A NEW KIND OF FREE EXTENSION FOR PROJECTIVE PLANES

Seymour Ditor
(received April 1, 1962)

1. Introduction. Marshall Hall [1] shows how projective planes of very general structure may be constructed and at the same time exhibits an extensive class which are non-Desarguesian. Here we shall indicate how his method of free extension can be generalized to yield a class of planes which seem to be distinct from those which he obtains.

A partial plane is a system consisting of two distinct sets of elements, a set of "points" P, Q, \ldots and a set of "lines" ℓ, m, \ldots, and a relation between these two sets, called "incidence", such that for any two distinct points, there is at most one line incident with both (or, equivalently, for any two distinct lines, there is at most one point incident with both). A partial plane is complete if every two distinct points are joined by a line and every two distinct lines intersect in a point.

Given an arbitrary partial plane π_{1}, we can define a sequence $\left\{\pi_{n}\right\}$ of partial planes as follows: let π_{1} be the original partial plane and then, assuming π_{r} has already been defined, let π_{r+1} consist of the points, lines, and incidence relation of π_{r} plus (1) new points - all the pairs of lines of π_{r} which do not intersect in π_{r}, and (2) new lines - all the pairs of points of π_{r} which are not joined in π_{r}. The new points and lines are said to be incident with the elements which are used to define them. The above sequence can now be used to define a complete plane π by stipulating that an element

Canad. Math. Bull. vol. 5, no. 2, May 1962.
belongs to π if and only if it belongs to some $\pi_{i}, i=1,2, \ldots$, and P and \mathscr{L} are incident in π if and only if they a re incident in some π_{i}. The plane π so defined is called the free extension of π_{1} and we shall denote it by $F\left(\pi_{1}\right)$.

More generally, π_{1} can be extended to a complete plane by taking as new lines sets of (two or more) points of π_{1} such that every pair of points of π_{1} not joined in π_{1} is in precisely one set and such that no two points in any set are joined by a line of π_{1}, then carrying out a similar operation on the lines of π_{1} to form new points, and so on a denumerable number of times.
2. The New Free Extension. The method of extension now to be considered differs from Marshall Hall's in that some of the new points and lines are to be sets consisting of merely one element. Thus, if P is a point of a partial plane π_{1}, we can extend π_{1} by taking the singleton $\{P\}$ (the set consisting of the single element P) to be a line through P and through no other point already present. (In fact, we could "draw" more than one line through P by introducing indexed sets whereby, for example, the lines $\{P\}_{1}$ and $\{P\}_{2}$ would be considered as distinct. This more general method of extension will not be considered here.)

For any partial plane π_{1} a sequence of partial planes $\pi_{n}, n=0,1,2, \ldots$, can be defined. Let π_{0} be the null set, π_{1} the original system, and, assuming $\pi_{r}, r \geq 1$, has already been defined, let π_{r+1} be obtained from π_{r} as follows:
(1) For any two points P, Q that are not joined in π_{r} add a line, the pair $\{P, Q\}$;
(2) For any two lines ℓ, m that do not intersect in π_{r} add a point, the pair $\{\ell, \mathrm{m}\}$;
(3) For any point P in π_{r} but not in π_{r-1} add a line, the singleton $\{P\}$;
(4) For any line \mathscr{L} in π_{r} but not in π_{r-1} add a point, the singleton $\{\boldsymbol{\ell}\}$ 。

As before, this sequence determines a plane which we shall denote by $F *\left(\pi_{1}\right)$.

We shall say that an element K (point or line) is of rank r, or rank $(K)=r$, if K is in π_{r} but not in π_{r-1}.

It should be observed that in contrast to the method of free extension, as long as π_{1} is not the void plane, $F *\left(\pi_{1}\right)$ always contains π_{1} properly (whether π_{1} is complete or not) and is nondegenerate, i.e. contains four points no three collinear. Moreover, $F *\left(\pi_{1}\right)$ is always non-Desarguesian since it contains the free extension of a free 4 -point (the partial plane consisting of two points on a line and two points not on it) which, as is pointed out by Marshall Hall, is itself non-Desarguesian.

A question which naturally arises at this point is whether or not the planes generated in this manner are essentially distinct from those generated purely by free extension. This question is partially answered in the following theorem.

THEOREM. If π_{1} and ψ_{1} are partial planes, where π_{1} is finite but not empty, then $F\left(\pi_{1}\right)$ and $F *\left(\psi_{1}\right)$ a re not isomorphic.

Proof. Assume $F\left(\pi_{1}\right)$ and $F *\left(\psi_{1}\right)$ are isomorphic. Then if $\pi_{1} \nleftarrow \pi_{1}^{\prime}$ in the isomorphism, since π_{1} is finite, π_{1}^{\prime} is finite and hence $\left\{\operatorname{rank}(\mathcal{K}): \mathcal{K} \epsilon \pi_{1}^{\prime}\right\}$ has a greatest member, N. Let ψ_{N} be the system consisting of all elements of $F *\left(\psi_{1}\right)$ of rank $r, r \leq N$. Then $\pi_{1}^{\prime} C \psi_{N}$. Also, there is at least one element λ^{\prime} of π_{1}^{\prime} of rank N 。

Suppose λ^{\prime} is a point P^{\prime}. Then there is a point P in π_{1} such that $P \not P^{\prime}$. Let \mathscr{L} be any line on P and let $\ell \not \ell^{\prime}$. If \mathscr{L}^{\prime} is in ψ_{N} then $\mathscr{L}^{\prime} \neq\left\{P^{\prime}\right\}$ since $\operatorname{rank}\left(\left\{P^{\prime}\right\}\right)=N+1$. If \mathscr{L}^{\prime} is not in ψ_{N} then \mathscr{L} is not in π_{1} and is therefore constructible from π_{1} by free extension. Then, under the isomorphism, the construction for $\boldsymbol{\ell}$ induces a construction for \boldsymbol{l}^{\prime} where each element obtained is either in ψ_{N} or is obtainable from ψ_{N} by free extension. It follows that \boldsymbol{L}^{\prime} can be constructed from ψ_{N} by free extension and hence $\mathscr{L}^{\prime} \neq\left\{\mathrm{P}^{\prime}\right\}$. Thus $\left\{P^{\prime}\right\}$ is a line on P^{\prime} such that if \mathscr{L}, $\left\{P^{\prime}\right\}$, then \mathscr{L} is not on P. This contradicts the existence of an isomorphism.

Similarly, if λ^{\prime} is a line a contradiction is obtained. This proves the theorem.

It seems very likely that the above theorem is also true when π_{1} is infinite and (of course) incomplete.

The results of this paper are contained in an M. Sc. the sis written under the supervision of Professor N.S. Mendelsohn.

REFERENCE

1. Hall, Marshall, "Projective Planes," Trans. Amer. Math. Soc., LIV (1943), 229-277.

University of Manitoba.

