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Except in the trivial case of spatially uniform flow, the advection–diffusion operator of a
passive scalar tracer is linear and non-self-adjoint. In this study, we exploit the linearity
of the governing equation and present an analytical eigenfunction approach for computing
solutions to the advection–diffusion equation in two dimensions given arbitrary initial
conditions, and when the advecting flow field at any given time is a plane parallel shear
flow. Our analysis illuminates the specific role that the non-self-adjointness of the linear
operator plays in the solution behaviour, and highlights the multiscale nature of the scalar
mixing problem given the explicit dependence of the eigenvalue–eigenfunction pairs on a
multiscale parameter q = 2ik Pe, where k is the non-dimensional wavenumber of the tracer
in the streamwise direction, and Pe is the Péclet number. We complement our theoretical
discussion on the spectra of the operator by computing solutions and analysing the effect of
shear flow width on the scale-dependent scalar decay of tracer variance, and characterize
the distinct self-similar dispersive processes that arise from the shear flow dispersion of
an arbitrarily compact tracer concentration. Finally, we discuss limitations of the present
approach and future directions.
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1. Introduction

Stirring and mixing results from the combined action of differential advection and
molecular diffusion on a material quantity (Thiffeault 2008), and is a ubiquitous process
in geophysical, environmental and industrial fluids (see e.g. Faller & Auer 1988; Biferale
et al. 1995; Seo & Cheong 1998; Haynes & Shuckburgh 2000; Neuman & Tartakovsky
2009; Boano et al. 2014; Van Sebille et al. 2018). Despite its importance, a complete
analytical description of stirring and mixing remains an open problem owing to the
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complex interplay between differential advection, diffusion and the multiscale nature of
the problem, highlighted by the multifractal behaviour that the scalar field exhibits even
when advection is a spatially smooth function of space, usually a single Fourier mode
(Aref 1984; Pierrehumbert 1994; Antonsen et al. 1996; De Moura 2014).

The evolution of a scalar tracer under the combined effect of molecular mixing and
stirring is given by the advection–diffusion equation, written in the absence of sources
and sinks as

∂θ

∂t
+ u · ∇θ = κ ∇2θ, (1.1)

where κ is the molecular diffusivity, and u is a time-varying, non-divergent velocity field.
The tracer concentration θ is considered dynamically passive when its evolution has no
effect on the inertia of the flow so that the velocity u is prescribed (although u need not
solve the Navier–Stokes equations; Majda & Kramer 1999). From a theoretical point of
view, (1.1) provides the simplest example of a linear non-self-adjoint operator, which is
ubiquitous in many physical sciences (Miri & Alu 2019), and whose qualitative properties
are not fully understood (Childress & Gilbert 1995; Sukhatme & Pierrehumbert 2002;
Giona et al. 2004). Furthermore, the study of stirring and mixing via (1.1) offers many of
the same mathematical challenges as the study of fluid turbulence while remaining a linear
and therefore less complicated physical model (Pierrehumbert 2000).

In this study, we compute the spectra of the operator (1.1) and use it to study the
properties and behaviour of analytical solutions in a doubly periodic domain with arbitrary
initial conditions. We focus on steady shear flows, as these represent a building block for
more complex planar flow fields relevant to a wide range of applications involving flow
fields that can be defined by

u(x, t) = U0

{
U( y + ξ)î, if nT < t < nT + T/2,

V(x + ξ)ĵ, if nT + T/2 < t < (n + 1)T,
(1.2)

where T is the period, n = 0, 1, . . ., ξ is a random variable, U0 is the maximum flow
amplitude, and U, V are the integrable functions of the spatial coordinates. (In this paper,
we fix U0 to a constant value, but it can generally be considered a piecewise constant.) The
flow (1.2) defines a wide class of flows that are of geophysical and theoretical relevance,
and have been used extensively in the literature. Among these are the time-oscillating
shear flows when U0 is time-periodic, ξ is constant and T → ∞ (see Young, Rhines &
Garrett 1982; Zel’dovich 1982), and the two-dimensional alternating flows characterized
by chaotic advection with U0 constant, U = V a smooth spatial function, and ξ ∈ [0, 2π]
a random variable (see Ottino 1990; Antonsen et al. 1996; Pierrehumbert 2000; Fereday
& Haynes 2004; Vanneste 2006; Shaw, Thiffeault & Doering 2007; Keating, Kramer &
Smith 2010).

The ability to compute analytical solutions to (1.1) given a general initial condition
has practical implications for the study of scalar mixing, since an arbitrary stage of the
tracer evolution can be achieved via single time evaluation without the need to evolve
intermediate steps, thus bypassing great computational and numerical constraints. The
method described in this study allows the computation of tracer solutions that can be
evolved from arbitrarily small scales until reaching the final late stage described by
Taylor’s dispersion (a clear distinction with the Ranz transform approach in Young et al.
1982; Meunier & Villermaux 2010). Applying the method described in this paper allows us
to improve upon the description of the multiscale scalar decay of tracer variance for a wide
range of shear flows. We also expand upon the analysis with a detailed description of the
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Passive scalar mixing

distinct time-varying stages of shear flow dispersion in the context of strong and weakly
self-similar processes for an arbitrarily compact tracer concentration (Castiglione et al.
1999; Ferrari, Manfroi & Young 2001; Latini & Bernoff 2001), and identify a shear flow
that can be characterized completely by a Levy process (Levy walk) (Dubkov, Spagnolo &
Uchaikin 2008; Zaburdaev, Denisov & Klafter 2015). For this reason, this paper advances
both theoretical and practical knowledge of the problem of tracer evolution described by
the advection–diffusion equation.

The organization of the paper is as follows. In § 2.1, we pose the mathematical problem,
and in § 2.2, we describe the method of solution to compute both eigenvalues and
eigenfunctions of the associated non-self-adjoint operator. This allows us to compute
solutions given general initial conditions that are valid for any t > 0. In § 3, we analyse
the behaviour of solutions, focusing first on scale-dependent scalar decay in the case
where the initial condition is characterized by a single along-stream mode, and then on
the time-varying shear dispersion properties of a localized tracer patch as depicted in
figure 1(a,b), respectively. In § 4, we discuss advantages over other methods, as well as
the ability to expand our analysis to more complex flows and boundary conditions, and in
§ 5, we summarize results and future directions.

2. Analytical solutions

2.1. Problem statement
Consider the governing equation (1.1) over a time interval t in which the velocity field (1.2)
is a parallel shear flow of arbitrary amplitude U0, say u(x, t) = U0(U( y), 0), in a doubly
periodic domain defined as (−L/2 ≤ x ≤ L/2) × (0 ≤ y ≤ M), with L ≥ M.

We introduce the non-dimensionalization

(x, y) =
[

M
2π

]
(x∗, y∗), u = [U0]u∗, t = [td] t∗, (2.1a–c)

where we choose M as the single length scale, and time is non-dimensionalized by the
diffusive time scale td = M2/(4π2κ). As a result, the non-dimensional governing equation
(1.1) becomes (dropping the stars so that from now on we assume all variables are
normalized)

∂θ

∂t
+ Pe U( y)

∂θ

∂x
= ∇2θ. (2.2)

This equation has been studied extensively for a wide range of shear flows (see Eckart
1948; Young et al. 1982; Majda & Kramer 1999; Vanneste 2006; Camassa, McLaughlin &
Viotti 2010). The Péclet number Pe is

Pe = U0M
2πκ

, (2.3)

and can be interpreted as the ratio of advective to diffusive time scales (2πU0td/M)
(Rhines & Young 1983). It represents the relative importance of the advective to diffusive
tracer fluxes, so a large Péclet number implies weakly diffusive flows. We consider
Pe an arbitrary parameter that can take any value, and implicitly this allows U0 to be
time-dependent (since U0 can be considered piecewise constant) when acting on a Fourier
tracer mode. Note that both td and Pe are domain-scale quantities, independent of the scale
of the shear flow, as both are defined with M as opposed to the intrinsic length scale of the
flow.
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Our choice of a single length scale M in (2.1a–c) implies the (non-dimensional) doubly
periodic boundary conditions

θ(kmx − π, y, t) = θ(kmx + π, y, t), θ(x, y + 2π, t) = θ(x, y, t), (2.4a,b)

where km = M/L determines the aspect ratio of the gravest mode that fills the domain
(i.e. when km = 1, the domain is a square). The value of km is arbitrary and can be made
sufficiently small so that the domain approximates a semi-infinite rectangular domain. Our
domain choice further implies that any Fourier decomposition in the cross-stream direction
is quantized (i.e. individual modes are l = 0, ±1, ±2, . . .), while in the streamwise
direction k = jkm, with j = 0, ±1, ±2, . . . .

In general, we are interested in initial conditions that can be expressed via Fourier
decomposition as

θ(x, y, 0) =
∑

i

fi(x)Φi( y), (2.5)

where each of fi(x) and Φi( y) are integrable functions in the space of 2π-periodic
functions.

We consider shear flows defined by an even Fourier series of the form

U( y) = α0

2
+

∞∑
m=1

αm cos(my). (2.6)

We introduce an inverse width parameter Ld that controls the width of a shear flow while
keeping intact the shear topology – for example, piecewise constant and piecewise linear
shear flows (see figures 2(a,b), also Appendix A). Some of the shear flows considered
here are idealized in their velocity gradient, e.g. piecewise constant or concentrated shear.
These features represent some aspects of environmental flows whose spatial structure is
sensitive to sampling, domain size and background noise. That is, in practice, real flows are
patchy, localized and irregular in both time and space. Hence our approach can compute
solutions for flows with a discrete, wide spectrum (i.e. αm /= 0 for arbitrary m > 0), a
feature with theoretical and practical advantages.

An important global property of some shear flows is a symmetry after a translation in y
and reflection in flow amplitude, i.e. a shift–reflect symmetry, defined mathematically as

U∗( y − π/P) = −U∗( y), (2.7)

where U∗ = U − α0/2 is the streamline velocity minus its spatial average, and P =
1, 3, . . . is the periodicity of the shear flow maxima within the finite domain (see figure 2).
A shear flow that is shift–reflect symmetric has a Fourier series such that

U∗( y) =
∞∑

m=1

αP(2m−1) cos[P(2m − 1)y]. (2.8)

For example, the simplest case of a shift–reflect symmetric flow is U∗ = −(1/2) cos( y).
We emphasize that this is a global (domain-scale) property of the flow, independent of Pe,
scale and topology of the velocity gradient, and therefore can describe properties of tracer
evolution beyond oft-isolated streamlines where shear vanishes.
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2π(a) (b)

–π/km π/km–π/2km

θ(x, y, 0) = cos(kmx)Φ (y) θ(x, y, 0) = Φ (y) exp 
–x2
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y π

0
0
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–100π 100π50π–50π
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0
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x

Figure 1. The two initial conditions considered in this study. (a) A single along-stream mode, with arbitrary
cross-stream initial structure. (b) A localized concentration patch centred at x = 0. Both types of initial
condition are related due to the linearity of the governing equations. Note that the Gaussian function Φ( y)
is centred at y = π in both cases, although it is not a requirement for our analysis. The domain is identical in
both cases.

0
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(e) ( f ) (g) (h)
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Ld = 1/2

Ld = 2.6
Ld = 1

Ld = 1/2

P = 2

Ld = 1/2 Ld = 1

P = 3
P = 2 Ld = 1P = 3

Ld = 1

Ld = 5.2
Ld = 2

Ld = 1

Ld = 3
Ld = 5

Ld = 2Ld = 4/5
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Ld = 4/3

1
U(y)

0 1
U(y)

0 1
U(y)

0 1

0 1 0 1 0 1 0 1

U(y)

Figure 2. Shear flows U( y), specifically, the (a) triangular, (b) square, (c) Gaussian and (d) polynomial shear
flows. The flow widths decrease as Ld increases, and as Ld → ∞, the shear flows all converge to the same flow,
namely, U = 1 at y = π, U = 0 everywhere else. (e–h) Triangular and square shear flows, as in (a,b), except
they have higher y-periodicity P (repeated extrema). See Appendix A for the analytic definitions of the shear
flow profiles.
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2.2. Method of solution
Following Camassa et al. (2010), we take advantage of the linearity of the governing
equation (2.2) and the fact that the advection term is x-independent, and consider a
separable initial condition for each mode k in the streamwise direction of the form

θ(x, ỹ, t) = Re

{ ∞∑
n=0

χ2n φ2n(ỹ) exp [ikx − ω2nt]

}
, (2.9)

where 2ỹ = y is a scaled coordinate, φ2n(ỹ) are eigenfunctions, and ω2n are the associated
eigenfrequencies. The coefficients to be determined, χ2n, ensure that the solution satisfies
the initial condition (2.5). Substituting (2.9) into (2.2) shows that each eigenfunction
satisfies the eigenvalue equation

d2φ2n

dỹ2 + [
a2n − 2q U∗(2ỹ)

]
φ2n = 0. (2.10)

Notice that (2.10) is written with the scaled independent variable ỹ = y/2 to adhere to
convention, as it is a type of Hill’s equation (see chapter 5 of Magnus & Winkler (2013);
also Strutt 1948). When the velocity is the zero-mean, non-normalized cosine shear flow,
i.e. U(2ỹ) = cos(2ỹ), (2.10) becomes the canonical Mathieu equation (McLachlan 1947;
Olver et al. 2010).

Equation (2.10) is an eigenvalue problem that depends on the compound, multiscale
parameter

q = 2ik Pe. (2.11)

This parameter contains the relevant physics of the system, and controls the multiscale,
spatial and temporal behaviour of the solutions. From the eigenvalue a2n(q), the dispersion
relation associated with each eigenfunction is given by

ω2n = a2n(q) + α0q
4

+ k2. (2.12)

The term k2 represents pure diffusion of a normal mode in the x-direction, and the
eigenvalue a2n(q), which encodes the effect of varying shear in the y-direction at that scale,
determines the relative contribution of the eigenfunction φ2n to the tracer evolution in the
y-direction. The eigenpair {a2n, φ2n} encodes the effect of shear in the tracer evolution in
the cross-stream direction at the scale k−1.

To calculate the eigenfunctions, we first follow a standard approach when solving Hill’s
equation (see, for example, chapter VI of McLachlan (1947), or Olver et al. 2010). Consider
an eigensolution of (2.10) of the form

φ2n = exp(μỹ)
∞∑

r=−∞
C(2n)

2r exp(2riỹ), (2.13)

where μ is the Floquet exponent, and exp(μỹ) is the Floquet multiplier. In general,
all of μ, a2n and C(2n)

2r need to be determined (McLachlan 1947; Magnus & Winkler
2013). However, we restrict our analysis to π-periodic solutions in ỹ in order to satisfy
(2.4), and, thus, set μ ≡ 0 (a different value of μ results in quasi-periodic solutions).
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Writing the cosine Fourier series in (2.6) as a sum of complex exponentials (with the
property α−m = αm), and substituting (2.13) into (2.10), yields the equation

∞∑
r=−∞

C(2n)
2r

([
(2ri)2 + a2n

]
exp(2riỹ)

− q
[
α1 {exp[2(r + 1)iỹ] + exp[2(r − 1)iỹ]}

+ α2 {exp[2(r + 2)iỹ] + exp[2(r − 2)iỹ]}
+ α3 {exp[2(r + 3)iỹ] + exp[2(r − 3)iỹ]} + · · · ]) = 0. (2.14)

Iterating over all possible values of r and equating to zero the coefficients multiplying each
exponential of arbitrary order R ∈ r, we get the R-coefficient recursive equation

[
(2Ri)2 + a2n

]
C(2n)

2R = q
∞∑

m=−∞
αmC(2n)

2(R+m), (2.15)

where the m = 0 term is not included in the sum on the right-hand side as α0 is already
incorporated in the eigenvalue via (2.12). Equation (2.15) is almost identical to that studied
by Hill in the lunar perigee problem (Hill 1886; McLachlan 1947).

Now split into even and odd π-periodic eigenfunctions. We define even eigenfunctions
as

φe
2n(q, ỹ) =

∞∑
r=0

A(2n)
2r (q) cos(2rỹ), (2.16)

with A(2n)
0 = C(2n)

0 and A(2n)
2r = 2C(2n)

2r , r = ±1, ±2, . . .. These eigenfunctions belong to
a class of cosine elliptic functions given their dependence on an eccentricity parameter
q, and when q = 0, the eigenfunctions reduce to multiples of cos(ny) (McLachlan 1947;
Arscott 2014).

Similar to the approach by Chaos-Cador & Ley-Koo (2002), we cast the bi-infinite
recursive equations (2.15) in matrix form as

T eX e
2n = a2nX e

2n, (2.17)

where the eigenvectors are

X e
2n =

[√
2A(2n)

0 , A(2n)
2 , . . . , A(2n)

2R , . . .
]T

, (2.18)

and the superscript T implies transpose. Note that the elements of the eigenvector X e
2n are

the Fourier coefficients A(2n)
2r in (2.16). The vector satisfies an indefinite norm (as in the

case of Mathieu’s equation; see Brimacombe, Corless & Zamir 2021) given by

2
[
A(2n)

0

]2 +
∞∑

r=1

[
A(2n)

2r

]2 = 1, (2.19)

and a further orthonormality relationship between the Fourier coefficients (Seeger 1997;
Ziener et al. 2012)

∞∑
n=0

A(2n)
2r A(2n)

2r′ = δrr′ − δ0rδ0r′

2
for r, r′ = 0, 1, 2, . . . , (2.20)
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with Kronecker delta δrr′ . The bi-infinite matrix T e associated with (2.16) is

T e =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
√

2qα1
√

2qα2 · · · √
2qαR ·√

2qα1 4 + qα2 q(α1 + α3) · · · q(αR−1 + αR+1) ·√
2qα2 q(α1 + α3) 16 + qα4 · · ·

√
2qα3 q(α2 + α4) q(α1 + α5)

. . . · ·
.
.
.

.

.

.
. . .

. . .
.
.
. ·

.

.

.
.
.
.

. . .
. . . q(α1 + α2R−1) ·√

2qαR q(αR−1 + αR+1) · · · q(α1 + α2R−1) 4R2 + qα2R ·
· · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2.21)

Odd eigenfunctions satisfy the same equation as in (2.10), but the nomenclature changes,
with b2n+2(q) now indicating the odd eigenvalue (see Arscott 2014). The odd (sine elliptic)
eigenfunctions are defined as

φo
2n+2(q, ỹ) =

∞∑
r=0

B(2n+2)
2r+2 sin

[
(2r + 2)ỹ

]
. (2.22)

When q = 0, these eigenfunctions reduce to multiples of sin[(n + 1)y]. The coefficients
satisfy the normalization under an indefinite norm

∞∑
r=0

[
B(2n+2)

2r+2

]2 = 1, (2.23)

and the orthonormalization
∞∑

n=0

B(2n+2)
2r+2 B(2n+2)

2r′+2 = δrr′, for r, r′ = 0, 1, 2, . . . . (2.24)

Similar to (2.17), the matrix equation for the odd eigenfunction–eigenvalue pair is

T oX o
2n+2 = b2n+2X o

2n+2, (2.25)

where

X o
2n+2 =

[
B(2n+2)

2 , B(2n+2)
4 , . . . , B(2n+2)

2R+2 , . . .
]T

. (2.26)

The odd bi-infinite matrix is

T o =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

4 − qα2 q(α1 − α3) q(α2 − α4) · · · · ·
q(α1 − α3) 16 − qα4 q(α1 − α5) · · · · ·
q(α2 − α4) q(α1 − α5) 36 − qα6 · · · · ·

...
...

...
. . . q(α1 − α2R−1) ·

q(αR−1 − αR+1) · · · · · · q(α1 − α2R−1) 4R2 − qα2R ·
· · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (2.27)

From matrices (2.21) and (2.27), the eigenvalue–eigenfunction pairs {a2n(q), X e
2n(q)}

and {b2n+2(q), X o
2n+2(q)} are determined, and with them the associated eigenfunctions

φe
2n(q, ỹ) and φo

2n+2(q, ỹ) are found via (2.16) and (2.22). Moreover, the orthonormality
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relations (2.19)–(2.20) and (2.23)–(2.24) imply that the eigenfunctions φe
2n and φo

2n+2 are
orthonormal. That is, for any value of q = 2ik Pe, each eigenfunction satisfies∫ π

0
φe

2n′(q, ỹ) φe
2n(q, ỹ) dỹ = πδnn′

2
, for n, n′ = 0, 1, 2, . . . . (2.28)

Similarly, the odd eigenfunctions satisfy∫ π

0
φo

2n′+2(q, ỹ) φo
2n+2(q, ỹ) dỹ = πδnn′

2
, for n, n′ = 0, 1, 2, . . . . (2.29)

Finally, using (2.16) and (2.22), and the orthogonality of normal modes, we get the
following transformation (i.e. a change in basis):

∞∑
n=0

(1 + δr0) A(2n)
2r (q) φe

2n(q, ỹ) = cos(2rỹ), r = 0, 1, 2, . . . , (2.30)

and
∞∑

n=0

B(2n+2)
2r+2 (q) φo

2n+2(q, ỹ) = sin[(2r + 2)ỹ], r = 0, 1, 2, . . . . (2.31)

The derivations above imply that the non-self-adjoint nature of the advection–diffusion
operator (2.2) is captured by the properties of the matrices (2.21) and (2.27), determined
by their dependence on q = 2ik Pe, and by the shear (through αm /= 0, m = 1, 2, . . .). As
q is imaginary, the matrices are Hermitian only in the absence of shear (αm ≡ 0 for all
m = 1, 2, 3, . . .), or when q ≡ 0 (k = 0 or Pe = 0). In those cases, the advection–diffusion
operator is self-adjoint.

In the presence of shear, the bi-infinite matrices T e and T o belong to a wide class
of non-self-adjoint operators associated with PT -symmetric Hamiltonians (Bender &
Boettcher 1998; Bender 1999; Heiss 2004, 2012). A characteristic of these systems,
beyond their dependence on a single parameter (here q), is the analytical coalescing of
eigenvalues in their real parts at isolated, discrete values of the parameter q = qEP called
exceptional points (EPs). At EPs, the imaginary parts of the eigenvalues branch, to create
complex-conjugate eigenvalue pairs for q > qEP (Hunter & Guerrieri 1981; Hernández &
Mondragón 1994; Heiss 1999, 2004; Miri & Alu 2019). EPs are anticipated for all the
eigenvalues for shear flows that are shift–reflect symmetric. The reason is that in such
flows, the diagonal elements of T e and T o are real, so their eigenvalues are either real or
occur in complex-conjugate pairs (see figures 3a,b).

At EPs, the eigenfunctions coalesce too, resulting in a gap in the completeness of
the set of eigenfunctions. This implies the need to supplement the set of eigenfunctions
(Brimacombe et al. 2021). Because EPs are isolated discrete points (e.g. the first EP in
Mathieu’s equation is qEP = 1.468768613785142i, per Brimacombe et al. 2021), however,
it is extremely rare to match an EP exactly with a generic combination of k and Pe. In
the rare case of an exact match, perturbing k or Pe avoids evaluating at the EP location in
q-space. In practice, the ability to compute the eigenvalue spectra a priori allows for the
inspection for EPs. If they occur, then appropriate changes to k or Pe can be made. Hence,
there is no practical need to supplement the set of eigenfunctions, and for the rest of paper,
we avoid explicit evaluation at EPs when computing analytical solutions.

Changing the periodicity of the shear flow by increasing the value of P (e.g. from P = 1
to P = 2 as seen in figures 2a,e) introduces multiple extrema in the shear flow profile that
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Figure 3. (a,c,e) Real and (b,d, f ) imaginary shifted eigenvalues a2n + α0q associated with the (a–b) square
and (c–f ) Gaussian shear flows of different widths (see figure 2c). Light grey lines correspond to eigenvalues
with negative imaginary parts (Im{a2n} < 0), so the shifted imaginary values lie below the dashed grey line
α0q. Black lines correspond to eigenvalues with positive imaginary parts (Im{a2n} > 0). In the limit k Pe → 0,
all eigenvalues converge to a2n → 4n2, n = 0, 1, 2, . . . . Only the gravest 40 eigenvalues are plotted.

are shifted by 2π/P in y. If the shear flow was previously shift–reflect symmetric, then the
EPs of the resulting P-periodic shear flows can involve multiple eigenvalues and mergers
that are more complex than the coalescence of a complex-conjugate pair.

The non-self-adjoint character of the linear operator (2.2) imprints on the spatial (via
eigenfunctions) and temporal (via eigenvalues) behaviour of solutions. To illustrate this
point, we focus on the pair {a2n, φ

e
2n} associated with shear flows that are shift–reflect

symmetric; such flows represent a special case in which eigenvalues are dense with
EPs. When evaluated at q values beyond an EP, the eigenfunctions {φe

2n} associated
with complex conjugated eigenvalues that have coalesced satisfy their own shift–reflect
symmetry (see Appendix B; also Ziener et al. 2012). That is, the two symmetric
eigenfunctions describe identical spatial behaviour in the solution that are shifted from
one another in space by ỹ = π/2 (y = π). Given that the complex-conjugate eigenvalue
pair describes equal eigenfunction decay rates (determined by Re{a2n}) and opposite
directions of eigenfunction propagation (determined by Im{a2n}), the tracer evolution in
the subdomain characterized by U∗ < 0 is an exact mirror image of the tracer evolution
in the subdomain characterized by U∗ > 0. This means that a priori knowledge of the
Fourier series of a shear flow that is shift–reflect symmetric provides a deep fundamental
understanding of a global property of the tracer distribution at all times.

The present method of solution relies on the convergence of the spectra of the truncated
eigenvalue systems (2.17) and (2.25) with respect to the original non-truncated bi-infinite
system (see Ikebe et al. 1996; Deconinck & Kutz 2006; Curtis & Deconinck 2010). The
convergent truncation implies that there is a large enough matrix size (R + 1) × (R + 1)

for which the eigenvalue–eigenfunction pairs calculated are sufficiently accurate. It also
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implies that higher cross-stream modes (in y) can be approximated by

a2n′ = (2n′)2, φe
2n′ = cos(2n′ỹ), n′ > R + 1, (2.32a,b)

and
b2n′+2 = (2n′ + 2)2, φo

2n′+2 = sin[(2n′ + 2)ỹ], n′ > R. (2.33a,b)

Following Ziener et al. (2012), an accurate truncation is one that ensures that the
orthogonality relations (2.20)–(2.24) are satisfied. A first-order guess for a truncated size
R comes from ensuring that the truncated matrix is always diagonally dominant. Given
that the diagonal term is 4R2 ± qα2R, and |α2R| → 0 for increasing R, a truncation size
can be estimated from the ratio between the diagonal terms and the super-diagonal terms.
This is

4R2 � |q| max |αm|. (2.34)

(This condition implies absolute and uniform convergence of the trigonometric series
(2.16); Arscott 2014.)

Since the truncated matrix size R depends explicitly on Pe via |q| = 2k Pe, the truncated
matrices T e(q) and T o(q) grow in size like Pe1/2. For this reason, the present eigenvalue
approach to solve the governing equation (2.2) is most efficient at intermediate and low Pe
values (i.e. Pe < 104), although there is no restriction on how large Pe can be.

The value of R further quantifies the cross-stream cutoff wavenumber lc, past which
small scales become only weakly influenced by the presence of shear, and higher modes
in an arbitrary initial condition decay as pure diffusion. From (2.34), we define this scale
as

lc = G
√

|αmax| k Pe/2, (2.35)

where G � 1 is an arbitrary constant. (A value in the range G2 ≥ 50 already yields good
results.)

The approximations (2.32a,b)–(2.32a,b) expose the multiscale nature of scalar mixing
in the cross-stream direction, i.e. they reflect a pure diffusive behaviour at high enough
cross-stream wavenumbers for every streamwise (Fourier mode) k. In this sense, the
cross-stream scale lc complements the estimate of streamwise scale at which variance
decays diffusively in the cosine shear flow (Camassa et al. 2010).

2.3. General solution
Without loss of generality, we now consider an initial condition that consists of a single
term in the sum in (2.5), determined by f (x) and Φ(2ỹ), functions that are expressed via
the Fourier series

f (x) =
∞∑

j=0

cj cos( jkmx) (2.36)

and

Φ(2ỹ) =
∞∑

l=0

χe
l cos(2lỹ) + χo

l sin(2lỹ), (2.37)

where cj, χe
l and χo

l are coefficients determined by inversion formulas from known f (x)
and Φ(2ỹ), with j, l = 0, 1, 2, . . . . Using (2.30)–(2.31), we write the cross-stream initial
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condition (2.37) in terms of the new eigenbasis as

Φ(2ỹ) =
∞∑

n,l=0

χ∗
l A(2n)

2l (q) φe
2n + χo

l B(2n+2)
2l+2 φo

2n+2, (2.38)

where χ∗
l = (1 + δl0)χ

e
l . Then the general solution to (2.2) associated with an initial

condition (2.5) and doubly periodic boundary conditions is given by the triple sum

θ(x, ỹ, t) = Re

⎧⎨
⎩

∞∑
j,n,l=0

cj

[
χ∗

l A(2n)
2l φe

2n exp
(
−a2n

4
t
)

+ χo
l B(2n+2)

2l+2 φo
2n+2 exp

(
−b2n+2

4
t
)]

× exp
[

ijkm

(
x − α0 Pe

2
t
)

−
(
( jkm)2

)
t
]⎫⎬
⎭ . (2.39)

The analytical solution (2.39) results from a constant U0 and thus single Pe value. In the
case of a time-varying amplitude, additional N different U0 values that approximate U0(t)
then generate N-sets of eigenfunction–eigenvalue pairs, each with a solution expression
that looks like that in (2.39). The ability to solve for arbitrary initial conditions via their
Fourier coefficients (2.36)–(2.37) allows (2.39) to represent the solution to a time and
amplitude varying shear flow during a time interval at which U0 is effectively constant.

3. Results

We now apply these new methods of solution to explore the tracer evolution of two types
of initial conditions: (1) a single streamwise Fourier mode (as in figure 1a), for which we
characterize the modal decay rate, and relate it to the gravest eigenvalues, confirming and
extending the asymptotic analysis of Camassa et al. (2010); (2) a localized concentration
(tracer patch, as in figure 1b), for which we characterize the tracer dispersion via its
central moments, extending the particle study of the Poiseuille flow by Latini & Bernoff
(2001). Appendix C contains a useful reference to variable names in tabular form, and in
Appendix D, we provide a comparison of the analytic solutions to numerical solutions
from the open source package Oceananigans (Ramadhan et al. 2020), with excellent
results.

3.1. Modal solutions
Consider a centred initial condition describing a single streamwise Fourier mode that is
localized in the cross-stream direction:

θ(t = 0) = cos(kx) exp
[
−4 (y − π)2

]
. (3.1)

The analytical solution with this initial condition is (2.39) for a single mode k and
cross-stream coefficients

χ∗
l = 1

2
√

π
exp (−ilπ) exp

[
−

(
l
4

)2
]

, l = 0, 1, 2, . . . . (3.2)

The l = 0 term implies the presence of a non-zero cross-stream average, although the
global (area average) remains zero. We refer to the initial condition (3.1) as modal and
centred, given the absence of odd cross-stream Fourier coefficients (χo

l ≡ 0 in (2.38)).
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Figure 4. Snapshots of modal solutions for two wavenumbers km and two values of canonical parameter
q = 2ikm Pe at fixed Pe = 1000. The shear flow is Gaussian with inverse width parameter Ld = 4/3 (black
curve in (a) and figure 2c). The streamwise axis is scaled by (domain-scale) wavenumber km, and the colour
scales differ between snapshots.

Snapshots of solutions θ to (2.2) for a Gaussian shear flow (Ld = 4/3) are shown
in figure 4. At low q = 4i (figures 4a–d), the long-term evolution of θ settles into a
domain-scale structure. The solution does not exhibit clearly the two distinct spatially
separated behaviours associated with subdomains defined by our choice of U∗ < 0
and U∗ > 0. At larger q = 640i, the solution does exhibit two distinct behaviours
(figures 4e–h). Given our choice of flow normalization, tracer variance is homogenized
much more rapidly near the peak of the shear flow (U∗ > 0) than away from it (U∗ < 0).
(The actual sign of U∗, which arises from our particular choice of mean velocity, has no
direct effect on the decay rate of tracer variance.) The initial condition centred at y0 = π
facilitates the distinction between the subdomains U∗ > 0 and U∗ < 0 for large enough
q, although an arbitrary initial condition may not. Such behaviour is associated with the
localization of the eigenfunctions within shear-free regions as q becomes large.

To quantify the transient and long-term decay of tracer variance, we compute

σ = −1
2

d log(‖θ‖2
2)

dt
, (3.3)

where ‖θ‖2
2 is the L2-norm defined by

‖θ‖2
2(t) =

∫ π/k

−π/k

∫ 2π

0
θ2 dy dx. (3.4)

With initial condition (3.1), we identify two non-overlapping plateaus in the σ time series
for sufficiently small streamwise scales, or equivalently, sufficiently large Pe. Each plateau
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Figure 5. (a–d) Time series of decay rate σ(t) (black) and variance ‖θ‖2
2 (blue, normalized by its initial value)

for fixed Pe = 1000 and various choices of wavenumber k (hence canonical parameter q = 2ik Pe) in the modal
initial condition (3.1). The shear flow is Gaussian (Ld = 4/3). The red dots in (b,c) represent the times of the
snapshots shown in figures 4(a–d) and 4(e–h), respectively. (e) Pure modal decay rate σ̄ showing the distinct
regimes of scalar decay as a function of streamwise wavenumber k. The black and red dots are from analytical
solutions, and the blue dots are from numerical simulations. Shown in (e) are the asymptotic curves for the
gravest eigenvalues a2 (black, at large q) and a0 (red, at both small and large q). Grey arrows connect the
distinct σ time series in (a–d) with their averaged values in (e). Note that the log-log plot accentuates large and
small k behaviour.

implies that a single eigenvalue–eigenfunction pair dominates the (spatio-temporal) decay
rate of tracer variance, with tracer localized to regions where U∗ has extrema (see
figures 5a–d). We refer to the plateaus as pure modal decay rates, denoted as σ̄ . Varying
k at constant Pe reveals the q-dependence of the gravest two eigenvalues, as seen in
figure 5(e). These are the (averaged) modal decay rates estimated in Camassa et al. (2010)
in that case for the cosine shear flow. An off-centred initial condition (χo

l /= 0) can yield a
σ time series in which the two plateaus overlap, and distinguishing between the two even
eigenvalue–eigenfunction pairs can be unclear.

Figure 6 shows that the three regimes of scalar decay, described by Camassa et al. (2010)
for the cosine shear flow, are present in all shear flows, and are therefore generic. For
arbitrary Pe, we define these three regimes using a critical canonical parameter qcr as
follows. For small q values, |q| < |qcr|, the gravest eigenvalue is real (see table 1). Thus at
long-enough (streamwise) scales, |q| < qcr and σ̄ ∝ k2, with a coefficient proportional to
Pe2. This is the regime of Taylor dispersion because it describes a diffusion process with
effective diffusivity κ∗, given dimensionally by

κ∗ = U2
0M2

2π2κ

∞∑
m=1

α2
m

2m2 . (3.5)

The exact result β2 = ∑∞
m=1(α

2
m/(2m2)) is derived in Appendix E, for all shear flows

considered here. This expression for the effective diffusivity matches that first derived in
Zel’dovich (1982) for time-oscillatory, periodic shear flows (when considering vanishing
frequency; see also Majda & Kramer 1999; Smith 2005; Haynes & Vanneste 2014).
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Figure 6. Pure modal decay rate σ̄ for all flows considered with single maxima (P = 1). The different lines are
from analytical predictions of the asymptotic behaviour of the gravest eigenvalues a0 and a2 at large and small
q, along with the pure diffusion case k2. In all cases, Pe = 1000. For values of the β2, c and s coefficients, see
table 2.

At intermediate scales, k > |qcr|/(2 Pe), the gravest eigenvalue a0 becomes complex and
the pure modal decay rate is anomalous, meaning σ̄ ∝ ks with s < 2. In fact, pure modal
decay rates in the U∗ > 0 and U∗ < 0 regions generally separate (see figure 6). Only when
the flow is shift–reflect symmetric – as in the cosine, triangular and square shear flows,
where eigenvalues appear as complex-conjugate pairs – do we find a single pure modal
decay rate to determine the anomalous modal decay for all values of q.

The algebraic dependence of the gravest eigenvalues at large q can be derived via a
WKB analysis localized to regions with vanishing shear where U∗ has an extrema. In
other words, the values of σ̄ in this asymptotic limit depend explicitly on the gradient of
shear at the flow extrema, where shear changes sign (e.g. see Hunter & Guerrieri 1981;
Camassa et al. 2010). The eigenvalues take the form

a2n ∼ d1qs − d2q, (3.6)

where d1 and d2 are coefficients independent of q, and the exponent s < 2 is real. But
the asymptotic behaviour (3.6) strictly applies only in the limit |q| → ∞ where the
eigenfunctions are localized to shear-vanishing regions, and remains greatly inaccurate
at intermediate q values near qcr (the actual range of validity varies for each shear
flow). This severely constrains the applicability of asymptotic (pure) modal decay rates
to realistic flows with finite Pe values, and arbitrary initial conditions. (It is applied
successfully in (Camassa et al. 2010) to describe the evolution of a multiscale initial
condition that concentrates tracer variance at very large scales and very small scales,
well separated in spectral space.) Figures 7(a–c) show this error for the square shear flow
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Shear flow P |qcr|
Cosine
α1 = 0.25 1 3.0455

Triangular
Ld = 1/2 1 3.6805
Ld = 1/2 2 14.9002
Ld = 1/2 3 32.1463
Ld = 1 1 0.5506
Ld = 2 1 0.821

Square
Ld = 1 1 2.3643
Ld = 1 2 9.2947
Ld = 1 3 20.298
Ld = 2 1 0.4204
Ld = 5.2 1 0.7612

Gaussian
Ld = 4/5 1 0.6503
Ld = 4/3 1 0.5506
Ld = 2.9 1 0.821

Polynomial
Ld = 1 1 0.7043
Ld = 2 1 0.65035
Ld = 3 1 0.7612
Ld = 5 1 0.9496

Table 1. Critical canonical parameters |qcr| for shear flows considered. The parameter P represents the
periodicity of the shear flow within the domain: P = 1 for a single peak (single maximum), and P = 2 and
P = 3 imply two and three shear flow maxima (peaks), respectively, as shown in figures 2(e–h).

in the estimate of pure modal decay rates (red dashed lines) as these get extrapolated
towards intermediate q values near qcr. The implication is that for arbitrary Pe values, the
asymptotic approach incorrectly predicts faster (pure modal) decay rates of tracer variance,
meaning an over-mixing at intermediate scales.

The asymptotic expression (3.6) provides an accurate approximation of σ̄ at large q, and
so we use it to estimate the streamwise scale of transition from a regime of anomalous
decay into a pure diffusive scalar decay behaviour (Camassa et al. 2010). This represents
the (streamwise) scale at which decay of tracer variance of the longest-lived tracer patches
becomes insensitive to cross-stream shear. Excluding shift–reflect symmetric flows, two
distinct σ̄ (k) curves exist, so this transition varies across the domain.

At large q values, the pure modal decay rate takes the form

σ̄± ∼ c± (k Pe)s± , (3.7)

where the ± signs reflect the positive (+) and negative (−) signs of the imaginary parts of
the eigenvalues (and hence the sign of U∗). From (3.6), the coefficients connect as

c± = 2s±d1±

4
. (3.8)
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Figure 7. Fits (dashed lines) to the gravest eigenvalues with positive (thick black curves) and negative (thin
grey curves) imaginary parts for (a–c) square and (d–f ) Gaussian shear flows for various inverse width
parameters Ld (see figure 2).

From the fitted coefficients s± and d1± , and (3.8), we calculate c± values and list them in
table 2. Using (3.7), the transition scale kd into the pure diffusion regime is

k±
d = (

c± Pes±)1/(2−s±)
. (3.9)

For values s+ = 0.5 typical for the Gaussian shear flows, kd ∝ Pe1/3, equating that of the
cosine shear flow derived previously (see Camassa et al. 2010). From (3.9), we find a strong
dependence of Pe scaling the type of shear (e.g. piecewise linear, continuous, constant)
from the computed values of the s± parameter, and therefore a spatial dependence of the
Pe scaling when flows are not shift–reflect symmetric. This means that the rate of tracer
variance decays as pure streamwise diffusion over two distinct range of modes if the shear
curvature is different in the different shear-vanishing regions. This can be seen clearly in
the narrow flows in figures 6(k–m), for which there are two distinct range of (streamwise)
scales that decay diffusively.

Moreover, since (3.9) relies on the accuracy of (3.6), such a transition scale is accurate
only under the large-q limit. In our eigenfunction approach, the transition scale for
arbitrary Pe values can be computed directly form the eigenvalues a0 and a2 calculated
from matrices X e and X o, but the functional dependence on Pe as expressed in (3.6) is not
easily available given the unknown analytical expression a2n = aan(q) at intermediate q
values.

The intermediate q values are also significant in the case of time-varying amplitude,
given that varying Pe is equivalent to varying the amplitude of the shear flow. In that
case, the curves β2 Pe2 k2 in figure 6 associated with the small-q limit (Taylor’s regime
of scalar decay) and those of the anomalous decay shift vertically, although the former
regime is much more sensitive to time-amplitude changes due to the Pe2 dependence.
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Shear flow a0/4 ∼ β2 Pe2 k2 Re{a−
2n/4} ∼ c−(k Pe)s− Re{a+

2n/4} ∼ c+(k Pe)s+

β2 s− c− s+ c+

Cosine
α1 = 0.5 0.125 0.5 0.27 0.5 0.27

Triangular
Ld = 1/2 0.0822 0.67 0.258 0.67 0.258
Ld = 1 0.0874 0.05 0.6 0.67 0.377
Ld = 2.6 0.0228 0.025 0.3 0.67 0.71

Square
Ld = 1 0.2056 0.025 0.83 0.025 0.83
Ld = 2 0.1156 0.025 0.35 0.025 2.71
Ld = 5.2 0.02484 0.025 0.266 0.025 16.82

Gaussian
Ld = 4/5 0.1166 0.48 0.26 0.5 0.48
Ld = 4/3 0.0757 0.18 0.27 0.5 0.97
Ld = 2.9 0.02351 0.065 0.26 0.5 2.12

Polynomial
Ld = 1 0.08355 0.5 0.23 0.67 0.38
Ld = 2 0.05528 0.33 0.2 0.7 0.45
Ld = 3 0.0364 0.25 0.2 0.7 0.58
Ld = 5 0.01868 0.167 0.19 0.7 0.79

Table 2. Parameters that determine the pure modal decay rates σ̄ in Taylor’s and the anomalous diffusion
regimes of shear dispersion. To visualize these values, see figure 6.

The pure diffusion (k2) remains insensitive to Pe values, but the scale of transition k±
d into

the pure diffusion regime remains sensitive to Pe.
From all the values of s± in table 2, observe the following.

(i) When shear is discontinuous (as in the polynomial and triangular shear flows),
s+ ≈ 2/3 independent of the width of the flow Ld.

(ii) When shear is continuous, the exponent lies in the range 0.025 ≤ s ≤ 0.5, and
the largest exponent is associated with flows whose local curvature is quadratic.
The smallest exponent corresponds to the square shear flow. These results are
independent of the width of the flow Ld.

Observations (i) and (ii) were first shown for the cosine and linear shear flows (Camassa
et al. 2010), and we show that these are universal across any shear flow that has an
integrable dependence on y, independent of shear flow width. However, as the shear flows
narrow (Ld increases), increasingly large values of |q| are necessary for the eigenvalues
to asymptote, according to (3.6). This behaviour leaves an increasingly large range of
intermediate q values (hence scales k for arbitrary Pe) for which (3.6) is inaccurate, most
obviously for the square shear flow (solid black and dashed red lines in figures 7a–c). This
implies an over-mixing estimate within regions of vanishing shear, and under-mixing away
from these regions, at intermediate scales. For time and amplitude varying shear flows that
continuously reassign Fourier modes onto new q values, such spurious mixing behaviour
would only be accentuated. (Any change to the amplitude of a shear flow is equivalent to
modifying the Pe value in our analysis.)
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3.2. Time-varying dispersion of a localized concentration
We now consider the time-varying dispersion of a tracer patch defined by the initial
condition

θ(x, y, 0) = exp

[
−

(
x√

2μ2(0)

)2

−
(

y − y0√
0.02

)2
]

. (3.10)

The initial widths of the patch in the cross-stream and streamwise directions are 1/100
and μ

1/2
2 (0), respectively. (We define the initial streamwise width using the nomenclature

associated with the second central moment in (3.11) at time t = 0.) A large literature exists
on the time evolution of a localized plume in laminar flows, and the enhanced transport
that derives from the combined action of differential advection and mixing (i.e. shear
dispersion; see Aris 1956; Elrick 1962; Lighthill 1966; Young et al. 1982; Rhines & Young
1983; Ferrari et al. 2001; Latini & Bernoff 2001; Haynes & Vanneste 2014). The goal
here is to characterize the distinct stages of shear dispersion, highlighting the self-similar
processes.

We investigate the streamwise dispersion by tracking the time evolution of the second
moment of the cross-stream-averaged concentration θ̄ . As the flow is unidirectional, we
consider only the central moments of the streamwise direction. The pth moment is defined
as

μp =
∫ ∞

−∞
|x − μ|p (

θ̄/θ̄0
)

dx, (3.11)

where θ̄0 = θ̄ (t = 0) and

μ =
∫ ∞

−∞
x(θ̄/θ̄0) dx. (3.12)

Our definition (3.11) ensures that μ0 = 1 and μ1 = 0. When characterizing the dispersion
process, we are interested in the limit in which the pth moment achieves the (self-similar)
power law

μp ∼ |t|γp . (3.13)

Dispersion processes are characterized by γ2 in the following manner: the process is
diffusive when γ2 = 1, sub-diffusive when γ2 < 1, and super-diffusive when γ2 > 1. A
dispersion process that is not diffusive (γ2 /= 1) is called an anomalous diffusion process
(Weeks, Urbach & Swinney 1996; Castiglione et al. 1999; Ferrari et al. 2001).

Consider the case Pe = 1000 and a streamwise domain length −5000π ≤ x ≤ 5000π,
hence km = 2/5000. This choice of domain size ensures that the gravest modes capture
the Taylor diffusion regime of scalar decay (σ̄ = β2 Pe2 k2), for our choice of Pe. We are
interested also in a narrow initial width μ

1/2
2 (0) ∼ O(10−1), so that the initial condition

incorporates sufficiently large wavenumbers within the regime of pure diffusive decay
(σ̄ = k2). For each streamwise wavenumber k that arises from the discretization of the
domain, we need to solve a non-Hermitian eigenvalue system (described in § 2.2). The task
of solving for a localized plume in an extremely long domain can become computationally
expensive.

To facilitate the computation of solutions, we exploit the self-similar time evolution
of θ̄ (x, t) (see figure 8) and consider two different domain lengths to evaluate different
initial widths. For a narrow initial width μ

1/2
2 (0) = 1/20, we consider the smaller domain

−100π ≤ x ≤ 100π, discretized spatially by Nx = 60 001. For a larger initial width
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Figure 8. (a) Time evolution of the streamwise tracer width μ
1/2
2 in two domains and for two initial

widths: μ
1/2
2 (0) = 5/4 shown in grey and computed using a wider domain (see text), and μ

1/2
2 (0) = 1/20,

shown in black and computed using a smaller domain. (b–d) Snapshots of the averaged, normalized plume,
corresponding to a different stage of the dispersion process. In (c), we superimpose the two concentrations
with equal width associated with different initial conditions and domain lengths. In both cases, y0 = 0,
U( y) = 1/2(1 − cos( y)) and cross-stream width is 1/100.

μ
1/2
2 (0) = 5/4, we consider the larger domain −5000π ≤ x ≤ 5000π, discretized by

Nx = 30001 points. We then compute the full time evolution of μ
1/2
2 (t) from a composite

of the two initial conditions considered, as shown for the cosine shear flow in figure 8.
In all steady, laminar parallel shear flows explored, we find that the solution evolves

through three distinct stages of dispersion (see figure 9), in agreement with the study
by Latini & Bernoff (2001) for the Poiseuille shear flow (that flow corresponds to the
polynomial with Ld = 1 considered in this study, only shifted by π in y). These stages
parallel the three regimes of scalar decay explored in the previous section, and are: an
initial pure diffusion stage in which μ2 = 2t; an intermediate, anomalous (super) diffusion
stage; and a final stage of enhanced diffusion μ2 = 2β2 Pe2 t that corresponds to Taylor’s
dispersion (Taylor 1953; Aris 1956).

Of the three stages of shear dispersion, only the (transient) anomalous diffusion is
sensitive to the choice of y0 in the initial condition (see figure 9), the exception being
the ballistic dispersion (

√
μ ∝ t) associated with a uniform tracer distribution in the

cross-shear direction, first studied by Lighthill (see Lighthill 1966; Latini & Bernoff
2001). Table 3 summarizes the power-law approximation to the width

√
μ2 = Atγ2/2 in

the anomalous diffusion stage for all shear flows considered. In general, our calculated
values for γ2 ≈ 4 for the polynomial shear flow (Ld = 1) at y0 = 0, and γ2 ≈ 3 for the
(Ld = 1/2) triangular shear flow (everywhere), coincide with values calculated previously
in the literature (Elrick 1962; Rhines & Young 1983; Latini & Bernoff 2001; Meunier &
Villermaux 2010, 2022).

The initial and final stages of the dispersion of an isolated tracer patch are determined
by the pure diffusion and Taylor’s enhanced diffusion, respectively. The characteristics of
these stages are known already from β2 Pe2 (§ 3.1) because both processes are self-similar
and insensitive to y0, and it is known that transition into Taylor’s diffusion happens at
t � O(1). The time scale for transition from pure diffusion into anomalous diffusion, call
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Figure 9. Stages of the dispersion process as a function of time. Each curve represents the evolution of the
width of an initially localized tracer patch, with the width defined as the square root of the second moment
μ2 via (3.11). Each coloured line is associated with a different choice of y0 (see the labels on the right). Also
shown are two diffusive curves proportional to t1/2, and several super-diffusive power laws (grey lines). The
magenta line is for an initial condition that is uniform in the across-stream direction. In all cases, Pe = 1000.

it τ , is calculated from the intersection of the two curves
√

2t and Atγ2/2. Hence τ =
(2/A2)1/(γ2−1), with γ2 and A given empirically (table 3).

The envelope of curves Atγ2/2 associated with the anomalous diffusion stage of shear
dispersion in figure 9 shows that τ is smallest for ballistic dispersion (magenta curves
in figure 9). Typically, ballistic dispersion is associated with a uniform initial condition
in the cross-shear direction, i.e. a streamwise Gaussian stripe. In this case, the initial
tracer patch spans both subdomains U∗ > 0 and U∗ < 0, and its width grows linearly with
time as

√
μ2 ∝ Pe t. We find that the constant of proportionality ∼0.3 ± 0.1 for all shear

flows. Using A = 0.3Pe, we compute τ ≈ 20 Pe−2, or 2 × 10−5 with Pe = 1000. Ballistic
dispersion also occurs when the initial plume with small cross-shear width is placed at
a streamline with infinite shear. (In the square shear flows we see it at y0 = π/2 when
Ld = 1, and y0 = 3π/4 when Ld = 2.) In both cases, θ̄ is composed of two asymmetric,
long-tailed profiles that separate from one another, as opposed to the single-tailed case in
figure 8(c).

The time scale τ of transition into anomalous diffusion is delayed the most when the
initial condition is placed in regions with zero shear over a wide range of streamlines.
The square shear flow is a good example (at y0 = nπ, n an integer), in particular at y0 =
0 and Ld = 5.2 (red curve in figure 9i). Taking the values (A, γ2) = (75, 4) associated
with the square shear flow Ld = 5.2 from table 3, we find τ ≈ 0.3. At this time scale, the
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Shear flow Uniform y0 = 0 y0 = π/4 y0 = π/2 y0 = 3π/4 y0 = π

Cosine (350, 1) (200, 1.875) (250, 1.45) (335, 1.45) (250, 1.45) (200, 1.875)

Triangular
Ld = 1/2 (300, 1) (135, 1.5) (245, 1.475) (245, 1.475) (245, 1.475) (135, 1.5)

Ld = 1 (325, 1) (175, 3.2) (375, 2.6) (300, 1.5) (480, 1.475) (280, 1.5)

Ld = 2 (235, 1) (60, 3.6) (160, 3.2) (750, 2.85) (1900, 2) (660, 1.475)

Square
Ld = 1 (350, 1) (1600, 3.6) (7000, 3) (325, 1) (7000, 3) (1600, 3.6)

Ld = 2 (350, 1) (220, 3.95) (735, 3.4) (6000, 3) (375, 0.975) (10 000, 3)

Ld = 5.2 (250, 0.975) (75, 4) (300, 3.8) (1800, 3.325) (7800, 2.5) (25 000, 2.35)

Gaussian
Ld = 4/5 (350, 1) (145, 2.4) (190, 1.75) (350, 1.5) (450, 1.45) (370, 1.8)

Ld = 4/3 (325, 1) (150, 3.6) (280, 2.8) (500, 2) (625, 1.45) (700, 1.75)

Ld = 2.9 (210, 0.975) (60, 3.6) (160, 3.2) (1000, 3) (1700, 2) (1500, 1.65)

Polynomial
Ld = 1 (295, 1) (115, 1.97) (150, 1.55) (262, 1.5) (325, 1.45) (200, 1.425)

Ld = 2 (270, 1) (85, 2.8) (135, 2.1) (240, 1.675) (460, 1.5) (285, 1.37)

Ld = 5 (180, 0.975) (50, 3.4) (105, 2.85) (435, 2.55) (700, 1.75) (405, 1.3)

Table 3. Parameter pair (A, γ2/2) that approximates the power-law dependence of width
√

μ2 ≈ Atγ2/2

(calculated empirically) in the anomalous diffusion stage. Some of these cases are shown in figure 9.

plume width transitions from growing diffusively (as
√

2t) to growing with a very steep
anomalous diffusion (see red curves in figures 9c, f,i,l).

Contrary to our initial expectations, we found no explicit connection between the time
scale τ that indicates the transition from pure diffusion to anomalous diffusion in the
evolution of the dispersion process, and the inverse scale k±

d of transition from (pure
modal) anomalous tracer variance decay rate into pure diffusion decay rate. This implies
simply that the eigenfunctions φe

2n, φ
o
2n also play an important role in determining the

transition from Gaussian symmetric to asymmetric cross-flow concentrations, i.e. via a
Fourier inversion (see figures 8c,d). Similarly, we found no connection between the values
of exponents s± from table 2 with the power-law behaviour of γ2, not even in the cases
where the tracer was initialized at the exact streamlines where shear vanishes. That is, we
found no explicit connection between the values γ2 = 2/3 and s± = 0.75 derived for the
triangular shear flow (e.g. Ld = 1/2).

The anomalous diffusion stage of shear dispersion is sensitive to the choice of y0, with
implications for the self-similarity of the process. Following Castiglione et al. (1999)
and Ferrari et al. (2001), a process is called strongly self-similar whenever the moment’s
exponent γp is linear with p, i.e. when γp = p/ν, with ν an empiric constant. Otherwise,
when γp is piecewise linear, or nonlinear with p, the process is called weakly self-similar.
An important characteristic of a strongly self-similar process (such as diffusion) is that it
satisfies the scaling law

θ̄ (x, t) ≈ t−1/ν C
( x

t1/ν

)
, (3.14)

where C is a scaling function (e.g. Gaussian in the case of normal diffusion), and ν is a
scaling exponent (ν = 2 for normal diffusion). The scaling law suggests a scaling variable
ξ = x/t1/ν , and thus implies that the width of the tracer patch (or equivalently cloud of
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1
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1
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(e)

(b)(a) (c) (d )

(j)(i) (k) (l)

(g) (h)( f )

Figure 10. Moment γp dependence on moment index p for three shear flows: (a–d) polynomial flow with
Ld = 1 (Poiseuille-like flow, see figure 2d); (e–h) triangular shear flow with Ld = 1/2 (see figure 2a); and (i–l)
triangular shear flow with Ld = 1 (also in figure 2a). In (a–d), y0 values, fixed for each column (colour coded
to coincide with those in figure 9), are shown. When γp = p/ν, the value of ν is shown. Grey lines show the
pure diffusive behaviour p/2.

particles) grows as t1/ν (Zaburdaev et al. 2015). Hence a strongly self-similar process is
determined entirely by ν. (The values of ν for flows discussed in the following paragraph
are reported in figures 10a–d.)

The quadratic shear flow (polynomial shear with Ld = 1) has a strongly self-similar
anomalous diffusion stage for various choices of y0, but is weakly self-similar when
y0 = π/4. The value ν ≈ 1/2 at y0 = 0 coincides with the asymptotic value derived in
Latini & Bernoff (2001). A different choice of y0, however, changes the value of ν. The
triangular shear flow (Ld = 1/2), on the other hand, has a strongly self-similar anomalous
diffusion stage that is insensitive to y0. Specifically, ν ≈ 2/3 in all cases (figures 10e–h).
The triangular shear flow with Ld = 1 has an anomalous diffusion stage that is strongly
self-similar when the plume is initialized in regions with linear shear (figures 10k,l). But
when the plume is initialized in regions with no shear, the anomalous diffusion exhibits
weak self-similarly (figures 10i,j).

Typically, the scaling exponents ν < 2 are associated with super-diffusive processes
such as Levy walks, i.e. stochastics that generalize Brownian diffusion in the sense that
the concentration can obey a fractional Fokker–Planck equation (Dubkov et al. 2008).
Previous studies have shown that weak self-similar processes fail to be represented by the
scaling law (3.14) and obey neither a Fick equation nor other linear equations involving
temporal and/or spatial fractional derivatives (Castiglione et al. 1999; Ferrari et al. 2001).
We expand on this by showing that even flows with a strongly self-similar dispersion in
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their (transient) anomalous diffusion possess a non-unique exponent ν. The exception is
the (wide) triangular shear flow (Ld = 1), which has a unique scaling exponent, insensitive
to the location of the initial condition when the cross-stream width is vanishingly small.

4. Discussion

In this study, we present a new method to compute analytical solutions to the
advection–diffusion equation when the advecting velocity is a steady, parallel shear flow,
a building block for time-varying flows of the form (1.2). The method relies on the
ability to calculate the eigenvalue–eigenvector pairs associated with the non-self-adjoint
advection–diffusion operator (2.2), through a convergent truncation of a bi-infinite matrix
constructed following a procedure similar to the Floquet–Fourier–Hill method (Deconinck
& Kutz 2006). The truncated matrix, for example, implies that for every streamwise
Fourier mode k in a given initial condition with an even Fourier series in the cross-stream
direction (χo = 0 in (2.39)), the solution to (2.2) is approximated via

θ ≈ Re

⎧⎨
⎩

R∑
n,l=0

χ∗
l A(2n)

2l φe
2n exp

[
ik

(
x − α0 Pe

2
t
)

−
(a2n

4
+ k2

)
t
]⎫⎬
⎭ + θR>, (4.1)

where

θR> =
∞∑

l=R+1

χ∗
l cos(ly) cos

[
k
(

x − α0 Pe
2

t
)]

exp
[
−

(
k2 + l2

)
t
]
. (4.2)

The θR> contributions coincide with solutions to the diffusion equation, which means that
the variance of tracer with cross-flow scales lc > R decays in the pure diffusion regime.

The analytical method described in § 2.2 is expanded easily to handle shear flows that
have a general Fourier series, as well as Neumann (tracer) boundary conditions in the
cross-stream direction. Applying Neumann (no-flux) boundary conditions requires three
steps, with little modification to the method: (1) increase the periodicity of the shear flow,
say from P = 1 to P = 2; (2) restrict the analysis to only half of the domain (so that it
gives the appearance of a single-peaked shear flow); (3) given an arbitrary initial condition,
consider a second image initial condition, symmetric about the closest boundary y = π or
y = 0.

Expanding the method to handle a shear flow with arbitrary Fourier series is also
straightforward, in a similar way to incorporating Neumann boundary conditions described
in the previous paragraph. Again, there are three steps. Given an arbitrary shear flow: (1)
construct the flow that is the even-periodic extension of the arbitrary shear flow, which
requires extending the original domain by a factor of 2; (2) for an arbitrary initial condition,
include an image field initial condition that is equidistant from one of the two (closest)
boundaries (y = 0 or y = π); (3) restrict the analysis to only half of the (new) domain.
This approach implies that the tracer satisfies Neumann boundary conditions.

The procedure above implies that a tracer solution with the triangular shear flow (Ld =
1/2) and the linear shear flow with Neumann (tracer) boundary conditions arise from
the same eigenvalue problem (the EPs in the linear shear case are described in Doering
& Horsthemke 1993). The location of the first EP in the linear shear flow described in
Doering & Horsthemke (1993) does not match the location of the first EP of the triangular
shear flow, but that can be explained by a rescaling of the domain M, which in turn shifts
the values of k and Pe. The shifting of the EP locations also happens when the shear-flow
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periodicity P increases (from P = 1 to P = 2 or 3, as can be seen in the values of qcr
in table 1).The equivalence between solutions to (2.2) for the triangular shear flow and
the linear shear flow implies that tracer dispersion with the linear shear flow is a strongly
self-similar process in all its (shear dispersion) stages, and in the transient anomalous
diffusion stage, can likely be model via a fractional Fokker–Planck equation when the
initial width is vanishingly small.

It is straightforward to apply the solution method in the presence of time-varying shear
flows of the form (1.2), by discretely approximating piecewise constantly any arbitrary,
bounded time dependence in U0(t). This differs from the approach of Childress & Gilbert
(1995), who restrict attention to time-periodic operators, i.e. to time-periodic velocity
fields. In addition, the solution method in § 2.2 can be applied also to the case of spatial and
temporal variability in diffusivity κ = κ( y, t), as long as the spatial functional dependence
is integrable. In this scenario, the role of dκ/dy is identical to the role of the advecting
velocity.

The ability to compute analytical solutions for passive scalar tracers governed by (1.1)
for spatially varying and time-varying flows, and diffusivities κ( y, t), has important
consequences for the study and modelling of biogeochemical tracers. While the inclusion
of reaction terms into (1.1) makes the resulting governing equation nonlinear, our solution
method can be exploited when the operator splitting approach is used to solve, via
alternating Δt steps of advection–diffusion followed by pure reaction, the resulting
advection–diffusion–reaction equation (see Wheeler & Dawson 1987; Rubio, Zalts &
El Hasi 2008; Kulkarni & Lermusiaux 2019). Although outside the scope of this study,
employing our analytical approach when considering shear flows like those in (1.2) could
result in the reduction of spurious mixing associated with numerical advecting schemes
(see LeVeque 2002; Durran 2010).

5. Conclusions

The problem of passive scalar dispersion has been studied extensively, but only in a few
ideal shear flows and in asymptotic parameter regimes (Taylor 1953; Aris 1956; Young
et al. 1982; Rhines & Young 1983; Doering & Horsthemke 1993; Latini & Bernoff 2001;
Camassa et al. 2010; Haynes & Vanneste 2014). Here, we present an Eulerian matrix
method to compute analytical solutions to the tracer advection–diffusion equation for a
broad class of velocity fields and initial conditions. We focus on steady, spatially periodic
laminar shear flows, and doubly periodic boundary conditions. But the method allows us
to compute solutions to time-varying flows that can be expressed as (1.2), with no-flux
(tracer) boundary conditions in the cross-stream direction, and it applies to any shear flow
that can be defined via a Fourier series (integrable).

The Eulerian matrix method calculates the eigenvalue spectra of the linear,
non-self-adjoint operator of (1.1). We describe thoroughly the properties of the eigenvalue
spectrum. In particular, the spectrum properties are shaped by exceptional points with
implications for scalar mixing rates, and for the time evolution of localized tracer patches.
The analysis also leads to along- and across-stream length scales that determine the effect
of the shear.

The Eulerian matrix method is most efficient at low and intermediate Péclet numbers
(Pe < 104), due to the iterative computation of eigenvalue–eigenfunction pairs. No formal
restriction on the value of Pe applies, however. Also, the present method captures all the
stages of shear dispersion. This method therefore complements other approaches that apply
to very large Pe and/or to specific regimes of shear dispersion.
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Appendix A. Analytical expressions of shear flow velocity profiles

Table 4 shows the analytical expressions and Fourier coefficients used in the definition on
the main four shear flows in figure 2, and their explicit dependence on the inverse width
parameter Ld. All the shear flows share the feature that their maxima are at y = π, their
minima are at y = {0, 2π}, and they converge to a point shear flow as Ld → ∞, defined as

U( y) =
{

1, if y = π,

0, otherwise.
(A1)

In the case of the polynomial shear flow, we extend it periodically from −π < y < π,
so that within the interval y ∈ [0, 2π], the velocity is maximum at y = π and decays
algebraically to zero at y = {0, 2π}. The Fourier coefficients for the polynomial shear flow
are

αm = 2
π

∫ π

0

y2Ld

π2Ld
cos(my) dy. (A2)

The simplest case, Ld = 1, yields the quadratic (parabolic) shear flow, which has Fourier
coefficients

αm = 4(−1)m

m2 . (A3)

When Ld = 2, the quartic polynomial has Fourier coefficients

αm = −8(−1)m (
π2m2 − 6

)
m4 . (A4)

Appendix B. Shift–reflect symmetry and exceptional points

The shift–reflect symmetry of the shear flow is a necessary condition for the presence of
exceptional points (EPs). Consider the shifted Hill’s equation (compare to (2.10))

d2φ2n(ỹ − π/2)

dỹ2 + [
a2n − 2q U∗(2ỹ − π)

]
φ2n(ỹ − π/2) = 0, (B1)
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Shear flow Analytical expression Fourier coefficients

Cosine 1/2[1 − cos( y)] α0 = −2α1 = 1

Triangular U( y) =

⎧⎪⎪⎨
⎪⎪⎩

0, if y1 < y < 2π

2Ld( y1 − y)/π, if π < y < y1
2Ld( y − y0)/π, if y0 < y < π

0, if 0 ≤ y ≤ y0

αm =
⎧⎨
⎩

4Ld(−1)m

π2m2

[
1 − cos

(
mπ

2Ld

)]
, m > 0

1/(2Ld), m = 0

Square U( y) =
{

1, if y0 ≤ y ≤ y1
0, otherwise

αm =
⎧⎨
⎩

2(−1)m

mπ
sin

(
mπ

2Ld

)
, m > 0

1/Ld, m = 0

Gaussian U( y) = exp[−L2
d( y − π)2] αm = (−1)m

Ld
√

π
exp

[
−

(
m

2Ld

)2
]

, m ≥ 0

Polynomial U( y) = y2Ld /π2Ld α0 = 2
2Ld + 1

, see text for m > 0

Table 4. Analytical expressions for the flows considered in this study, their dependence on the inverse width
parameter Ld , and their Fourier coefficients. For the triangular and square shear flows, the constants are y0 =
π(2Ld − 1)/2Ld and y1 = π(2Ld + 1)/2Ld .

and the complex conjugate of Hill’s equation for the neighbouring mode,

d2φ2n+2(ỹ)

dy2 + [
ā2n+2 − 2q̄ U∗(2ỹ)

]
φ̄2n+2(ỹ) = 0, (B2)

where the overline indicates the complex conjugate here. As q = 2ik Pe is purely
imaginary, −q̄ U∗(2y) = q U∗(2ỹ) = −q U∗(2ỹ − π), where the second equality follows
for shear flow profiles that possess shift–reflect symmetry. This property makes (B1) and
(B2) symmetric with respect to one another in the sense that their real parts are identical
while their imaginary parts have opposite signs. Further, a shift-conjugate symmetry of the
eigenfunctions is implied, which has the form φ2n(ỹ − π/2) = φ̄2n+2 (Ziener et al. 2012).
Even for shear flows that are not shift–reflect symmetric, EPs can occur for sufficiently
high modes. The reason is that at sufficiently large modes (n values), the diagonal element
of the nth row in (2.21) becomes purely real as the Fourier coefficients that appear in the
diagonal decay monotonically.

Appendix C. Reference for variable names

Table 5 contains definitions of some of the most relevant variables of the main text.

Appendix D. Numerical validation

A side-by-side comparison between the analytical solution and a numerical simulation
is given in figure 11 for the case of a Gaussian initial condition in x that is uniform
in y. Two velocity fields are shown: a wide triangular shear flow, and a wide square
shear flow. The model solves the advection–diffusion equation with the prescribed (steady)
velocity field using a quasi-second-order Adams–Bashforth explicit time stepping scheme
and a finite-volume method to calculate the spatial fluxes. The model uses a domain
of size −200π < x < 200π, 0 < y < 2π, with Nx = 1280 and Ny = 128 grid points.

973 A44-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

74
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.748


M.A. Jiménez-Urias and T.W.N. Haine

Variable definitions Symbols used

Non-dimensional domain aspect ratio; sets the gravest
streamwise mode that fits the domain; arbitrary
value; see (2.4a,b)

km = M/L

Non-dimensional shear flow width (figure 2). Ld

Normalized, arithmetic mean of fluid velocity (2.6) α0/2
Fourier coefficients that define an arbitrary

(normalized) shear flow; see (2.6)
αm, m = 1, 2, . . .

Normalized (pointwise) shear flow velocity minus the
arithmetic mean

U∗ = U0 − α0/2

Periodicity of shear flow in y; see (2.7)–(2.8) P (P = 1 default)
Dimensional amplitude of shear flow (arbitrary) used

to normalized shear flow, and controls q (2.11)
U0

Even and odd eigenvalue–eigenfunction pairs,
respectively; each pair solves (2.10)

{φe
2n, a2n}, {φo

2n+2, b2n+2}, n = 0, 1, 2, . . .

Pure (modal) decay rate; see also (3.3) σ̄

Smallest q value at which a0(q) becomes complex; see
table 1.

qcr

Unique pre-factor to shear flow in effective diffusivity;
see (3.5) and table 2

β2 = ∑∞
m=1(α

2
m/(2m2))

pth central moment; see (3.11) μp( y, t)

Width of concentration μ
1/2
2 ( y, t)

Power law at which p-moment evolves via self-similar
law; see (3.13)

γp

Scaling exponent of strongly self-similar processes;
see (3.14)

ν = p/γp

Table 5. Definitions of relevant variables used throughout text.

The dimensional parameters are κ = 10−4 m2 s−1, M = 2πm, and the maximum velocity
is U0 = 0.2 m s−1. These choices give Pe = 2000 with diffusive time scale td = 1 =
M2/(4π2κ) = 104 s. The model is the open-source package Oceananigans (Ramadhan
et al. 2020). As a simple speed comparison, the analytical solution evaluated at the same
time-intervals as the stored model output was computed in under 3 minutes with a personal
computer (even much less if only a single-time evaluation, say the final one, is needed),
whereas the simulation took several hours to perform.

The numerical model solves the tracer equations at centre points, and our eigenvalue
approach to solving (2.2) effectively calculates solutions at vorticity points on a
C-staggered grid due to our domain (Fourier) mode decomposition (see Durran (2010) for
more on grid types). Nonetheless, we interpolate the analytical solution to an equivalent
centred grid (or interpolate the numerical solution to corner points), to further quantify
the error evolution ΔE over time. This is shown in figure 12 for the two flows in figure 11,
with the error defined as

ΔE(t) =
√

km

4π2

∫ 2π

0

∫ π/km

−π/km

[θa − θb]2 dx dy, (D1)
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–200π

2π

2π

π

200π0

Analytical Analytical Analytical Analytical

SimulationSimulationSimulationSimulation

Pe = 2000

κ = 10–4

U
0
 = 0.2

t = 0.2 t = 0.3 t = 0.2 t = 0.3

t = 0.2 t = 0.3 t = 0.2 t = 0.3

0

0

x

y

πy

200π –200π –200π–200π 200π 200π0 0 0

0

0.5

1.0
θ

x x x

(e)

(b)(a) (c) (d )

( f ) (g) (h)

Figure 11. Comparison between (a–d) numerical simulations and (e–h) analytical solutions. The velocity field
is (a,b,e, f ) the wide triangular shear flow (Ld = 1/2, P = 1), and (c,d,g,h) the wide square shear flow (Ld = 1,
P = 1). The initial condition is uniform across the flow (Φ(2ỹ) = 1 in (2.37)) for better visualization and
localized (Gaussian) at x = −250. The white dashed line represents the moving coordinate x(t) that starts at
x(0) = −250 and moves with the y-averaged flow. Both shear flows are shift–reflect symmetric, so the tracer
distribution θ(t) is symmetric (with a π shift in y) with respect to the moving coordinate x(t). Solid white lines
at x = −250 and near y = 0 indicate the x location of the initial condition. The matrix truncation parameter is
G = √

75. The numerical simulation results are from the Oceananigans package (Ramadhan et al. 2020).

0

0.001


E
0.002

0.003

Square (Ld = 1)

Triangular (Ld = 1/2)

0.1 0.2

t
0.3 0.4

Figure 12. Error over time computed via (D1) for the two flow solutions shown in figure 11. Time is
non-dimensionalized by the diffusive time scale. The time span shown covers the case before the (tracer)
solution begins re-entry due to the periodic boundaries in the streamwise direction.

where 4π2/km is the area of the domain as a function of gravest mode km (see (2.4a,b)),
and θa and θb represent the analytical and numerical solutions, interpolated onto a common
spatial grid. We observe a small and bounded (mean-square) error over the entire tracer
evolution (up to when the solution begins re-entry due to periodic boundary conditions).
A more complete analysis of the errors (e.g. as a function of grid refinement) remains
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outside the scope of this paper, but can be done to assess the convergence of discretized
operators in two spatial dimensions.

Finally, we note that the error ΔE is initially very small but non-zero. This is because
in the analytical solution, there are spurious high-frequency non-zero values (errors)
typical of �1 % of the solution amplitude, largely uniformly distributed across the
domain. These spurious values come from the non-zero cancellation in the triple sum
(2.39), and arise from sensitivity to machine precision in the eigenspectra calculation of
non-Hermitian linear operators (non-normal matrices). Nonetheless, we found that these
spurious high-frequency tracer values associated with very high wavenumber behaviour
decay similarly to pure diffusion. For more on the subject of the effect of machine precision
on spectra of linear non-Hermitian operators, we refer the reader to Trefethen & Embree
(2005).

Appendix E. Gravest eigenvalue asymptotics at small q

The dependence of the gravest eigenvalue a0 on q at small q can be approximated easily via
regular asymptotic expansion. Following McLachlan (1947), consider small-|q| asymptotic
approximations to a0(q) and φ0(q, ỹ) of the form

a0 ≈ β1q + β2q2 + · · · , (E1)

φ0 ≈ 1 + q C1(2ỹ) + q2 C2(2ỹ) + · · · , (E2)

where C1(2ỹ), C2(2ỹ), . . . are π-periodic functions, and β1, β2, . . . are constant
coefficients, all to be determined. Because q = 2ik Pe is purely imaginary, β1 and β2
determine the leading-order terms of the imaginary and real components of the eigenvalue
in the small-q limit. From (E1), (E2) and the shear flow profile definition (2.6),

φ
′′
0 = qC

′′
1 + q2C

′′
2 + · · · , (E3)

a0φ0 =
[
β1q + β2q2 + · · ·

] [
1 + q C1(2ỹ) + q2 C2(2ỹ) + · · ·

]
, (E4)

−2qU∗(2ỹ) φ0 = −2q

[ ∞∑
m=1

αm cos(2mỹ)

] [
1 + q C1(2ỹ) + q2 C2(2ỹ) + · · ·

]
. (E5)

Substituting into (2.10) and collecting powers of q gives the O(q) equation

C
′′
1 + β1 = 2

∞∑
m=1

αm cos(2mỹ). (E6)

As we are interested only in periodic solutions, β1 ≡ 0. Integrating (E6) yields
C1 = −∑∞

m=1(αm/(2m2)) cos(2mỹ). The O(q2) equation is

C
′′
2 + β2 = −2

( ∞∑
m=1

αm cos(2mỹ)

)( ∞∑
m′=1

αm′

2m′2 cos(2m′ỹ)

)
. (E7)

The right-hand side yields constant terms for m = m′ in the product of the two infinite
series (e.g. 2 cos2(2ỹ) = cos(4ỹ) + 1). As C2 is periodic, β2 must exactly balance these
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constant terms on the right-hand side. Therefore, the coefficient β2 in (E1) is given exactly
by

β2 =
∞∑

m=1

α2
m

2m2 , (E8)

where αm are the Fourier coefficients in the definition of the shear flow (2.6). This
expression is used in the formula for effective diffusivity (3.5).
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