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CHARACTERISATIONS OF ORTHOGONALITY IN
CERTAIN BANACH SPACES

FaTH1 B. SAIDI

In this paper we adopt the notion of orthogonality introduced by the author in
a previous article. We establish a characterisation for orthogonality in the spaces
IE(C), 1 < p < oo, where S is a set of positive integers and C is the field of
complex numbers. Generalisations of the usual characterisation of orthogonality
in the Hilbert spaces I%(C), via inner products, are obtained.

1. INTRODUCTION

Throughout this paper K is the field of real or complex numbers, p is a real number
in [1,00), S is a finite or infinite set of positive integers, and lg (K) is the usual Banach
space consisting of all sequences (z,,) := (zn),cs in K satisfying ||($n)n€5||p < 00,

fenesly = (5P

nes

where

If N is a positive integer and S = {1,2,... ,N}(={1,2,...}) then
B(K) = (K)(:= I(K)).

Usually, the notion of orthogonality is associated with inner product spaces. Many
extensions to Banach spaces have been introduced through the decades by various au-
thors, for example, Birkoff [1], Roberts [4], James [2], Singer [6], Khalil [3] and, more
recently, in [5].

Each of the previously introduced extensions shares a number of important features
with Hilbert space orthogonality, but lacks certain other attributes. Clearly, one cannot
expect all the Hilbert space features to remain valid in general Banach spaces. Nev-
ertheless, one would like to obtain as rich of a structure as possible, without requiring
too much at the expense of the applicability and the usefulness of the concepts. Some
extensions that are indeed rich in structure were introduced in {3} and. more recently.
in [5]. The drawback in the extension of (3] is that the orthogonality of a sequence
(Zn)nes in @ Banach space E is dependent on a (non-unique) choice of a sequence of
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functionals in E* which is defined in terms of the sequence (z,),cg- Therefore we
adopt here the more straightforward and simpler extension of orthogonality introduced
in [5].

DEFINITION 1: A finite or infinite sequence (z.),cs in a Banach space E is said
to be orthogonal if

E AnTn

neS

= |2 leal e

nes

, for each Z nZ, € F,
neSs

where the an’s are scalars. If, in addition, ||z,|| = 1 for all n € S, then (z,),cg is
said to be orthonormal. We write z L y if z is orthogonal to y.

Note that Definition 1 gives an extension of the usual notion of orthogonality since,
in an inner product space H, = L y in our sense if and only if (z,y) = 0, where (.,.)
denotes the inner product in H, [5].

In (3], it was stated that (1/21/?,1/2%/?) and (1/21/,—1/2'/P) are orthogonal in
IP(K). We point out that this is true only in the case where K = R but not when
K = C, where R is the set of real numbers and C is the set of complex numbers. This
lead us to the following problem.

PROBLEM 1. Under what conditions are two vectors in I%(C) orthogonal?
It is well known that in the Hilbert spaces {%(C), (aj)jes 1 (b)) es if and onmly if
Z ajE; = 0.
jES
Therefore, our aim in this paper is to establish generalisations of this characterisation
of orthogonality in the spaces {5(C), 1 < p < oo. In particular, in the cases where
p = 2, we get back the usual characterisation of orthogonality in I%(C). Finally, an
open problem is presented.
We note that orthogonality in the sense of [3] implies orthogonality in our sense,

(5.
2. CHARACTERISATION OF ORTHOGONALITY IN [%(C)
The support of a finite or infinite sequence (a;),.s in C is given by
supp (a;) := {j € S : aj # 0}. '
For any two sequences (a;),cs and (bj)jes in C, we set

J := supp (a;) Nsupp (b;) := {j € S : a;b; # 0},

A::{Iﬁ‘:je.]}
aj
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and, for each r > 0,

) b;
Jr—{]eJ a ——7‘},

+ : bj

Jr=qjedJ:|=|>r
aj
- . b;

and Jo=1jedJ:|=|<r
a;

The cardinality of J is denoted by |J|. Note that for each » > 0,
J=J-uJ.uJ}

and A={Z—jl:jGJ:}U{T}U{’%IIJEJ:}a

where the unions are disjoint. Also, note that J is the disjoint union

J=J

reA
We start with the following direct consequences of Definition 1:

REMARK 1. Let (aj);cs and (bj) s be two elements in IZ(C).
(i) If J =0, then (a;);cs L (bj)jes-
(i) If J#0.then (a;);cq L (bj)jes if and only if (a;);¢; L (bj);c ;-
(i) If J is a finite or infinite union of nonempty and disjoint subsets, J =

kUI J*, and if (aj) e jx L (bj);¢ sx for each k € I, then (a;)c; L (bj);e,-
€

In view of Remark 1, we assume for the remainder of this paper that J # 0.
For r,8 € R and i:=+/—1, we set

f(r,8) := Z |bj + reay|”.
jeJ
The following observation actually holds for orthogonality in any Banach space.

LEMMA 1. Two elements a,b € I5(C) are orthogonal if and only if. for each real
number v > 0 satisfying r,(1/r) ¢ A, f(r,0) is independent of 6 € R.

PROOF: From Remark 1. (i), it follows that a L b in IZ(C) if and only if a L b
in I5(C). Hence a L b in I§(C) if and only if

> IAb; + pasP =D [IAlb; + |plas|” for all A, p€ C, A #0.
jeJ jeJ
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Dividing by ||, we get that this is equivalent to

4
B B
b+ |5]as| foranfec.

p
S+l -
J JjEJ

In other words we have, setting p/X :=re® (r > 0),

Z |b; + reioaj|p = Z |bj +ra;|” for all r > 0 and 6 € R.
jeJ jedJ
The lemma now follows from the continuity of the norm and the fact that A is countable,
hence {r > 0:r,(1/r) ¢ A} is dense in (0,00). 0
We note that any of the sets J., J} and J- may be empty. Hence, for the
remainder of this paper, we assume that any summation over an empty index-set is
equal to zero.
Before we continue, we introduce the following notations, where k,! are two non-
negative integers, r is a positive real number and (aj)je s» (bj) jes are two elements in

I%(C):
cp(0) :=1 and cp(k) := B ((:'/2) -t _ Ht 02kZ]:;! 2t) k1,
B} (k1) := cp(k)cp(l) D 16 (%1)’“(:__])'
jegt J J
st =athon X (2B’
j€ds i 7

LEMMA 2. We have (a;);c5 L (b)) ¢s in 15(C) if and only if, for every integer

m2=1,
x oo
> B (k+m, kyr® ™ N "B (k, k +m)rp=@ktm) = g
k=0 k=0

for all real numbers v > 0.

PROOF: By Lemma 1, (aj),c5 1 (bi)jes if and only if f(r,0) is independent of
6 for each r > 0 satisfying r, (1/r) ¢ A. So let r be a positive real number satisfying

r, (1/r) ¢ A.
If a, 3€ C and a # 0, then we have

o:-*—,B'D/2 Zc (ka”/z( ) 1flﬂ‘<1
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where (a + B)?/? represents the principal branch of e(P/2)Log(e+8) and where the series
is absolutely convergent for |8/a| < 1. This implies, since I(re a; /b | <lifjedr,

that
b-+rei9a-p: b'+'rei8a‘ p/2 F_*_,re—t@ p/2
’ ] 7 ] 3 5
jett jett
= Z (Zc bp/2 aJ. 7' sz) (Zcp(l) p/2 9 r‘e-“").
> (oG ()

Since all series converge absolutely, we may interchange the order of the summations to

)’) k+l> Gilk—10

get

S s + rea;]? = i(\z (cp(k)cp(l) > P (2)(

: =0 M= ; J
jerf k=0 "1=0 i€

S8

o0

- i<23+ k,0) k+l> i(k—1)8

Setting [ = kK — m then interchanging the order of the summations we obtain, since

a

k=0 1=0 k=0 —

D IPN

k=0 m=0k=m

that
m=-1 , co
> by ree;" = > (Z B (k, k- m)r2k_m> il
jeJt —o0 k=0

+ Z (Z B} (k, k - m)r2k—m)e*m9.

k=m

Replacing m by (—m) in the first summation and replacing k by (k + m) in the fourth
summation we obtain

(2.1) Z |bj + ret a,] Z <Z B} (k,k+ m)r2k+’"> e~ime
JGJ,- m=1 “k=0
o0 o]
+3 (Z B} (k +m, k) 2’°+"*) 8
k=0
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Similarly, since |b;/(re®a;)| <1 if j € J7, we obtain

Z |b; + reta,|” = i(Z(cp(k)cp(l Z la; |P( ) (Z:j)l>r,,_(k+¢)>e-i(k-i)e

J€JT k=0 *l=0 jeJs
ZZ(ZB (kl k+l> —i(k— 1)9
k=0 =0

Setting | = k + m then interchanging the order of the summations we obtain, since

00 00 oo [oo] m=-1 oo 00 o0
22 =2 =3 Y +X 3
k=0 I1=0 k=0m=-k —00 k=—m m=0k=0
that
=—1
5 el = S (3 Brthismypriem ) o
jeJs —00 k=—-m

o0 oo
+ Z (Z By (k,k + m)r”‘(zk+m)> etm?

m=0 \k=0

Replacing m by (—m) in the first summation then replacing k& by (k 4+ m) in the
second summation, we obtain

o) o0
(2.2) }: |bj +rei9ajlp = Z (Z B (k+m, k)r”‘(zk+’")) e~ime

jed;s m=1 \k=0
[= o} oo
+> (Z By (k,k+ m)rp-<2’°+m>) em?
It follows from equations (2.1) and (2.2) that

9) = Z b + rewajlp = Z |6 + reigajlp + Z [b; + reieaj|p

i€ jeJs jea}

o0 o o0
= Z (Z B (k, k 4+ m)r?k+tm 4 Z B (k +m, k)r’?'(zk“'“"‘)) e~imé

=1 “k=0 k=0

= o] oo o0
+y (Z B} (k+m,k)yr™*™ + " B (k,k + m)rp-(2’°+m)) e'mé

= f: E(r)e”im? ¢ f: Do (r)e™?.

m=1 m=0
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Noting that
B} (1, k) = B (k,1)
and B; (1,k) = By (k,1),
we obtain that E,,(r) = Dp(r) for all m > 1. Since {&™¥ : —00o < m < oo} isa

linearly independent set of functions of @, it follows that f(r,8) is independent of 6 if
and only if, for each r > 0 satisfying r, (1/r) ¢ A and for each integer m > 1,

(o o] oo
(2.3) Dm(r) =Y B (k+m, k)r®™*+™ + 3 " B (k, k + m)rP~(?+m) = o,

From the definitions of JF and J, we get

B+ m k)24 < e+ mley(8) (3 1P )
jet
< cp(k +m)cp(k) (Z ij|’°>
JjEJS

and

| B (kb + m)r?~ ] < cp(k)ep(k + m>( 2 ml”) "
jeJs

< colkicpll +m) (3 losP )

jeJ

- .
Therefore, since Y. cp(k)cp(k + m) converges, we obtain that the two series in equation
k=0
(2.3) are both uniformly convergent in T on every compact subset of (0,00). Hence,
since {r >0:7,(1/r) ¢ A} is dense in (0,00), we obtain by continuity that equation
(2.3) holds for all r € (0,00), which completes the proof. Note that the convergence
o0 [e]
of 3 cp(k)cp(k 4+ m) follows from the convergence of 3 c,(k) which, in turn, follows

k=0 k=0
from the fact that, for k > 1,

lcp(k+1)|:1_1+p/2<1_ 3/2 <(1_ 1 )3/2=1/(k+1)3/2
cp(k) = = k+1 1/k372

k+1 k+1
o
and the fact that 3 1/k%/2 converges. 0
k=1

We are now in a position to state our main characterisation theorems for orthogo-
nality in {§(C). First we start with the case where p is not an even integer. We have
the following.
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THEOREM 1. If p € [1,00) is not an even integer, then (a,-)jes L (bj)es in
IZ(C) if and only if, for every real number T > 0,

3 1P (3)" =0
JEJr
for all integers m 2 1. Equivalently, if and only if, for every real number r > 0,
b:\m
> lal (a—]) =0,
jeJr J
for all integers m 2 1.

ProOF: First note that if » ¢ A then J. = @ and the result follows by our

assumption that ). := 0. Since p is not an even integer, it follows that, for each
(]

m > 1, the set of functions {gi(r) = r2**™: k > 0} U {hi(r) = rP=(k+m) : k > 0} is
linearly independent on (0, 0c0). Hence we obtain from Lemma 2 that, for each m > 1
and each k£ > 0,

B} (k+m,k) = B7 (k,k+m) =0 for all r > 0.
Let 71 > 0 be fixed. Then, for all 7 € (0,7;), we have
B} (k+m,k) — B} (k+m,k) =0.

Since p is not an even integer we get that c,(k + m)cy(k) # 0 for all m > 1 and all
k > 0. Hence we obtain, for each m > 1 and each k£ > 0,

S b |p( )"Jr (bf)k=0fora11re(o,oo).
FEII\I, !

Note that
(J,'"\th) NJr, ast /11

. . — 3\ k .
Therefore, since the series 3 |b;” (a;/b;)**™ (a,/b;)" is absolutely convergent, we
j€eJ

obtain by taking the limit as r ,* r; that

> p () () = el G-

j€ Jrl

But, |a;/bj| =7y, for all j € J,, . Therefore, dividing by r2*, we obtain

(24) > 165 (as/;)™ =

i€Jry
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Multiplying by 727%™ = (|a;{" / 1b;|") (5;/a;)" (b;j/a;)™ and then taking the conjugate
we obtain

(2.5) S JoP? (%)’" —0.

7€Jry

Conversely, if Equation (2.4) or Equation (2.5) holds then both hold true. Mul-
tiplying by ¢, (k + m) ¢, (k)2 and by ¢, (k) cp (k +m) 7 2* respectively and noting
that r, = |a;/b;|, we get that, for each r, >0,

B} (k+m,k) = B, (k,k+m) =0,

for all £ > 0 and all m > 1. Hence, by Lemma 2, (a;),cs L (bj);cs in I5(C). This
completes the proof. O
The following equivalent version for Theorem 1 follows immediately.

COROLLARY 1. Ifp € [1,00) is not an even integer, then (a;);cs L (bj) ;s in
I%(C) if and only if, for every real number r > 0,

Z ij'l’eimej =0,
i€Jr
for all integers m > 1. Equivalently, if and only if, for every real number r > 0,
Z la]_lp e—imej =0 ,
J€Jr
for all integers m > 1, where |aj/b;|e®% = a;/b;, j € J.
COROLLARY 2. IfJ # 0 andifp € [1,00) is not an even integer, then (@j)jes -

(bj)jes in I%(C) if and only if, for each real number r € A, (a;) 1 (b;)
13,(C).

For the cases where p is an even integer, we have the following.

jETr jedr. 11

THEOREM 2. Ifp is a positive even integer, then (a3)jes L (bj)¢s in IZ(C) if

and only if
.12k .\ m
S| (2)" <o,
i€J ; b;
for all integers m,k, 1 < m £ p/2, 0 < k < (p/2) — m. Equivalently, if and only if
b2k s b;\m
SioP[2*(2)" -0
aj aj .

jeJ

https://dQi.org/10.1017/50004972700020098 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700020098

102 F.B. Saidi [10]

for all integers m,k, 1 < m <
PROOF: Let p =2n, n > 1. The binomial formula gives

f(r,0) =" (b; +rea;)" (b; +re™*a;)"

) J‘EJ(:CZ:;) (:)b?_kaﬁkeike) (,\; ( )(b )" (a5)'r! 419)
-5 () (1) (e e

Setting [ = k — m then interchanging the order of the summations we obtain, since

k=0 1=0 k=0m=k—n m=-n k

+
3

m=0 k=m

I
<

that

f(r,0) = i 7§n (Z) (k jm) (Z a?(a_j)k_mb;.‘_k(b_j)n_k'*'m),,.2k—meim9

m=—n k=0 jedJ

+33 (1) (") (Sab@) ok @y )meins.

m=0k=m JEJ

Replacing m by (—m) in the first summation then replacing k£ by (k +m) in the fourth

summation, we obtain

(r,8) = Xn:n :( )(k+m> (Za k+mbn k( J)n k— m) 2k+m o ~imf

m=1 k=
n n—m n k &
k+m (~\krn—k- \—k ) 2k4m_ime
#2050 ) () (S ey )semane.
m=0 k=0 JjEJ
Noting that the first double summation is the conjugate of the second, it follows, since

{e™® : —n < m < n} is a linearly independent set of functions of 8, that f(r,0) is
independent of 4 if and only if, for each m, 1 < m < n,

() ey eao
k=0 ’
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This is equivalent to, since the set of functions {gk(r) = r?**™ : 0 < k < n—m} is
linearly independent on (0, 00),

Zak""m a;) b" k= m(_)n , Z|b |p| ( ) =0,

jeJ J

forall m,k, 1 <m < n, 0<k<n—m. In other words, setting ¥/ :=n—-m—k,

I b m
2k p—2m— 2k — r Y —
5 b ™ = Sl [ ()" =0
ied
for all m, k', £mgn, 0k <n—-m. This completes the proof. 1
In particular, if p=2then n=m =1, k=0 and Y ajb; = 3 }bjlz (@;/bj).
JES jeJ
This implies that in the cases of the Hilbert spaces {%(C) we get back the usual notion
of orthogonality. Therefore we have the following.
COROLLARY 3. (aj)jes L (bj)jes in 1%(C) if and only if
Z ajE; =0.
jeSs
Clearly, one has the following equivalent version for Theorem 2.
COROLLARY 4. Ifp is a positive even integer, then (a;);cs L (b)jes in %(C)
if and only if

|b |P mojzo’

jEJ

2
‘ a] k+m

for all integers m,k, 1 < m € p/2, 0 < k < (p/2) — m. Equivalently, if and only if

b; |2k+tm . )
’_‘ e imb; =0,

St
jeJ
for all integers m,k, 1 < m < p/2, 0 < k < (p/2) ~ m, where |a;/b;| €% := a;/b;,
JjeJ. -

We note that in the case of IZ(R) things are different. Indeed, in the case where
p = 4 for example, the binomial formula gives that

4

4
£(r,0) = lay + burl* + laz +byr[* = 3 <k> (a6 + a3 ~*ok)r*.
k=0

Since (a1,a2) L (by,b2) in £5(R) if and only if f(r,0) = f(—r,0) for all r € R. we
obtain the following.
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LEMMA 3. (a3,a2) L (b1,bs) in £3(R) if and only if
a?bl + agbz = alb:li + azbg =0.

We finish with the following open problem.

PROBLEM 2. Under which conditions are two vectors in IZ(R) orthogonal?
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