanding the dynamics and evolution of vorticity fluctuations is crucial in
high-speed applications, for instance, in studying turbulent mixing at supersonic Mach
numbers in scramjet combustors, in the description of the interaction of vortex/entropy
spots with normal shocks (Ribner 1987; Fabre et al. 2001), bubble–shock interactions
and related Richtmyer–Meshkov (R–M) instability problems (Ranjan et al. 2011). Further,
vorticity is inherently related to enstrophy, which signifies the rate of dissipation of the
turbulent kinetic energy (Sinha 2012).

We present a weakly nonlinear framework (WNLF) for the shock–vorticity interaction
and study the amplification of vorticity fluctuations across the shock wave. The analysis
is an extension of the LIA framework, where we retain the second-order terms in
the R-H equations across the shock wave. These terms are evaluated using the LIA
solution to estimate their magnitude relative to the linear effects at the shock wave.
We identify the dominant nonlinear physical mechanisms that are responsible for
vorticity amplification across the shock and study their variation with the amplitude
and incidence angle of the vorticity wave and the strength of the shock wave. Of
particular interest are the interactions between the different Kovásznay modes and the
higher-order effects of the unsteady oscillating shock wave that are neglected by the linear
analysis.

The weakly nonlinear framework is validated using numerical simulations of the
shock–vorticity wave interaction with the high-order accurate numerical method (Larsson
& Lele 2009; Johnsen et al. 2010). We study the deviation of the numerical results from the
LIA solution for different values of the parameters listed above. The deviation is compared
with the second-order vorticity amplitude predicted by WNLF. The analytical results are
found to match well with the numerical data. WNLF also predicts the correct scaling of
the nonlinear effects obtained from the numerical simulations. In general, other physical
mechanisms in addition to the shock-induced nonlinearities could also result in nonlinear
effects in vorticity. This paper focuses on studying the nonlinear interactions at the shock
wave and especially strives to isolate the nonlinear effects arising from shock-induced
nonlinear modal interactions. Viscous effects are assumed to be negligible in the vicinity
of the shock. Both the numerical simulations and WNLF are based on the inviscid and
ideal gas framework. WNLF assumes the shock to be a discontinuity, while the numerical
simulations capture the shock over a few grid points. Therefore, a comparison between
analytical results and the numerical solution is made very close to the numerically captured
shock wave.

Finally, we use WNLF to arrive at a quantitative limit for the validity of LIA.
We identify the maximum amplitude of the upstream vorticity wave, for which the
nonlinear amplification of vorticity is small compared with the LIA predictions. This
range is found to be a function of the shock Mach number and the incidence angle
of the vorticity wave. The maximum vorticity amplitude has a non-monotonic variation
with shock Mach number, with different scaling for weak and strong shock waves.
The variation, as expected, depends on the dominant physical mechanisms in each
case. WNLF also indicates that the LIA limit can be different for different turbulence
quantities (vorticity, pressure variance, Reynolds stress, etc.). This provides a possible
reason why there is no universal criteria for the validity of LIA reported in the
literature.
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Figure 1. Schematic of the vorticity wave–normal shock interaction showing (a) the generation of acoustic
and entropy waves downstream of the shock and (b) a magnified view of the shock deformation.

2. Methodology

2.1. Linear interaction analysis
Let us consider a two-dimensional, small amplitude planar vorticity wave with its
wavenumber vector k inclined at an angle α with the x-axis (see figure 1). Mathematically,
the vorticity wave can be represented as

Ω ′

kŪ1
= −iε exp(i(k · r − ωt)), (2.1)

where r is the position vector, k is the magnitude of the wavenumber vector and ω denotes
the angular frequency of the vorticity wave. The quantity ε is the amplitude of the vorticity
wave normalized by the wavenumber and mean velocity Ū1. The vorticity wave is advected
by a one-dimensional, uniform mean flow of velocity towards the normal shock initially
located along the y-axis. The shock deforms in response to the fluctuations and the local
position of the unsteady shock is given by the function ξ( y, t). The derivative ξy thus
represents the angular deformation of the shock (see figure 1).

Small amplitude vorticity fluctuations are solenoidal fluctuations that impose a
divergence-free condition on the fluctuating velocity field. The velocity fluctuations
upstream of the shock (subscript 1) are given as

u′
1

Ū1
= ε sinα exp(ik(x cosα + y sinα)− iωt), (2.2)

v′
1

Ū1
= −ε cosα exp(ik(x cosα + y sinα)− iωt), (2.3)

where u′ and v′ represent the velocity fluctuations in the shock normal (x) and shock
parallel (y) directions, respectively. Substituting the above forms in the linearized
momentum equation shows that vorticity waves do not produce pressure fluctuations in
the linear, inviscid limit. Physically, because vorticity fluctuations travel with the mean
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flow, they do not require pressure fluctuations to advect. Also, thermodynamics dictates
that the vorticity wave does not create any fluctuations in entropy in the linear limit.

We investigate the interaction of such vorticity fluctuations with a normal shock and
obtain the perturbation field downstream using LIA. We follow the works of Fabre et al.
(2001), Mahesh et al. (1996), Moore (1954) and Kovásznay (1953), and the reader may
refer to these for additional details on the theory. We perform this investigation for a
constant specific heat ratio of air γ = 1.4.

The incident vorticity wave refracts whereas acoustic and entropy waves are generated
at the shock, with inclinations αp and αs, respectively. The refracted vorticity wave
has the same inclination as that of the downstream entropy wave. Let the wavenumber
of the downstream acoustic and non-acoustic waves (vorticity and entropy) be kp and
ks, respectively. The post-shock acoustic wave can be either propagating or decaying
depending on the angle of the incident wave. There exists a critical angle, αc for α ∈
[0,π/2], beyond which the acoustic waves decay immediately behind the shock.

The linearized Euler equations with the linearized R-H conditions as the boundary
conditions at the shock are solved to obtain post-shock wave characteristics. The
downstream fluctuations have the same y and t dependencies as the perturbed shock front
(or the incident wave) as dictated by R-H conditions. The dispersion relation at the shock
constrained by the continuity equation then yields that the transverse wavenumber and the
angular frequency of the wave remain invariant across the shock. Thus, we get

cotαs = r cotα, (2.4)

where r is the mean velocity ratio (Ū1/Ū2 = ρ̄2/ρ̄1) across the shock. The ratio r is
an estimate of the amount by which the streamwise wavenumber of the vorticity wave
gets compressed. The wavenumber for the acoustic wave kp is then determined from the
acoustic wave equation; details are given by Mahesh et al. (1995).

The disturbance field downstream of the shock (subscript 2) can be written in terms of
the vorticity fluctuations Ω ′

2, entropy fluctuations s′
2 and pressure fluctuations p′

2 as

Ω ′
2

ksŪ2
= −iεZvv exp(iks(x cosαs + y sinαs)− iωt), (2.5)

s′
2

cp
= εZvs exp(iks(x cosαs + y sinαs)− iωt), (2.6)

p′
2

P̄2
= εZvp exp(ikp(x cosαp − ηx + y sinαp)− iωt), (2.7)

where Zvv , Zvs, Zvp are the corresponding transfer coefficients and are functions of α
and M1. The quantities cp, P̄2 and η represent the specific heat of fluid, mean pressure
downstream of the shock and decay parameter of acoustic wave amplitude normal to the
shock, respectively. Under the assumptions of LIA, decay of pressure perturbations at the
shock (η /= 0) occurs when α exceeds αc.

Both vorticity and acoustic modes of fluctuations generate velocity fluctuations
downstream of the shock wave independent of each other in the linear limit. Accordingly,
shock normal (u′

2) and shock parallel (v′
2) velocity fluctuations downstream can be

933 A48-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
76

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1076


Weakly nonlinear framework

written as

u′
2

Ū2
= ε sinαsZvv exp(iks(x cosαs + y sinαs)− iωt)+

{
cosαp + iη
γM2ζ

}
p′

2

P̄2
, (2.8)

v′
2

Ū2
= −ε cosαsZvv exp(iks(x cosαs + y sinαs)− iωt)+

{
sinαp

γM2ζ

}
p′

2

P̄2
, (2.9)

where ζ is a function of the decaying parameter (η). The first and second terms on the
right-hand side of (2.8) and 2.9 represent the contribution from vorticity mode and acoustic
mode, respectively.

Corrugation of the shock measured with respect to its mean position is given as

kξ = εZvx exp(iky sinα − iωt), (2.10)

where Zvx is the transfer coefficient for shock perturbation. Differentiating with respect to
time gives the instantaneous shock corrugation speed in the streamwise direction:

ξt

Ū1
= −iε cosαZvx exp(iky sinα − iωt). (2.11)

Substituting these expressions in the linearized Euler equations allows the estimation of the
transfer coefficients of the disturbance (Zvv , Zvx, Zvp and Zvs) for the post-shock regime.
Mathematically, these transfer coefficients are computed as

A

⎛
⎜⎝

Zvv
Zvs
Zvp
Zvx

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎝

−1
−r
0
r2

(γ − 1)M2
1

⎞
⎟⎟⎟⎟⎠ , (2.12)

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sinαs −1
1
γ

+ cosαp + iη
γM2ζ

i(r − 1)cosαp

2sinαs −1
M2

2 + 1

γM2
2

+ cosαp + iη
γM2ζ

0

−cosαs 0
sinαp

γM2ζ
i(1 − r)sinα

sinαs 1
(γ − 1)M2

2

1
γM2

2
+ cosαp + iη

γM2ζ
ir(r − 1)cosαp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.13)

Figure 2(a) shows the variation of the transfer coefficients with α for a fixed M1.
The transfer coefficients for vorticity Zvv and shock deformation Zvx show a monotonic
increase with α in the propagating regime (α < αc), reaching a maximum at αc. They
decrease with further increase of α in the decaying regime. Transfer coefficients for
pressure and entropy have a non-monotonic variation in the propagative regime. For all
M1 and α, LIA predicts that Zvv is the largest, which indicates that the linear processes are
dominated by vorticity amplification (see figures 2(a) and 2(b)). In the limit of a vanishing
shock wave (M1 = 1), there is no amplification of vorticity (Zvv = 1) and Zvv increases in
magnitude for increases in M1 to reach an asymptotic value as M1 → ∞.
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Figure 2. Variation of transfer coefficients with (a) α at M1 = 3 and (b) M1 at α = 30◦. Dashed red line in
panel (a) indicates αc.

The relative magnitude of the transfer coefficients and their variation with α and M1 play
an important role in the weakly nonlinear framework (WNLF) presented subsequently.
The high values of Zvv and Zvx in the vicinity of αc degrade the accuracy of the numerical
solution presented in the paper. Hence, we restrict our numerical simulations to low values
of α in the propagating regime away from αc.

2.2. Numerical simulations
The interaction of the vorticity wave with a normal shock is studied numerically over a
two-dimensional domain, as shown in figure 3. The length of the computational domain is
4π and 2π in the streamwise (x) and transverse (y) directions, respectively. Four stations
in the x-direction are marked in figure 3. We specify a supersonic boundary condition for
the inflow station (x = −π), where velocity fluctuations

u′ = εŪ1 sinα cos(k sinαy − ωt), (2.14)

v′ = −εŪ1 cosα cos(k sinαy − ωt), (2.15)

are superimposed on a one-dimensional supersonic streamwise mean flow Ū1. A
non-reflecting subsonic boundary condition is applied at the outflow (x = 3π) and a
periodic boundary condition is used for the transverse boundaries.

The flow downstream of the normal shock is subsonic and allows spurious acoustic
waves from the outflow boundary to propagate towards the shock. These acoustic
reflections are undesirable and need to be avoided or damped. A numerical sponge similar
to that prescribed by Larsson & Lele (2009) and Sethuraman et al. (2018) is used to achieve
this. In our numerical domain, a sponge is used from x = 2π to x = 3π and it dampens
the fluctuations to a target state defined by the R-H conditions for the mean flow.

Compressible Euler equations for an ideal gas (γ = 1.4) are solved for various M1 using
the solution-adaptive finite-difference Hybrid code (Larsson & Lele 2009). A fifth-order
accurate WENO scheme with Roe-flux splitting is used to calculate the approximate
fluxes near the shock and a sixth-order accurate central difference scheme is used for
the remainder of the domain. The system of equations is integrated in time using a
fourth-order accurate, explicit Runge–Kutta (RK4) scheme. Numerical shock is identified
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Vorticity wave

Inflow Outflow

Shock

Downstream Sponge

0 2π 3π–π

Figure 3. Numerical domain: x = −π shows the inlet boundary; x = 0 is the initial position of the normal
shock; x = 2π the start of a numerical sponge; and x = 3π the outlet boundary and end of the numerical
sponge.

using a modified Ducros sensor (Larsson & Lele 2009). The shock is identified as the
region where negative dilatation is greater than the low-pass filtered vorticity magnitude.
This numerical procedure has been verified and validated on various problems of interest
(Larsson & Lele 2009; Johnsen et al. 2010; Larsson et al. 2013), and additional details
about the code can be found in Sethuraman et al. (2018), Bermejo-Moreno et al. (2013),
Larsson et al. (2013) and Larsson & Lele (2009).

Flow variables are normalized so that the upstream velocity equals the upstream Mach
number (M1). For this purpose, we use density and sound speed upstream of the shock as
characteristic variables, whereas the y-component of wavenumber (ky) is used to normalize
different length scales. Pressure is normalized using the characteristic density and sound
speed, whereas vorticity is normalized using ky and sound speed upstream of the shock.
The equations are integrated in time with a Courant–Friedrichs–Lewy (CFL) number of
0.8, which corresponds to a flow time scale of ∼0.003. It takes approximately 200 to 300
time steps to simulate one wave passage through the shock.

Initially, the normal shock lies at x = 0 and oscillates in the transverse direction when
fluctuations impinge on it and change the downstream pressure. Mismatch in the pressure
levels downstream of the shock with that obtained from R-H conditions causes the shock
to drift slowly. We use a time-dependent back-pressure controller (Larsson & Lele 2009)
to reduce the shock movement and make it as stationary as possible around the desired
location, x = 0. We follow the implementation procedure prescribed by Sethuraman et al.
(2018) to control the movement of the shock using the back-pressure controller.

The time taken by the initial disturbances to adjust to the boundary conditions is
considered as an initial transient. We track the shock movement during this time as in
Sethuraman et al. (2018) to ascertain that the post-shock statistics are computed after the
initial transients have passed. The flow statistics achieve a steady-state value at this point.

Post-shock statistics are collected at a fixed x-location by averaging over the transverse
(y) direction and time. For averaging, 61 time realizations distributed uniformly over
a wave period are used. Flow statistics change negligibly when the averaging time
is increased to multiple wave periods from those obtained over one wave period.
This signifies that the statistics evaluated over one wave period are sufficiently
time-independent, and the initial transients in the numerical simulations have vanished.

Figure 4(a) shows the variation of the root-mean-squared value of fluctuation kinetic
energy (FKE) downstream of the shock computed for four different grid resolutions. The
data are normalized by its upstream value to obtain the amplification across the shock. We
observe a systematic grid-convergence to the finest grid and the LIA solution. We also note
that FKE has a wave-like variation behind the shock. This is because post-shock velocity
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Figure 4. Effect of grid refinement on (a) the amplification of root-mean-squared fluctuation kinetic energy
(FKE) and (b) the amplification of root-mean-squared value of vorticity and FKE across the shock. Here, Nx is
the number of points in the streamwise direction; M1 = 1.75, α = 30◦ and ε = 0.1.
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Figure 5. Vorticity contour plots at α = 30◦ and M1 = 1.5 for (a) ε = 0.01 and (b) ε = 0.25. The interaction
and refraction of the vorticity wave with the shock are clearly visible. The amplitude of shock fluctuations and
the nonlinearities in the downstream vorticity are larger for larger ε.

fluctuations have contribution both from vorticity and acoustic modes. The difference in
wavenumbers of the two modes result in a periodic variation of FKE. In comparison, the
upstream FKE is constant as it has contribution only from the vorticity mode.

In figure 4(b), the amplification of the root-mean-squared value of FKE and vorticity
(Ω) averaged in the transverse direction and in time as well as over one wavelength of the
post-shock variation is presented for four successively refined computational grids. The
data show negligible change for grid sizes 800 × 128 and above. Therefore, we choose a
grid size of 800 × 128 for our study and all subsequent numerical results presented are
generated using this grid. The grid refinement study was performed for M1 = 1.75 and
α = 30◦. Comparable results are obtained (not shown) for the entire range of parameters
considered in this work.

Figure 5 shows the vorticity contours computed for the shock–vorticity wave interaction
at α = 30◦ and M1 = 1.5. Two values of ε are used to highlight the effect of upstream
vorticity amplitude. The numerical solution for ε = 0.01 matches the vorticity pattern
shown in figure 1, in terms of the refraction of the waves at the shock and the sinusoidal
deformation of the shock wave. The parallel contour lines indicate two-dimensional planar
waves as predicted by LIA. In comparison, the higher-amplitude interaction (ε = 0.25)
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Weakly nonlinear framework

shows deviation from the LIA solution downstream of the shock. The non-parallel vorticity
contours, especially close to vorticity minima (around −2) indicate that the numerical
solution is not a sinusoidal wave. The objective of this work is to study these nonlinear
effects immediately downstream of the shock using the weakly nonlinear framework
presented below.

3. Weakly nonlinear framework

LIA, as a theory, captures the linear effects, whereas the numerical simulations contain
nonlinear effects along with linear effects. In the case of a shock–turbulence interaction,
nonlinear effects become significant as ε increases and predictions from LIA deviate
from numerical simulations for large ε. It has been proposed that the interaction of linear
modes leads to observed higher-order effects in vorticity and other downstream fluctuation
quantities (Chu & Kovásznay 1958).

To have more accurate predictions, these nonlinear effects need to be taken into account
in the theory. We propose a framework which considers these effects quantitatively based
on the modal interaction described by Chu & Kovásznay (1958). We call it the weakly
nonlinear framework (WNLF) as the analysis uses results from LIA to study nonlinear
phenomena. Therefore, we expect that its applicability is restricted to weak departures
from linear behaviour. As a model problem, we apply WNLF to the shock–vorticity wave
interaction problem.

Consider a one-dimensional uniform mean flow up and downstream of the shock.
Integration of the momentum conservation equation along the shock normal (x) direction
with the inviscid assumption gives

P1 + ρ1U2
1 = P2 + ρ2U2

2 . (3.1)

We decompose (3.1) into mean and fluctuating parts using classical Reynolds
decomposition. Keeping terms up to second-order, we have

p′
1 + 2ρ̄1Ū1(u′

1 − ξt)+ ρ′
1Ū2

1 + ρ̄1(u′
1 − ξt)

2 − 2ρ̄1Ū1v
′
1ξy + 2ρ′

1Ū1(u′
1 − ξt)

= p′
2 + 2ρ̄2Ū2(u′

2 − ξt)+ ρ′
2Ū2

2 + ρ̄2(u′
2 − ξt)

2 − 2ρ̄2Ū2v
′
2ξy + 2ρ′

2Ū2(u′
2 − ξt),

(3.2)

where u′ − ξt represents the streamwise velocity fluctuations relative to the unsteady shock
wave and v′ξy is the component of the transverse velocity fluctuations in the shock-normal
direction.

For one-dimensional steady mean flow, the vorticity fluctuations are written in terms of
the spatial gradients of velocity fluctuations, i.e.

Ω ′ = ∂v′

∂x
− ∂u′

∂y
. (3.3)

We proceed to derive an expression for shock-downstream vorticity fluctuations in terms
of the upstream flow quantities. To this end, we differentiate (3.2) to obtain ∂u′/∂y
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downstream of the shock as

Ū2
∂u′

2
∂y

= Ū2
∂u′

1
∂y

+ Ū2
∂

∂y

{
p′

1 − p′
2

2ρ̄1Ū1
+ Ū1ρ

′
1

2ρ̄1
− Ū2ρ

′
2

2ρ̄2

}

+ Ū2
∂

∂y

{
ξy(v

′
2 − v′

1)+ ρ′
1(u

′
1 − ξt)

ρ̄1
− ρ′

2(u
′
2 − ξt)

ρ̄2

}

+ Ū2
∂

∂y

{
(u′

1 − ξt)
2

2Ū1
− (u′

2 − ξt)
2

2Ū2

}
. (3.4)

We follow the approach of Sinha (2012) to derive a relation for the gradient ∂v′/∂x.
We write the momentum equation in the y-direction separately for shock upstream and
downstream flow-fields and retain terms up to second-order in fluctuations, i.e.

∂v′
1

∂t
+ Ū1

∂v′
1

∂x
+ 1
ρ̄1 + ρ′

1

∂(P̄1 + p′
1)

∂y
+ (u′

1 − ξt)
∂v′

1
∂x

+ v′
1
∂v′

1
∂y

= 0, (3.5a)

∂v′
2

∂t
+ Ū2

∂v′
2

∂x
+ 1
ρ̄2 + ρ′

2

∂(P̄2 + p′
2)

∂y
+ (u′

2 − ξt)
∂v′

2
∂x

+ v′
2
∂v′

2
∂y

= 0. (3.5b)

These two equations can be combined and rearranged to get an expression for the
shock-downstream velocity gradient as

Ū2
∂v′

2
∂x

= ξytΔŪ + 1
ρ̄1

∂p′
1

∂y
− 1
ρ̄2

∂p′
2

∂y
+ Ū1

∂v′
1

∂x
− ρ′

1

ρ̄2
1

∂p′
1

∂y
+ ρ′

2

ρ̄2
2

∂p′
2

∂y
+ (u′

1 − ξt)
∂v′

1
∂x

− (u′
2 − ξt)

∂v′
2

∂x
+ v′

1
∂v′

1
∂y

− v′
2
∂v′

2
∂y
, (3.6)

where ΔŪ = (Ū2 − Ū1) and the momentum conservation equation in the shock-transverse
direction is used to replace time derivatives of velocity in terms of ξyt.

We now combine (3.4) and (3.6) to write the shock-downstream vorticity fluctuations,
and collect the first and second-order terms in Ω(1) and Ω(2), respectively. Because the
vorticity wave upstream of the shock does not produce any density or pressure fluctuations,
these are set to zero. We have

Ω
(1)
2 = r

∂v′
1

∂x
− ∂u′

1
∂y

+ ξyt(1 − r)+ 1
ρ̄1Ū2

∂p′
1

∂y
− 1
ρ̄2Ū2

∂p′
2

∂y
− ∂

∂y

[
p′

1 − p′
2

2ρ̄1Ū1
− Ū2ρ

′
2

2ρ̄2

]
,

(3.7a)

Ω
(2)
2 = (u′

1 − ξt)

Ū2

∂v′
1

∂x
− (u′

2 − ξt)

Ū2

∂v′
2

∂x
− ∂

∂y

[
(u′

1 − ξt)
2

2Ū1
− (u′

2 − ξt)
2

2Ū2

]
+ v′

1

Ū2

∂v′
1

∂y

− v′
2

Ū2

∂v′
2

∂y
− ∂ξy(v

′
2 − v′

1)

∂y
+ ∂

∂y
ρ′

2(u
′
2 − ξt)

ρ̄2
+ ρ′

2

Ū2ρ̄
2
2

∂p′
2

∂y
. (3.7b)

The first-order vorticityΩ(1)
2 obtained from (3.7a) is analogous to the post-shock vorticity

obtained from LIA, and figure 6 shows a match between the current form and that
presented by Sinha (2012). However, Ω(2)

2 includes the second-order nonlinear effects in
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100
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|Ω
2
(1)|/ε

Figure 6. Comparison of the first-order, shock-downstream vorticity fluctuations magnitude |Ω(1)
2 | normalized

by the amplitude of upstream vorticity wave ε, as obtained from weakly nonlinear framework (line) and LIA
(symbol) for α = 20◦ (circle/solid line), α = 30◦ (square/dash–dotted line) and α = 40◦ (triangle/dashed line).

shock-downstream vorticity fluctuations. The last two terms in (3.7b) represent the effects
of mass flux and baroclinic generation of vorticity. These terms represent the effect of
thermodynamic fluctuations downstream of the shock and their contribution is found to
be negligible. This is because of the relatively small magnitude of the shock downstream
entropy mode (see figure 2).

After omitting these terms, (3.7b) can be rearranged in the following form to identify
the dominant physical mechanisms responsible for higher-order vorticity fluctuations
downstream of the shock,

Ω
(2)
2 ≈ (u′

1 − ξt)Ω
′
1 − (u′

2 − ξt)Ω
′
2

Ū2︸ ︷︷ ︸
Ωa

−[r(v′
1 + Ū1ξy)− (− cotαu′

2 + Ū2ξy)]ξyy︸ ︷︷ ︸
Ωb

+ (r − 1)

[
∂

∂y
(u′

1 − ξt)
2

2Ū1
− ξy

∂v′
1

∂y
− cd cotα(u′

1 − u′
2)ξyy

]
︸ ︷︷ ︸

Ωc

, (3.8)

where cd = (r + 1)/(r − 1). A detailed derivation of this equation is given in Appendix A.
The first group of terms, denoted by Ωa, represent the turbulent transport of vorticity

fluctuations across the unsteady shock wave. The process is driven by the streamwise
velocity fluctuations in the shock frame of reference (u′ − ξt) and the net convective flux
of vorticity fluctuations across the shock wave is encapsulated in Ωa.

The second group of terms denoted by Ωb is a product of the shock-transverse velocity
fluctuations v′ + Ūξy with the curvature ξyy of the deformed shock wave. A curved shock is
known to generate vorticity via Crocco’s theorem and it appears as a second-order effect in
shock–vorticity wave interaction. The curvature effect inΩb is also similar to the vorticity
produced owing to the curvature of a tangential stress-free surface (Longuet-Higgins
1992, 1998).
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Figure 7. Variation of normalized Ω(2)
2 from (3.8) (symbol) and Ωa +Ωb (line) at α = 20◦ (square/solid

line), α = 30◦ (circle/dashed line) and α = 40◦ (triangle/dash–dotted line).

The remaining terms are grouped together as Ωc and it is proportional to the factor
r − 1. Note that r is the density ratio across the shock wave and is close to unity for weak
shock waves; hence, the contribution ofΩc is expected to be small for such cases. Figure 7
compares the amplitude of Ω(2)

2 in (3.8) and the amplitude of Ωa +Ωb for α = 20◦, 30◦
and 40◦. Second-order vorticity amplitude increases with M1 and reaches an asymptotic
limit (not shown). The plot showsΩc has negligible contribution to second-order vorticity
below M1 ≈ 3. In other words, second-order contributions to shock-downstream vorticity
fluctuations for lower α and M1 arise primarily from the shock curvature and turbulent
flux of vorticity across the shock.

It is easy to check that the second-order vorticity Ω(2) given by (3.8) is proportional to
ε2, as terms such as u′,Ω ′, ξt are proportional to ε (see § 2.1). We therefore divideΩ(2) by
ε2 and further normalize it by kŪ1 to get a non-dimensional parameter φ that characterizes
the second-order shock-downstream vorticity fluctuations,

φ(M1, α) = |Ω(2)
2 |

ε2Ū1k
≈ |Ωa| + |Ωb|

ε2Ū1k
. (3.9)

Here, | · | represents complex amplitude. The complex amplitudes of Ωa and Ωb can be
written in terms of the LIA transfer coefficients of vorticity Zvv , pressure Zvp and shock
deformation Zvx,

|Ωa|
ε2Ū1k

= −r sinα + sinα
Z2
vv

r
+ sinα

(
cosαpZvvZvp

r sinαsγM2ζ

)

− iZvx cosα
(

r − Zvv sinα
sinαs

)
, (3.10)
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|Ωb|
ε2Ū1k

= sin2 α iZvx

{
r(− cosα + sinα iZvx)

−1
r

[
− cotα

(
sinαsZvv + cosαpZvp

γM2ζ

)
+ sinα iZvx

]}
. (3.11)

In (3.10), the first term corresponds to the upstream contribution to the turbulent transport
of vorticity (Ωa), while the downstream contribution to Ωa can be written as

(u′
2 − ξt)Ω

′
2 = u′Ω

2 Ω ′
2 + u′p

2 Ω
′
2 − ξtΩ

′
2, (3.12)

where the velocity fluctuation is split into its vortical (u′Ω
2 ) and acoustic (u′p

2 ) components.
The vortical part is given by the Z2

vv/r term in (3.10). However, the ZvvZvp term
in (3.10) corresponds to the transport of shock-downstream vorticity owing to the
velocity fluctuations in the acoustic waves generated by the shock. This represents an
inter-modal interaction between the post-shock vorticity and acoustic components to
generate second-order vorticity fluctuations.

4. Validation of weakly nonlinear framework

We present results from LIA and inviscid numerical simulations (henceforth denoted
as N) for shock-upstream Mach numbers, M1 = {1.25, 1.5, 1.75, 2} at vorticity wave
inclinations, α = {20◦, 30◦, 40◦}. Higher values of M1 and α increase the numerical
error, while the deviation from LIA is too low for lower values. We choose this range
as numerical simulations are performed for a fixed value of shock parallel wavenumber
ky = 2. The incidence angles chosen are also in the propagating regime of downstream
acoustic waves.

Figure 8 shows the comparison of the y-component of instantaneous vorticity profiles
immediately downstream of the shock for ε = 0.01 and 0.2 at M1 = 1.5 and α =
25◦. The vorticity profiles are normalized with the amplitude of shock-downstream
vorticity (|Ω(1)

2 |) computed from (3.7a). Normal shock amplifies the vorticity owing to
compression, and the amplification across the shock is a function of the upstream wave
for a given α and M1. Moreover, the wavelength of the vorticity wave decreases across
the shock and it depends on the incidence angle α. LIA predicts sinusoidal patterns
for downstream vorticity waves, and the vorticity profiles from the LIA and numerical
simulations show excellent agreement for ε = 0.01. However, as we increase ε to 0.2,
vorticity profiles from numerical simulations deviate from LIA. Nonlinear effects arising
from modal interactions become dominant at higher ε, as expected.

Figure 9 shows a similar comparison of LIA and numerical simulations at M1 = 1.25
and 1.75 for ε = 0.2 and α = 25◦. Vorticity profiles from LIA and numerical simulations
show only a small deviation at M1 = 1.25, whereas the difference grows at M1 = 1.75.
This implies that the effect of nonlinear interactions at a given ε increases with M1. Our
goal is to study these nonlinear effects using the weakly nonlinear framework presented
in the previous section for various values of shock upstream vorticity amplitude (ε), Mach
number (M1) and vorticity wave incidence angle (α).

A measure of the deviation of LIA from numerical simulations is obtained using the idea
of root-mean-square (r.m.s.) error σN , which is calculated at a position (x) just downstream
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Figure 8. Variation of y-component of vorticity from LIA (solid line) and numerical simulations (dashed line)
immediately downstream of the shock for (a) ε = 0.01; (b) ε = 0.2, for α = 25◦ and M1 = 1.5. Here, Ω ′

2 is
normalized with the amplitude of Ω(1)
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Figure 9. Variation of y-component of vorticity from LIA (solid line) and numerical simulations (dashed line)
immediately downstream of the shock for (a) M1 = 1.25; (b) M1 = 1.75, for ε = 0.2, α = 25◦. Here, Ω ′

2 is
normalized with the amplitude of Ω(1)

2 .
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Figure 10. Variation of σN for α = 25◦ and M1 = 1.5 (a) at various x locations downstream of the shock for
ε = 0.2, (b) with ε at various x locations: nx = 5 (x ≈ 0.075, circle); nx = 10 (x ≈ 0.15, triangle); nx = 40
(x ≈ 0.625, square); nx = 80 (x ≈ 1.25, +); nx = 160 (x ≈ 2.5, diamond).

of the shock as

σN = 1
Ū1k

√√√√ 1
NyNt

Nt∑
m=1

Ny∑
n=1

(ΩN −Ω
(1)
2 )2, (4.1)

where ΩN represents the fluctuations in vorticity obtained from numerical simulations; it
includes both linear and nonlinear effects. The difference ΩN −Ω

(1)
2 thus represents the

contribution of nonlinear effects. Here, Ny is the number of grid points in y direction and
Nt is the number of time instants used for calculating σN .

Figure 10(a) shows the variation of σN with respect to x, downstream of the shock for
ε = 0.2, M1 = 1.5 and α = 25◦. The shock lies at x = 0, and we observe a sudden spike
in σN at that location. This is because, mathematically, the shock is a discontinuity in LIA
with zero thickness, whereas the numerically captured shock spreads over multiple grid
points. Calculation of σN inside this finite shock thickness leads to a large error, which
is difficult to formalize using the present analysis. We ensure that the point used for the
calculation of σN does not lie in this region.

We evaluate the variation of σN at the locations indicated by black markers in
figure 10(a) for various ε (see figure 10b). The value of σN immediately downstream of the
shock is relatively constant over 10–20 grid points before deviating considerably. The data
show the sensitivity of σN to the x location where it is evaluated. We choose x = 0.075
(nx = 5) as the location downstream of the shock, where σN is evaluated in this study.

The location for the evaluation of σN is chosen considering its potential use in analysing
shock–turbulence interaction, where the near-field is dominated by the inviscid acoustic
adjustment. It is characterised by non-monotonic variation of the Reynolds stresses and
is predicted well by LIA (at least for low turbulence intensities; see the work of Ryu &
Livescu 2014). The location of the peak turbulent kinetic energy is often used in literature
(Chen & Donzis (2019), Larsson et al. (2013), etc.) to study the amplification of turbulence
by the shock wave. Viscous dissipation effects are found to be important downstream of
the peak turbulent kinetic energy (TKE) location. We, therefore, restrict our analysis to the
region immediately downstream of the shock (nx = 5 or 10), so as to capture the effect of
the shock directly.
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Figure 11. Variation of σN with ε for α = 25◦ and M1 = 1.5 for various total time instances (Nt) over one
wave period: Nt = 2 (dash–dotted line); Nt = 5 (dashed line); Nt = 10 (solid line) and Nt = 20 (triangle).

Effect of variation of the number of time instances (Nt) used in the evaluation σN is
shown in figure 11. We start with Nt = 2 and increase the number of time instances within
a wave period. For Nt = 20, results are found to be statistically converged.

4.1. Comparison with numerical simulations
Variation of σN is shown in figure 12 for α = {20◦, 30◦, 40◦}, for ε ranging from 0.01 to
0.25 and M1 = {1.25, 1.5, 1.75, 2}. We notice that σN for all the cases considered increases
with ε and M1 for a given α. The nonlinear effects are significant at higher ε and M1 owing
to the modal interaction at a given α. The results agree with the assertion of the modal
interaction made by Chu & Kovásznay (1958) with a problem involving a shock wave for
the first time.

We compare the deviation of the numerical solution from LIA with the second-order
effects predicted by the weakly nonlinear framework in figure 13. Note that the nonlinear
effects in numerical simulation σN are a function of ε, M1 and α. However, φ includes
the theoretical second-order effects of M1 and α, while the ε2 variation of Ω(2)

2 is taken
out from the definition of φ. We plot the ratio σN/φ to study the effect of M1 and α on
the higher-order vorticity generated by the shock wave. Figure 13 shows that the Mach
number variation of σN is collapsed by the ratio σN/φ and the data show a clear trend of
ε2 variation at higher ε values. There is a systematic deviation towards ε scaling in the
low amplitude range and it is discussed subsequently. The ε2 scaling is a direct prediction
of weakly nonlinear framework and the numerical data support this finding. Moreover, the
collapse of the data (for each α) shows that the Mach number scaling predicted by the
theory also holds for the numerical solutions. The same is true for the α scaling shown in
figure 14. The deviation of the numerical solution from LIA results collapse to a single
curve when scaled by the second-order vorticity magnitude obtained from the weakly
nonlinear framework. This collapse proves the validity of the weakly nonlinear framework.
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Figure 12. Variation of σN with ε at M1 = 1.25 (square), M1 = 1.5 (triangle), M1 = 1.75 (pentagon) and
M1 = 2 (circle) for: (a) α = 20◦; (b) α = 30◦ and (c) α = 40◦.
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Figure 13. Comparison of WNLF predictions and numerical simulations results. Variation of σN/φ for M1 =
1.25 (square), M1 = 1.5 (triangle), M1 = 1.75 (pentagon) and M1 = 2 (circle) for: (a) α = 20◦; (b) α = 30◦
and (c) α = 40◦. The variation of σN with ε collapses to a single curve when scaled by the magnitude of φ.
Lines show the ε2 (solid) and ε (dashed) variation.
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Figure 14. Collapse of the numerical data with respect to incidence angle: the ratio σN/φ for different α (20◦
square, 30◦ triangle and 40◦ circle) plotted against ε for different Mach numbers. Lines show the ε2 (solid) and
ε (dashed) variation with (a) M1 = 1.5 and (b) M1 = 2.
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Figure 15. The absolute error |σN − φ| scaled by φ plotted as a function of ε (a) for varying M1 (1.25, square;
1.5, triangle; 1.75, pentagon and 2.0, circle) for α = 20◦ and (b) for varying α (20◦, square; 30◦, triangle and
40◦, circle) at M1 = 2. Line represents the ε variation.

Figure 15 plots the difference between σN and φ at various M1 and α; the data are
once again scaled by φ. It is observed that the difference is in the range 10−2 to 10−4

and approximately varies linearly with ε. Although the difference is small in magnitude
compared with the data presented in figures 13 and 14, it is important to investigate the
reasons behind this discrepancy.

The discrepancies between σN and φ are possibly related to the numerical challenges
faced in the computations and the procedure used to evaluate σN . The error related to
numerical techniques are discussed by Johnsen et al. (2010) and have been minimized
while carrying out this study. The selection of the x location used to calculate σN
downstream of the shock and the phase difference between theoretical and numerical
waves upstream of the shock contributes to some error. We ensure that we minimize these
errors and it is found to be of the order of 10−5 or smaller.

Finally, and perhaps more significantly, the numerical simulations capture the unsteady
oscillating shock wave on a Cartesian computational grid. This introduces errors in shock
capturing owing to misalignment between the shock shape and the grid lines (Ching
et al. 2019; Kitamura 2013), and creates discrete jumps in the shock profile, as shown
in figure 16. Note that the figure is highly magnified in the vicinity of the shock wave,
such that the shock profile over two grid cells is clearly visible in terms of the pressure
contours. The magnification in the x-direction exceeds that in the y-direction by a factor of
5. Each jump introduces an additional curvature to the numerically captured shock wave,
and it generates non-physical vorticity, entropy and related quantities behind the shock. It
is observed that the number of jumps in the shock wave increases proportionately with the
amplitude of the shock motion (compare figures 16(a) and 16(b)). The shock amplitude,
in turn, is proportional to the amplitude of the incoming vorticity wave (ε), as per the
assumption in linear theory. The shock-grid misalignment error can therefore be expected
to scale linearly with ε, denoted by the dashed lines in figure 15.

Note that the sinusoidal deformation of the shock wave is an inherent feature of the
shock–vorticity wave interaction. It cannot be neglected even at low values of ε. The
shock-capturing error is therefore small, but finite at low ε. As we increase the amplitude
of the upstream vorticity wave, higher-order effects become important and the scaling
shifts from O(ε) to O(ε2) (see figures 13 and 14). After removing the O(ε) error shown
in figure 15, the variation of the corrected σN/φ is plotted in figures 17 and 18. We find
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Figure 16. Pressure contours show corrugations in the numerically captured shock wave on a Cartesian grid
leading to shock–grid misalignment error for α = 25◦ and M1 = 1.5: (a) ε = 0.1 %; (b) ε = 0.2 %.
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Figure 17. Collapse with respect to M1: the ratio σN/φ after removing O(ε) error for different α (20◦, square;
30◦, triangle and 40◦, circle) plotted against ε for different Mach number. Line shows the ε2 variation.

that the scaled variation now varies clearly as O(ε2) over the entire range of parameters
considered in this work.

The magnitude of φ constitutes the nonlinear effects in vorticity as given by (3.8) and
follows the trend of σN accurately after correcting for numerical error. This means that the
physics which governs nonlinear effects in vorticity as a function of M1 is captured by φ
in the weakly nonlinear range of ε ≤ 0.25. These results strongly confirm the usefulness
of the weakly nonlinear framework presented in § 3.1, which is correct up to second-order
in ε.

It is important to study the scaling of these nonlinear effects with respect to
M1. Existence of scaling allows the predictions of variations at different M1 without
performing numerical simulations for each individual case. The results from LIA can
also be improved by offsetting for the error accordingly. Scaling could be valuable for
problems of the shock–turbulence interaction, where DNS of the problem at higher M1
becomes increasingly more difficult to perform.

4.2. Parameter space
The weakly nonlinear framework presented in this work uses the results of LIA to study
the nonlinear effects in the shock–vorticity interaction. As per LIA, the shock-downstream
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Figure 18. Variation for σN scaled by the magnitude of φ with ε after removing O(ε) error for α = 20◦
(square), α = 30◦ (triangle) and α = 40◦ (circle) for (a) M1 = 1.25, (b) M1 = 1.5, (c) M1 = 1.75, (d) M1 = 2.
Solid line shows ε2 variation.

disturbance field is a function of the upstream vorticity wave amplitude ε, incidence angle
α and the shock strength given by the flow Mach number M1. We consider these three
parameters for characterizing the nonlinear effects. The results from linear theory also
depend on the wavenumber of the upstream wave. Here, we keep the transverse component
of the upstream wavenumber constant (ky = 2). Therefore, the upstream wavenumber k =
ky/ sinα changes with the incidence angle.

Nonlinear effects in the shock–disturbance interactions are primarily driven by the
intensity of fluctuations (ε) upstream of the shock. The separation of linear and nonlinear
regimes based on ε is not clearly defined for such interactions. Here, we use existing
literature on the shock–turbulence interaction to guide the choice of the range of ε used
to study the nonlinear effects. Canonical shock–turbulence interactions are classified as
lying in either a wrinkled regime or a broken shock regime. At low disturbance intensities,
the shock front remains intact but has unsteady corrugation. At large values of turbulence
intensities, the shock front may disappear locally, giving rise to what are called as shock
holes. LIA does not predict shock holes and is therefore valid only in the wrinkled regime.
The same is expected to be true for the weakly nonlinear framework that builds upon the
LIA solution.

The criteria Mt/(M1 − 1) = 0.6 given by Donzis (2012b) is often used to demarcate
the wrinkled and broken-shock regimes, where Mt is the turbulent Mach number that
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quantifies the intensity of the upstream turbulent fluctuations. It is related to the vorticity
wave amplitude ε as Mt = εM1. We restrict the range of ε in our study to meet this criteria
for wrinkled shock interaction. For the chosen range of Mach numbers between 1.25 and
2.0, this gives the maximum value of ε to be between 0.12 and 0.3. We thus choose ε to
vary between 0.01 and 0.25 to study the weakly nonlinear effects at the shock wave. As
per (3.9), the normalized second-order vorticity Ω(2)

2 is proportional to ε2φ, where φ is
O(1). The deviation of the numerical solution from LIA is therefore expected to have a
magnitude ε2 ∼ 0.06 as can be observed from figure 12.

The nonlinearity at the shock wave is also driven by inter-modal interaction, as noted
in § 3. In the current study, the upstream disturbance field is purely vortical, while the
downstream disturbances include vorticity, acoustic and entropy modes. As per the LIA,
amplification across the shock is characterized by the transfer coefficients plotted in
figure 2. We note the high values of Zvv and Zvx in the vicinity of the critical incidence αc,
which can limit the applicability of LIA and the weakly nonlinear framework. The value
of αc is approximately 62◦ for the range of Mach numbers considered here, and we restrict
the range of α to approximately 60◦. The results for α = 20◦–40◦ are presented in § 4.1,
while the higher values of α are discussed in § 5.

We use the weakly nonlinear framework to explore second-order vorticity for Mach
numbers up to 5. The LIA transfer coefficients are found to reach close to their asymptotic
values in the hypersonic regime. The same is expected to hold for Ω(2)

2 . The comparison
with numerical solution (§ 4.1) is limited to Mach 2, primarily owing to the limitations
of the numerical methodology. The shock-grid misalignment error increases with shock
strength, which makes it difficult to perform a meaningful comparison with the theoretical
predictions. The same is true for incidence angles α beyond 40◦ and in the decaying regime
(α > αc).

The Mach number range from 1.25 to 2.0 is important in many high-speed flow
applications. The Mach number in a scramjet combustor is in this range, where
shock-induced mixing is important for efficient combustion. Shock–boundary layer
interactions in hypersonic intakes may have a higher Mach number at the boundary layer
edge, but the shock waves are highly inclined to the flow. The shock-normal Mach number
is much lower, often in the range of 1–2 for a free stream Mach number of 5 (Schulein
2006) and even as high as 13 (Pasha & Sinha 2012). Also, experiments studying the
shock–turbulence interaction in wind tunnels are conducted in the low supersonic range
because it is difficult and expensive to conduct them at higher M1.

5. Predictions of WNLF

We use the weakly nonlinear framework presented in § 3 to derive a limit for the validity
of LIA for a range of Mach numbers. The theory is also used to study the nonlinear effects
in vorticity at high M1 and α close to the critical angle (αc).

5.1. LIA limit
The applicability of LIA is evaluated by comparing the magnitude of the LIA-predicted
vorticity (Ω(1)

2 ) given by (3.7a) and that of the second-order effect (Ω(2)
2 ) given by WNLF

in (3.8). LIA is expected to be valid when

Ω
(2)
2 � Ω

(1)
2 . (5.1)
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Figure 19. Nonlinear effects in vorticity amplification represented using (a) a relative measure φ/ψ , (b) an
absolute measure εlimit.

We have from (3.9), φ = |Ω(2)
2 |/ε2Ū1k. Let us define ψ as

ψ = |Ω(1)
2 |

εŪ1k
. (5.2)

We plot the ratio φ/ψ as a function of M1, for different α, in figure 19(a). As M1 is
increased, for a given α, we observe that the ratio at first increases, reaches a maximum
value and then decreases to attain an asymptotic limit in the hypersonic range. This can
be understood in terms of the variation of the linear and second-order vorticity with Mach
number, as discussed below.

The ratio φ/ψ approaches zero in the limit M1 → 1, as φ → 0 and ψ → 1. This is
because

Ω
(1)
2 → Ω

(1)
1 /= 0 whereas Ω(2)

2 → 0, (5.3)

in this limit. In other words, the vorticity amplitude remains unaltered across an infinitely
weak shock, which results in a finite value of the downstream linear vorticity. By
comparison, the second-order vorticity becomes negligible in magnitude in the sonic limit.
This is because u′

1 = u′
2, Ω ′

1 = Ω ′
2 and ξt = ξy = 0 for a vanishing shock wave. Thus, the

contribution of Ωa in (3.8) drops out and there is no net turbulent transport in the case
of an infinitely weak shock wave. The other terms Ωb = Ωc = 0 by virtue of ξyy = 0 and
r = 1, respectively, which results in a vanishing value of the second-order vorticity in this
limit.

Using Taylor series expansion of φ and ψ in the vicinity of the sonic point and retaining
only the first-order term in Mach number, we can write

φ

ψ
= φ′(M1 − 1)

1 + ψ ′(M1 − 1)
≈ φ′(M1 − 1)+ O(M1 − 1)2, (5.4)

where φ′ and ψ ′ represent the derivative with respect to Mach number of the
corresponding function. The slope of the ratio φ/ψ in figure 19(a) is therefore determined
by the derivative φ′. For weak shocks, the second-order vorticity increases in magnitude
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Figure 20. The slope of φ and ψ in the limit of M1 → 1 as a function of incidence angle α.

with increasing Mach number (see figure 7). Thus, the derivative φ′ is positive, and it
increases with α in the propagating regime. However, the initial slope of ψ at M1 = 1 is
independent of Mach number, as

ψ = Zvv ∝ r, (5.5)

and

lim
M1→1

dψ
dM1

= lim
M1→1

dr
dM1

= 4
γ + 1

. (5.6)

The limiting slopes φ′ andψ ′ are plotted as a function of α in figure 20. Together, they give
an increasing trend for the ratio φ/ψ for Mach numbers close to 1. However, although both
Ω
(2)
2 and Ω(1)

2 reach asymptotic values in the large M1 limit, the growth of Ω(2)
2 becomes

smaller as M1 increases and reaches an asymptotic limit for smaller M1 when compared
with Ω(1)

2 (see figures 6 and 7 which plot φ and ψ). This results in a decreasing trend for
φ/ψ for Mach numbers beyond 2, as is observed in figure 19(a). In the large M1 limit,
this ratio reaches an asymptotic value that depends only on α. Thus, we get a local peak
in φ/ψ , which corresponds to the Mach number, where the second-order effects are the
largest compared with the first-order vorticity amplification, once the amplitude factors are
scaled out.

The ratio φ/ψ is also observed to increase with the incidence angle α (not shown).
This behaviour in the low-Mach-number regime is in line with the results presented
in figure 12 of § 4, whereas the variation for large Mach numbers is predicted using
the weakly nonlinear framework presented in § 3. In short, the LIA prediction of
vorticity amplification increases with α, as per the variation of Zvv shown in figure 2(a).
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In comparison, Ω(2)
2 varies as the product of two transfer coefficients, such as ZvvZvp or

ZvvZvv (as per (3.7b)) resulting in the observed trend in figure 2(a).
Next, we rewrite (5.1) in terms of the functions φ and ψ to arrive at a limit on ε for LIA

to be valid,

εlimit = 0.1
ψ

φ
. (5.7)

Here, a factor of 0.1 is introduced to change the inequality to equality under the assumption
that the second-order vorticity is less than or equal to 10 % of the linear vorticity in
magnitude. This corresponds to a maximum of 10 % error in LIA results.

Figure 19(b) shows the variation of εlimit with M1 for various α values evaluated using
(5.7). As expected, the variation of εlimit with M1 at a given α is non-monotonic. It
decreases with increasing M1 for weak shocks, reaches a local minima and subsequently
increases for higher Mach numbers. It is opposite to the trend observed in figure 19(a),
where the ratio φ/ψ gives the relative measure of nonlinearity in vorticity. However,
figure 19(b) provides an absolute quantitative limit on the upstream vorticity wave
amplitude as a function of flow parameters. At a given α and M1, ε values above εlimit
would breach the limit of LIA validity, which results in the prediction that have more than
10 % error.

The minimum value of εlimit is attained at M1 � 2 for the different α values shown in
figure 19(b). This poses the strictest limit on the range of upstream vorticity magnitude ε
for which LIA results are accurate. At lower Mach numbers (M1 < 2), higher values of ε
are permissible. In fact, the εlimit curves have a singular behaviour at M1 = 1. This can be
resolved by noting the limiting behaviour of the first-order vorticity and the second-order
vorticity given in (5.3).

As noted above, εlimit increases with Mach number for M1 > 2, which implies that LIA
is valid for a larger range of ε at higher Mach numbers, or equivalently, for stronger shock
waves. The mean compression of the shock amplifies vorticity disturbances in the flow
and this linear effect is accurately predicted by LIA. A stronger shock leads to a higher
amplification of vorticity amplitude. However, the second-order vorticity is generated by
nonlinear effects owing to the inter-modal interaction and shock-curvature effects, as per
the weakly nonlinear framework. The amplitude of the downstream Kovásznay modes and
the shock oscillation both depend on the disturbance level upstream of the shock. The
εlimit in figure 19(b) can thus be interpreted as a balance between two competing effects. A
stronger shock favours the linear effect owing to the mean compression of the shock, while
larger amplitude disturbance (higher ε) increases the nonlinear contribution. For a given
Mach number, the value of εlimit is a function of the vorticity wave incidence angle. For
the different values of α presented in figure 19(b), εlimit increases monotonically at higher
Mach numbers, which indicates that LIA has a higher range of validity for strong shock
waves.

The validity of LIA for the shock–turbulence interaction is usually prescribed in terms of
Mt and M1. For example, the criteria Mt/(M1 − 1) = 0.6 is frequently used to demarcate
the wrinkled regime and broken shock interactions (Donzis 2012b). The εlimit presented
above can be interpreted in a similar vein by noting that ε = Mt/M1, such that the values
plotted in figure 19(b) give an upper limit on the ratio of Mt to M1 for the validity of
LIA for the shock–vorticity wave interaction. As per the weakly nonlinear framework, this
limit is a function of the incidence angle and shock strength. For a given Mach number,
(5.7) can be integrated over all possible α (in three-dimensional space) to get an estimate
of εlimit for the shock–turbulence interaction. Further, the limit is derived based on the
magnitude of the second-order vorticity. It may be different if we consider nonlinear
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Figure 21. Variation of Ω(2)
2 from (3.8) (circle), Ωa +Ωb (dashed line) and Ωa +Ωb +Ωc (triangle) with

(a) M1 at α = 60◦, (b) α at M1 = 3.

effects in other quantities like Reynolds stresses and downstream pressure fluctuations.
The weakly nonlinear framework can be extended to study other quantities of interest to
get a more general criterion for the validity of LIA.

5.2. Second-order effects at high M1 and α
We use the expressions derived in § 3 to analyse the nonlinear effects in vorticity
amplification for high α and M1 regime to understand the underlying physics better.
Figure 21 shows that the second-order vorticity increases with Mach number (M1) and
reaches an asymptotic value in the hypersonic limit. However, φ exhibits a sharp increase
near αc, by approximately a factor of 10 compared with its value at α = 30◦ considered in
§ 4.

Figure 22 plots the variation of the constituent termsΩa,Ωb andΩc of the second-order
vorticity as a function of M1 and α. At low values of α (see figure 22a), the second-order
vorticity is dominated by the turbulent transport term Ωa and the shock-curvature effect
Ωb. The Ωc term is comparatively small in magnitude and was neglected in the analysis
presented earlier. The Ωc constitutes the additional effect of the turbulent flux of vorticity
and shock-curvature along with dilatation, which becomes significant at α close to αc.
The nonlinear effects at α close to αc is dominated by Ωb (see figure 22b). The other
parts, Ωa and Ωc, have a non-negligible contribution to second-order vorticity at such
high α. The dramatic rise in Ωb for high incidence angles is also visible in figures
22(c) and 22(d), which plot the variation of the constituent terms at M1 = 1.75 and 5,
respectively.

The variation of Ω(2)
2 and its constituent terms at high α can be interpreted in terms of

the transfer coefficients presented in figure 2(a). Both Zvv and Zvx show a sharp rise in the
vicinity of the critical angle and all the transfer coefficients, including Zvp, have singular
behaviour at αc. The resulting intermodal interaction terms in (3.10) and (3.11) also show
a similar behaviour, and this would severely restrict the validity of LIA at the critical
angle.
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Figure 22. Variation of the magnitude of Ωa (circle), Ωb (triangle) and Ωc (square) from (3.8) with M1:
(a) at α = 30◦; (b) at α = 60◦ and with α (c) at M1 = 1.75; (d) at M1 = 5.

6. Summary and conclusions

In this paper, we present a weakly nonlinear framework for the interaction of
two-dimensional vorticity waves with a normal shock. The shock–vorticity interaction
is one of the elementary problems that form the basis of linear interaction analysis to
study the shock–turbulence interaction. The weakly nonlinear framework presented is
based on the inviscid and ideal gas assumptions, where the shock is assumed to be a
discontinuity. The nominally normal shock wave distorts and oscillates about its mean
position in response to the unsteady fluctuations passing through it. We study second-order
effects at the shock wave to identify the physical mechanisms responsible for nonlinear
amplification of vorticity across the shock. A range of shock Mach numbers (M1), vorticity
wave amplitudes (ε) and incidence angles (α) up to the critical angle are considered.

It is found that the second-order amplification of vorticity increases with the incidence
angle of the vorticity wave to reach a singularity at the critical angle. The variation with
M1 is non-monotonic, with a rapid rise at low M1 to reach an asymptotic value in the
hypersonic limit. The analysis predicts that the generation of second-order vorticity at the
shock wave is primarily owing to shock curvature and turbulent transport of vorticity. The
turbulent transport has a significant contribution from intermodal interaction between the
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vorticity and acoustic waves generated at the shock, and it is dominant at low α and low M1
except close to the sonic limit. However, the shock curvature plays a vital role in vorticity
amplification at high α close to the critical value.

We use a high-order accurate numerical method to compute the shock–vorticity
interaction for a range of M1, ε and α. The simulations employ a fifth-order WENO
method in the region of the shock wave and a sixth-order central difference scheme in
the rest of the domain. The deviation of the numerical solution from LIA prediction,
denoted by σN , is quantified and compared with predictions of the weakly nonlinear
framework. It is found that σN has a second-order variation with ε and this is in
line with the second-order vorticity magnitude obtained analytically. The σN value
also increases with M1 and α, matching the trend in the weakly nonlinear framework.
Further, the theoretical predictions are able to collapse the numerical data over the
range of both Mach number and α tested in the simulations. Thus the weakly nonlinear
framework is a valuable addition to LIA that is widely used to study the shock–turbulence
interaction.

An important additional contribution of the present framework is to predict a
limit to the validity of LIA. We compare the magnitude of vorticity amplification
predicted by LIA with the second-order vorticity obtained from the weakly nonlinear
analysis. The results are presented in the form of an upper bound to the vorticity
wave amplitude, for which the error caused by neglecting higher-order terms is less
than 10 %. The limiting ε value is found to be high for the M1 → 1 and M1 → ∞
limit, with local minima near M1 = 2 for γ = 1.4. This implies that LIA is most
restrictive at this M1, with a higher ε range of applicability at higher and lower Mach
numbers.

The analysis presented in this work provides a template to study nonlinear effects
in more general interactions such as a vortex passing through a shock and the
shock–turbulence interaction. The analysis can also be extended to other kinds of upstream
disturbances, namely, acoustic waves, entropy waves or their combinations. For a given
fundamental mode, its interaction with other modes is governed by the underlying transfer
coefficients. For the prediction of nonlinear effects in downstream vorticity in the range
studied, we find that the interaction of the vorticity mode with the acoustic mode is most
dominant.

The framework exhibited in this paper considers the nonlinear effects arising from the
interaction of a pure vorticity wave with a normal shock in an ideal gas. If we consider
fluctuations of thermodynamic quantities upstream of the shock, equations need to be
adjusted accordingly. This framework is valid specifically in a weakly nonlinear regime
where the amplitude of upstream fluctuations is not too large to distort the shock structure
significantly. Moreover, the weakly nonlinear framework presented here is valid only at the
shock. Further investigation is needed to study the effects of modal interaction downstream
of the shock.
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Appendix A

Higher-order effects in vorticity are given by (3.7b). We derive Ωa, Ωb and Ωc given in
(3.8) as follows. We have

Ω
(2)
2 = (u′

1 − ξt)

Ū2

∂v′
1

∂x
− (u′

2 − ξt)

Ū2

∂v′
2

∂x
− ∂

∂y

[
(u′

1 − ξt)
2

2Ū1
− (u′

2 − ξt)
2

2Ū2

]
+ v′

1

Ū2

∂v′
1

∂y

− v′
2

Ū2

∂v′
2

∂y
− ∂ξy(v

′
2 − v′

1)

∂y
+ ∂

∂y
ρ′

2(u
′
2 − ξt)

ρ̄2
+ ρ′

2

Ū2ρ̄
2
2

∂p′
2

∂y
. (A1)

The terms corresponding to shock-unsteadiness, baroclinic torque and the effect of the
fluctuations in mass flux are found to be negligible. Therefore, simplifying and rearranging
(A1) gives

Ω
(2)
2 ≈ (u′

1 − ξt)Ω
′
1 − (u′

2 − ξt)Ω
′
2

Ū2
+ v′

1 + Ū1ξy

Ū2

∂v′
1

∂y
− v′

2 + Ū2ξy

Ū2

∂v′
2

∂y

+ (u′
1 − u′

2)

Ū2

∂ξt

∂y
+ b(u′

1 − ξt)

Ū2

∂(u′
1 − ξt)

∂y
− (v′

2 − v′
1)ξyy + (1 − r)ξy

∂v′
1

∂y
, (A2)

≈ (u′
1 − ξt)Ω

′
1 − (u′

2 − ξt)Ω
′
2

Ū2
+ [cotα(u′

1 − u′
2)+ (1 − r)v′

1 + (Ū2 − rŪ1)ξy]ξyy

+ (r − 1)

[
∂

∂y
(u′

1 − ξt)
2

2Ū1
− ξy

∂v′
1

∂y
−

(
r + 1
r − 1

)
cotα(u′

1 − u′
2)ξyy

]
, (A3)

≈ r(u′
1 − ξt)Ω

′
1

Ū1
− (u′

2 − ξt)Ω
′
2

Ū2︸ ︷︷ ︸
Ωa

+ [−r(v′
1 + Ū1ξy)+ (− cotαu′

2 + Ū2ξy)]ξyy︸ ︷︷ ︸
Ωb

+ (r − 1)

[
∂

∂y
(u′

1 − ξt)
2

2Ū1
− ξy

∂v′
1

∂y
− cd cotα(u′

1 − u′
2)ξyy

]
︸ ︷︷ ︸

Ωc

, (A4)

where cd = (r + 1)/(r − 1). Thus we have for second-order vorticity fluctuations

Ω
(2)
2 ≈ Ωa +Ωb +Ωc. (A5)
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