
EIGENFUNCTIONS OF PLANE ELASTOSTATIGS III
THE WEDGE

V. T. BUCHWALD

(received 1 August 1964)

Summary

The boundary value problem of the infinite wedge in plane elastostatics
is reduced to the solution of a differential-difference equation. The com-
plementary function of this equation is determined in the form of a Fourier
integral, which, on expansion by residue theory, gives the complete eigen-
function expansion for the wedge. The properties of the eigenfunctions are
discussed in some detail, and an orthogonality property is derived.

The problem of the wedge loaded on its faces is shown to correspond
to the task of finding by Fourier transforms particular integrals of the
differential-difference equation. The case of an isolated normal load on
one face of the wedge is taken as a particular example, and the appropriate
eigenfunction expansions are obtained.

1. Introduction

Problems of the wedge in plane elastostatics have previously been
considered from two points of view. On one hand, Tranter [1], and Green
and Zerna [2] have given the solution of the problem of the wedge, loaded
on its faces, in terms of certain Fourier integrals. On the other hand, eigen-
function expansions of the Airy stress function have, in effect, been used
by Carrier and Shaw [3], and Morley [4], to solve certain boundary value
problems connected with regions with corners.

The chief aim of this paper is to give a unified account of boundary
value problems of the wedge. Complex variable techniques developed in a
previous paper [5] are used to reduce the problem to the general solution
of a differential-difference equation. The complex potentials are expressed
in terms of certain Fourier integrals, which, on evaluation by residue theory
give the relevant eigenfunction expansions. The closure of the expansions
can be established in this way, and the significance of the isolated load and
couple at the vertex is explained in terms of the eigenvalue zero.

If a is the semi-vertical angle of the wedge, where 0 < a < n, the
case in which a is the first root of the equation
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(1.1) tan 2* = 2a,

is exceptional, since two of the eigenvalues are equal. Appropriate forms of
the eigenfunction expansion can be deduced in this case by evaluating the
residues at the corresponding second order poles.

2. The Differential-Difference Equation

Using the notation of Green and Zerna [2] for plane strain, the stress
components in polar coordinates are given by

(2.1) &(z, z) = Trr+re9 = 2[Q'(z)+D'(z)],

and

(2.2) *(*, z) = Xee-Ke = Q'{z)+D'(z)+zD"(z)+ ±- m'(g),

where Q(z), m(z), are functions of the complex variable z which are analytic
in the regions considered. The bars indicate complex conjugate functions
and variables in the usual way. The complex displacement is given by

(2.3) 2/iD = KD(Z)-ZD'{Z)-W(Z),

where /i is Lame's constant, and K = 3—4a, where a is Poisson's ratio.
Assume that isotropic material occupies the interior of the wedge

—a < argz < «, and that the faces arg z = ±oc of the wedge are loaded
by given stresses such that only plane deformations occur. The problem
is to find Q(z), a>(z), analytic in the interior of the wedge, given that

(2.4) * (
1 ; \go(r),

where fo(r), go{?)> are prescribed given functions of r.
Consider the conformal mapping

n
4

Fig. 1.
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(2.5) z = ae*, r = ae*, d = t],

where £ = £+«?, z — reie, and z{djdz) = djdC. The interior of the wedge
is mapped onto the strip S, \rj] < a, — oo ^ f ^ oo, as in Fig. 1. The
boundary conditions (2.4)
are changed to

where /, g, are easily obtained from fo,go, and 0 is given in the new variables
by

(2.7) a&(t, £) = rf[fl ' (f)+5'(f)]+r{fl"(f) .

We shall denote by Su the strip a < r\ < 3a, and by 5^ the strip
—3a < t] < —a. Let the analytic continuation of £?(£) into S° be given by

(2.8) Q'uiC) = -e2'a^"(C-2ta)-ci>'(C-2ja),

for C in Su. Note that since 12(0is analytic for f in S, it follows that D{£—2?a)
is analytic for £ in Su, so that £?'(£), as defined in (2.8), is analytic for f
in Su. Replacing £—2ta by £ in (2.8), we find, for £ in S,

(2.9) 5'(f) = -e
iiaD"(C)-

Substitution of this expression for oJ'(£) into (2.7) gives

a<2>(£, £) = e-C[S'(f)-^(£+2ia)] + (e-f-e2--c)i3"(f).

When £ = f+ta, it is easily seen from (2.6) that

(2.10) C({+Mt)-flJ,(f+«t) = a^+te/(f).

Similarly, let the analytic continuation of Q(C) into SL be given by

(2.11) ffL(C) = -«-*««fl"(f+2»a)

for £ in S£. Hence, replacing £+2w by £,

(2.12) «>'(£) = -«-2 t e i3"(£)-

for £ in S. Hence, from (2.7) and the second of (2.6),

(2.13) fi'(f-«)-fli(f-i«)

Now w(£) is a single valued function in S, and, therefore, the two
definitions (2.9) and (2.12) are identical, giving, on replacing £" by £, the
differential-difference equation

(2.14) Q'u(C+2ix)-Q'L(t-2ioi)+2i sin 2ai3"(£) = 0,
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for f in S. The functional relations (2.10), (2.13) and (2.14) are sufficient
to obtain the general solution of the boundary value problem.

3. The Eigenfunctions of the Wedge

The eigenfunctions are obtained by considering the complementary
function of the linear equations (2.10), (2.13), (2.14). Take/(f) = g(£) = 0,
when it is easily seen that

(3.1) Q'v{0 = tfL(f) = fl'(C),

and the system reduces to the homogeneous equation

(3.2) fi'(?+2ta)—fl'(f—2ta)+2t sin 2oc£f"(f) = 0.

Assume that

where clt c2, are positive numbers. Then the function <j>+(u), u = t-\-is,
defined by

(3.4)

is analytic for s > c1, and <f>^{u), defined by

(3.5) £» =

is analytic for s < —c2. Also,

Jiyx—<x J— iyt—oo

where yx > clt and y2 > c2. Substitution of (3.6) in (3.2) gives

(—u) sin:

sinh 2«W+M^_( -M) sin 2a]e-iu^« = 0.

Following Titchmarsh [6], the necessary and sufficient conditions for (3.7)
to hold are that

$_(M) sinh 2aw+M^_(—u) sin 2a = — <t>+(u) sinh 2a«—M$+(—w) sin 2a,
( ' X ( « )
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where XR (U) is an arbitrary function which is analytic in the infinite rectangle
R, —c2 < s < ct. Taking the complex conjugate of (3.8), replacing u
by — u, and eliminating $>_(—u), <?+(—u), we have

XR(u) sinh 2a.u+uXR{~u) sin 2K
(3.9) * » = _ , + W = ^

If XR(u) = YR(u)+ZR{u), where

(3.10) YR{u) = -?R{-U), and ZR(u) = 2R(-u),

then it can be shown from (3.6) and (3.9) that

(3.11) £>'(£)=<£
J sisinh 2aw+w sin 2a J sinh 2aw—w sin 2a

where the path of integration is anti-clockwise around the boundary of
the rectangle R, —c2 < s < cx. It is assumed that YR(u), ZR(u), are such
that contributions to the integral from the short sides of the rectangle are
vanishingly small.

(a) The symmetric eigenfunctions

For symmetry about the x axis, D(z, z) — D(z, z), and &(z, z) = &(z, z),
whence Q'(z) = D'{z), and, therefore, Q'(£) = D'(t). It can be shown in
this case that XR(u) = — XR(—U), SO that the first integral in (3.11)
gives the symmetric eigenfunctions. Taking

(3.12) fl'(C) , edu,
smh 2«.u+u sin 2K

the singularities of the integrand are poles at u = 0, i{in, where fin = An/2a,
and the An are the roots of the transcendental equation

(3.13) sinA+AA = 0,

where k = sin 2a/2a. The properties of this equation and its roots have
been studied in detail by Smith-White and Buchwald [7]. In general the
roots are simple, and are located symmetrically about the real and imaginary
axes. There may be a single double root at a discrete set of values k{t) of
k (kll) = —cos X{i), where A(" are the roots of tan A = A). For a given value
of k ^ 0, there will be a finite number of pairs of real roots, and an infinite
sequence of quadruplets of complex roots. The latter have the asymptotic
form, as n -> oo,

(3.14) ±ln±i log 2 | ^ f l + 0 (log «/»),

where ln = {2n—\)n if k > 0, and /„ = {2n+\)n if k < 0.
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Suppose that there are N positive real roots of (3.13), denoted by
Ax • • • Ay, and let An be the w-th root if it is real, i.e. n f^N. If n > N,
Xn will refer to the appropriate complex conjugate pair An, ln, with positive
real part, whose asymptotic form is given by (3.14). Allowing cx, c2, to tend
to infinity, the integral in (3.12) is replaced by the expansion

(3.15) Q'(C) = Ao+ | (Ane-

In order to obtain (3.15), we have used the fact that Y(—u) = — Y(u).
Hence, for 0 ^ n ^N, Y(-ipn) = —Y(t/3B), and, as the /3n are real

An = 2mY{ipn)j{2x cos An+sin 2a),

so A n is real. A similar argument shows that for n > N, if A „ is the coef-
ficient corresponding to AB, then An is the coefficient which corresponds
to An. Transforming back to the z plane and integrating,

Q(z) = ^Olog f
(3.16) ^

+ 2 [Cn
N+l

where Ao, Cn, Dn are arbitrary constants, which are real for n 2S2V, and
01 {$ J > 0 for n > N.

If Ay = Ay.! = A(i), one of the roots of tan A = A, then the integrand
in (3.13) has a double pole, and the terms in flN, #y-i> would have to be
replaced by

C* log *)*-*'"+ (Dy^+Dy log z)z'w.

The first term in (3.16) corresponds to the well known case of an
isolated load acting at the vertex of the wedge, along the axis of symmetry,
leaving the faces of a wedge of any angle free of stress. The terms with the
Cn as coefficients are regular as z -> oo, and singular at the vertex, while
the terms with the Dn as coefficients are regular at z = 0, and singular
as z -> oo.

The complete expansion which is regular at the origin is given by the
terms in Dn. However, in order that the stresses shall be regular at z = 0,
it is necessary for Q'{z), zQ"{z), to be finite there, i.e. ^(/SB) ^ 1. Now
if a < \n, k > 0, and then the first root Ax of (3.13) can be shown to have
a real part which is not less than TC, SO that 0t{$^) ̂  1. Thus for a semi-
vertical angle a f£ \n, there is no stress singularity at the origin. However
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if a > \n, then Xx < n, and /?x < 1. Hence, for oc > \n, there is a stress
singularity of O^1"1) at the origin. For convenience, the graph of ^ is
given for the range 0 ^ a 5g n, in Fig. 2.

The Airy stress function % is defined in terms of the complex poten-
tials by

(3.17) jco(z)dz].

After some computation, it can be shown that the complete symmetric
expansion (3.16), together with (2.12), (3.13), and (3.17), gives the ex-
pansion in polar coordinates

(3.18)

where

X = A'ord sin 6+ 2 A'n
ft.

Hn[B) = cos (/Sn+l)0cos 03B-l) a -cos (/9B-l)0cos (/

the summation is over all the roots of (3.13), and the A'n are arbitrary
constants derived from the C and Dn.

6 -

4 - -

2-

-A-i

i'
Fig. 2. Graph of the real part of the first root & of the equation sin 2a/?+/Jsin 2a = 0, for

values of a in the range 0 < a S! n.
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2- •

\ — y-i

Fig. 3. Graph of the real parts of the first two roots y0, yt, of the equation sin 2ay—y sin 2a = 0,
for values of a in the range 0 < i S i .

(b) The anti-symmetric case.

In this case XR(u) = XB(—w), and, therefore,

(3.19) £'(£) =

and the expansion is in terms of the roots of the equation

(3.20) sin^—k/i = 0.

This equation has real roots at n = 0, ±2a, and &t /x = (ix, • • •, /J,N, and
complex roots at ±/*B) ±/iB for n>N. The asymptotic form for the
complex fin for k ^ 0 is

(3.21) fin = ln+i log 2|&|Zn+0(log »/»),

where now /„ = (2n+\)n if fe > 0, and /„ = (2w—|)?r if A < 0.
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If yn = ixnj2a., the poles of the integrand in (3.19) are at u = 0, ±»,
±iyn for n ^ N; ±iyn, ±iyn f°r n > N. The contributions from the three
poles at « = 0, ± t , are of the form

Q'0(C) = »40-*B0«-«+*C,««,

where Ao, B0,C0, are real constants. Changing the variable and integrating,

(3.22) Q0(z) = a 0 log (z/«) +iBoalz+iCoz/a

whence

co0(z) = t^40 log (zja)+2iB0a cos 2a/z.

The term in Co represents a rigid body rotation, and, without loss of
generality, we take Co = 0. The term in Ao represents an isolated load in the
y direction at the origin, and the term in Bo corresponds to an isolated
couple, also at z = 0.

Thus the complete anti-symmetric eigenfunction expansion is

Q(z) = fio(*)+
(3.23) M

 n = 1

|

where the En, Fn are arbitrary constants, real for n ^N, and !%(yn) > 0
for n > N. The equivalent expansion of % in polar coordinates is

(3.24) x = A'or6 cos d+B'o (sin 20-20 cos 2a)+ 2 ^ . r
r«

where now

#B(0) = sin (y.+ ljfl sin ( r B - l ) a - s i n (y.-l)fl sin (y.+ l)a.

The exceptional case is when /iN, /%_!, are roots of tan X — 2., and
there is a pole of order two. The appropriate terms in the expansion (3.23)
are of the form

iiEjf.t+Ejr log z)z-rt,+i(FN_1+FN log g)zr*.

Even more exceptional is the case where a is the first non-trivial
root oc0 of tan 2a = 2a, where 0 < on,, < n. In this case it is easily seen
that the double poles are at u = ± t , and the first terms in the expansion
of Q{z) in (3.23) are

(3.25) Q0(z)+i log z[E1(alz)+Fl(zla)] +

The stress singularity at the origin has somewhat different properties
than in the symmetric case. In (3.23), the expansion for which Q(z) is
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finite at the origin is the one associated with the Fn, while the En give
an expansion which is regular as z -*• oo. Thus, in the case of the expansion
which gives finite Q (z) at z = 0, the stresses are finite there only H3i(y1) > 1.
It is easily seen that this inequality holds for a sS \n. If a > \n, however,
the equation

(3.26) sin 2ay—y sin 2a = 0

has two real zeros in the range n ^ 2ay sS 2n. One of these is y = 1, and
we denote the other by yx. Now if a0 is the first root of tan 2a = 2a,
[a0 & 3jr/4], and if a < a0, yx > 1, and there is no stress singularity.
However, if a > a0, the two roots change places, and yx < 1, so that there
is a stress singularity of O^1"1) at the vertex. If a = a0, then yx= I, the
two roots are equal, and Fx is the coefficient of a term in z log z, so that
Q' (z) ~ log z at the origin. We conclude that in the antisymmetric case
there is a singularity at the origin only if a 3: a0.

The behaviour of the first two roots of (3.26) is illustrated in Fig. 3.
Noting that y0 — 1 is always a root of (3.26), we see from the graphs that
y0 is the smallest root if a < a,,, while if a > a0, y0 becomes the second root,
and yx is the smallest root.

The question of the concentrated couple corresponding to the coef-
ficient Bo has caused some discussion in previous works. For example,
Sternberg and Koiter [8] have reported on the existence of a 'paradox'.
It would appear from the above analysis that there is no paradox at all,
but that the existence of the term in Bo is part of the eigenfunction structure
of the differential operator. At a = a0 two eigenvalues coincide, and there
is a confluence of eigenfunctions, illustrated by the double pole in the
integrand in (3.19). Note also that at a = \n, the poles at t — i in the sym-
metric and antisymmetric cases coincide. However, a glance at (3.9) shows
that this is a highly degenerate case, and, since the wedge here is simply
a half-plane, it does not need any further discussion.

The 'paradox' reported by Sternberg and Koiter was obtained by
taking the limit of certain loads on the faces of the wedge. The question
as to whether this limit is strictly applicable will be discussed at the end
of the paper.

4. The Orthogonality Property

In polar coordinates, % satisfies the equation

02 1 3 1 S2 \ 2

_

Assuming that
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x =

it is easily seen that H(0) satisfies

{4-2) w* w
subject to the boundary conditions

(4.3) H = "§ = 0,

at 0 = ±a , for all values of /? ̂  0, ± 1 . The symmetric and antisymmetric
solutions of (4.2) and (4.3) are given after equations (3.18) and (3.24),
respectively.

Let (im, /?„, be two distinct, eigenvalues, and let Hm, Hn, be the cor-
responding functions of 0, with %n = r1+ff*Hn. It can easily be shown (e.g.
[5]) that if neither fim, /}„, take the values 0, ± 1 , and Pm=£pn, then

(4.4) j [ffm
 d^+Hn

d^+ (Pl+f}l-2)HmHn] dd = 0.

This integral can be rewritten in the form

(4-5) [Xn, Xml = r [XnAXm + XnAXnW = 0,
J— a

where A is the operator

a /1 d \ i a2

dr \r dr} ^ r2 302'

Unifortunately, although it is interesting, the property (4.5) is not
generally suitable for the solution of physical boundary value problems.
For instance, consider a sectorial region bounded by the straight lines
0 = ±a, and the arc r — a. If ree = rr9 = 0 on |0| = a, the suitable eigen-
function expansions are those in (3.18) and (3.24) with 8t{(in) and 8%{yn)
positive, so that displacements are finite at r = 0. The boundary con-
ditions at r = a are

_ r* 20* + r dr ' * " ~ drd0 \r) '

are given functions of 0 for |0| < a. By suitable combinations of these
conditions, it is possible to obtain % as a function of 0 on r = a. The same
is not true for Ax, and, as in [5], indirect means have to be used to evaluate
the coefficients of the expansions.
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Note, however, that the constants A'o in (3.18), and A'o, B'o, in (3.24)
can be specifically determined by evaluating the resultant force and moment
on the circular boundary, as, for static equilibrium, these must be balanced
by an equal and opposite isolated load and couple at the vertex.

5. Deformation of a Wedge, Loaded on its Faces

This case has been dealt with before, both by Tranter [1], and Green
and Zerna [2], but there are a number of features which are of further
interest. We, therefore, find a particular integral of the system of equations
(2.10), (2.13), and (2.14). As the stresses on the faces of the wedge are
not necessarily in static equilibrium, they must be balanced by forces and
moments, either at the vertex, or in the wedge interior at infinity, or both.
Assume for the time being that there is no isolated load or couple at the
vertex, but that at infinity, Q (z) is such that the resultant force and moment
there balance the loads on the faces. Thus, assume that

(5.1) Q(z) = 0(2"), as z -+ 0; Q(z) = 0(log z), as z -> 00;

where a (2: -|) is the positive real part of the first nontrivial root of

sin 2«A±k sin 2a = 0,

and a = \ when a = n. (See Figs. 2 and 3.) Hence

In making these assumptions, it is understood that in (2.4), fo(r),
go{r), are o^1), as r -*• 00, otherwise it would not be possible to balance
the loads by a finite resultant at infinity. Thus, in (2.6), /(£), g({), are
0(e~£), as f -> 00, and, from (2.10) and (2.13), this is consistent with the
assumption that Q(Q = 0(|) as I -*• 00.

On account of (5.2), the Fourier integral

(5.3) <f>(u) = — f Q'(£)eiaidC, u = t+is,

is an analytic function of u in the strip 0 < s < a, and, therefore,

(5.4) Q'(C) = 4{u)er«
J ia— 00

where 0 < c < a. Note that if we had assumed that the loads were balanced
by forces and moments at the vertex, we would need to assume that
Q(z) = o(z~1) as z -»- oo, when the path of integration in (5.4) would be
taken below the singularity at u = — *. It is clear that the choice of taking
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the path of integration above or below the singularities at u = 0, — i, does
not affect the conditions on the faces of the wedge, but determines just
where the equilibrating forces are acting, at the vertex or at infinity. If
the loads on the faces are in equilibrium, the singularities at u = 0, —i,
will be removable, and there will be no resultants at the vertex, or infinity.

It will be assumed for the remainder of the paper that there are no
isolated forces or moments at the vertex. It will also be assumed that a
is such that the equations (3.13) and (3.20) do not have a double root. In
so far as the double roots are concerned, those only occur for transcendental
values of a, and are of no concern from the physical point of view. If desired,
the results which will be obtained can easily be amended to take into account
any double roots which might occur.

The Fourier Transforms <j>u{u), <f>L{u) of the functions 42^(0, Q'L{Z)>

are defined as in (5.3), and let

2n F{u) = f °°
(5.5) J -

2TT (n G{u) = f°°
J -o

The transforms of equation (2.10) and (2.13) are

(5.6) <f>(u)—<f>v{u) = ae-"^-^F(u),

(5.7) 4-W-<j>L{^) = «" ( -"G(«) .

The transformation of equation (2.14) gives

(5.8) e2au <j>v{u)-e-ixu </>L{u)+2u lf>{-u) sin 2a = 0.

On eliminating 4>u(u)> $L(M)» from these equations, we have

(5.9) </>(u) smb. 2aw+w^(—u) sin 2K = H(u),

where

2H(u) = o£"<»+o F(M)-ae-«<«+<> G(u).

Taking the conjugate of (5.9), replacing u by —u, and eliminating ^(—u),
we have

(5.10) (sinh8 2<x«-w2 sin2 <x)<£(w) = H(u) sinh 2«.u+uB(—u) sin 2a.

If the applied loads are symmetric about the axis, then go(r) =fo(r) in
(2.4), andg(f) = / ( f ) . Hence, from (5.5), G(u) = F{-u), so that in (5.9),
H(u) = —H(—u). Thus, for symmetric loading,

(5.11) (sinh 2a.u+u sin 2a)<£(w) = H(u).
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Similarly, for anti-symmetric loads, g(g) — —/(I), and then H(—u) — H(u),
and

(5.12) (sinh 2OLU-U sin 2<x)̂ («) = H(u).

In the general case in (5.10), the integrand <j>(u) in (5.4) has singularities
at all the zeros of

(5.13) sinh2 2a.u—u* sin2 2a = 0,

as well as at possible singularities of H(u), depending on the nature of the
loads. In general, it will be possible to expand the integral in terms of the
singularities of the integrand, to give eigenfunction expansions in ap-
propriate sections of the wedge.

As an example, we obtain a useful Green's function by considering
the case, as in Fig. 4, of a normal isolated load P at the point z = ae'*,
on the upper face. This can be represented by taking

Fig. 4. An isolated normal load P at z = ae*".

(5.14) fo(r) =-Pfi(r-a); go(r) = 0;

where 6(r—a) is the Dirac delta function. If r = aet, this gives

(5.15) «/(£) = -Pertdtf); g{£) = 0;

whence, from (5.5),

(5.16) 2naF(u) = — P; G{u) = 0;

and, therefore,

4TIH(U) = —

Hence

(5.17) 4nD'(0 = - P f"+

Ur_00 sinh2 2xu~w2 sin2 2a
e~« du.

When | > 0 (i.e. r > a), the integral can be replaced by the negative sum
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of the residues at the poles in the half plane s < c, and when I < 0, (i.e.
r < a), the integral can be replaced by the sum of the residues at the poles
in the half plane s > c.

Considering first of all the residues at u = 0, — *, these give, on trans-
formation to the z plane,

(5.18)
f an a i cos a "1 a

b j l + ^ ( 2 2 i 2 ) 1
This expression corresponds to a resultant force —iPeia and moment aP
being carried along the wedge from r = a to infinity.

Evaluating the residues at the other poles in s < a, it can be shown
that for r ^ a

(5.19) 0 W = 4 ,

where the An are the roots of the equation

(5.20) sin2 2aA-A2 sin2 2a = 0,

and the summation is over all the roots to the right of the imaginary axis,
except X = 1.

Similarly, for r <a , the pole at u = i gives Qt(z) = »P(tan2a—2a)-1 z,
and, summing over the remaining poles,

(5.21) O(z)^Ol

The expressions (5.19) and (5.21) are suitable for rapid calculations by
digital computer, since, for a given value of a, the solutions of (5.20) can
be found by the complex form of Newton's method. If the expressions
(3.14) and (3.21) are used to obtain a first estimate, only a few iterations
are necessary to obtain the roots of (5.20) to a high degree of accuracy.

However, the radius of convergence of the series in (5.19) and (5.21)
is a, and the series are divergent at r = aeix, and only slowly convergent
at other points on the circle r = a. In general, in order to evaluate quantities
at r = a, the best policy appears to be interpolation between values found
for r > a and r < a. Near the singularity at r = aetx, however, even this
method fails unless the singular part is first removed. It is easy to show
that the singular part of Q(z) near z = z0 — aeia is

(5.22) 2nQ,{z) = iPe** log (z-z0), |arg z\ < a.

The 'divergent' part of the expansion (5.21) can be shown to be
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where the summation is over all the roots in the quadrant

0 > argA > — JJT.

Enumerating the roots in this quadrant, as n -> oo, we see that the general
term in this expansion

iPcia I z Vl"
2nn

which is equivalent to the expansion of the singular part of Q,{z) in the
form

(5.23)

Thus by writing Q*(z) = Q(z)—Q,(z), and subtracting (5.23) term by term
from (5.21), better convergence is obtained. A similar method may be
used to improve the convergence of the series in (5.19) near the singularity.

It is quite clear from the above analysis that any loads on the faces
of the wedge give rise to appropriate eigenfunction expansions, and there
is no evidence that a particular loading configuration can pick out a single
eigenvalue. The loading taken by Sternberg and Koiter [8] is statically
equivalent to a couple, and the eigenfunction expansion will contain a
term corresponding to a couple at infinity, as well as the other terms ir the
expansion. There is no reason to believe that, in the limit, the loading taken
by them must reduce to an isolated couple, which is a single term in the
eigenfunction expansion. It appears, in fact, that there is no 'paradox',
other than the slow decay of the stresses as r -*• oo, when a > \n. If
a > \% in the symmetric case, and « > a,, in the antisymmetric case, the
decay of the stresses is less than 0(r-1), as r -*• oo. However, insofar as the
stresses due to the tip of a semi-infinite crack decay as 0(r~^), this behaviour
is not really surprising.

Department of Applied Mathematics,
University of Sydney.
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