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Energy and dissipation spectra of waves
propagating in the inner surf zone
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The spectral behaviour of random sawtooth waves propagating in the inner surf zone is
investigated in this study. We show that the elevation energy spectrum exhibits a universal

shape with an w~2 tendency in the inertial subrange and an exponential decay in the
diffusive subrange (@ being the angular frequency). A theoretical spectrum is derived
based on the similarities between sawtooth waves in the inner surf zone and Burgers wave
solutions. Very good agreement is shown between this theoretical spectrum and laboratory
experiments covering a large range of incident random wave conditions. Additionally, an
equation describing the universal shape of the dissipation spectrum is derived. It highlights
that the dissipation spectrum is nearly constant in the inertial subrange, consistent with
prior laboratory observations. The findings presented in this study can be useful to improve
broken wave dissipation parametrizations in stochastic spectral wave models.
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1. Introduction

Understanding the spectral behaviour of oceanic waves is crucial for the development
of wave forecasting models. Analysing the shape of wave spectra provides a deeper
comprehension of nonlinear and dissipation processes in the wavenumber or frequency
domain. Moreover, it aids in identifying the key physical parameters that govern the
dynamics of random wave fields. While the spectral characteristics of waves in deep and
intermediate water are relatively well understood, this is not the case in the surf zone,
where waves are controlled by strongly nonlinear and dissipative processes.

For well-developed seas in deep water, one can identify an equilibrium range in the
energy spectrum that results from a constant flux of energy towards high frequencies.
Hasselmann (1962) showed that this energy cascade is due to weakly nonlinear
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four-wave interactions. Zakharov & Filonenko (1966) demonstrated theoretically, from the
Hasselmann kinetic equation, that the equilibrium range is characterized by a universal
power law of the shape w™* (where w is the angular frequency). This law was confirmed
by Toba (1973) from field observations. It was then shown that two frequency subranges
coexist in the energy spectrum (e.g. Forristall 1981; Kitaigorodskii 1983; Hansen et al.
1990; Romero & Melville 2010; Lenain & Melville 2017): the equilibrium spectrum
for w1 < w < wy, and a dissipative subrange for high frequencies (w > w>), where the
frequency bounds are given approximately by w; >~ 1.3—-1.5w;, and w; >~ 3-3.6w, (where
wp is the peak frequency). Spectra follow an ™ power law in the dissipative subrange, the
so-called Phillips spectrum (Phillips 1958), which results from a balance between weakly
nonlinear four-wave interactions and dissipative processes.

As waves propagate shoreward in decreasing water depth, frequency dispersion
decreases and triad interactions approach resonance. This results in an intense
amplification of the harmonics of the spectral peak, over distances of only a few
wavelengths (Freilich & Guza 1984; Elgar & Guza 1985b). The spectral shape thus
displays strong variability in space. In this context, it is questionable whether these waves
can be characterized by an equilibrium spectrum. Kitaigordskii, Krasitskii & Zaslavskii
(1975) and Thornton (1977), using similarity arguments in line with Phillips (1958),
suggested that the high-frequency portion of the spectrum follows an w3 power law in
the shoaling zone . Although field observations show that the characteristic high-frequency
spectral slope (between —3 and —4, approximately) is less steep than in deep water (v
Phillips spectrum), there is no clear evidence of a universal power-law spectrum.

As waves move through the surf zone, the nonlinear interactions tend to redistribute the
energy around local peaks in the spectrum. The high-frequency portion of the spectrum
thus evolves gradually into a flat, featureless shape (Herbers & Burton 1997; Kaihatu et al.
2007). Smith & Vincent (2003) proposed a parametrization of the high-frequency range
based on the analysis of laboratory and field data. Their parametrization, expressed in the
wavenumber space, consists of two power laws: k~%/3 for 2.5k, < k < 1/hg, and k=>/? for
k > 1/hg, where k is the wavenumber, k), is the wavenumber at the spectral peak, and hg
is the mean water depth. Smith & Vincent (2003) referred to the shallow-water theory
of Zakharov (1999) for the first law, and to the deep-water Toba’s spectrum (derived
theoretically by Zakharov & Filonenko 1966) for the second law. This is questionable
because waves in the surf zone are strongly nonlinear and beyond the scope of the weakly
nonlinear theories by Zakharov (1999) and Zakharov & Filonenko (1966). Moreover,
Smith & Vincent (2003) used a transformation of the observed frequency spectrum
E(w) into a wavenumber spectrum E(k) based on the linear dispersive relation. In the
surf zone, this relation strongly overestimates k for high frequencies (Thornton & Guza
1982; Martins, Bonneton & Michallet 2021). The linear transformation thus leads to an
artificial stretching of E(k) towards high wavenumbers, making the k—>/ power law highly
questionable. Therefore, until now, there is no clear evidence of universal spectral power
laws, in the wavenumber space, for the surf zone. However, several authors have observed
a trend towards an w2 spectral shape in the inner surf zone (e.g. Kirby & Kaihatu 1997;
Kaihatu et al. 2007). Due to the predominance of nonlinear effects over dispersion effects,
the waves tend towards a sawtooth shape with a steep front face and a quasi-linear back
slope (see figure 1). For idealized sawtooth waves, with discontinuities at wave fronts,
the entire energy spectrum follows an w~2 power law. For real sawtooth waves, turbulent
motions result in a diffusion-like process at wave fronts. The resulting rounding off of
the fronts controls the high-frequency behaviour of the surface elevation spectrum. This
is illustrated in figure 2, where two frequency subranges can be identified: an inertial
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Figure 1. Example of a random sawtooth wave elevation signal in the inner surf zone, where ¢ denotes the
surface elevation. Laboratory data from van Noorloos (2003), experiment vN03-C3 (see table 1), wave gauge
no. 64.
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Figure 2. Example of a random sawtooth wave elevation spectrum in the inner surf zone. Laboratory data
from van Noorloos (2003), experiment vNO3-C3 (see table 1), wave gauge no. 64. The cyan line indicates the

sawtooth wave regime; the grey line indicates the beginning of the surf zone; the dashed line shows the w2
power law.

subrange where the energy spectrum follows an w~2 tendency, and a second subrange
where E(w) decreases more rapidly with w. The latter range will be referred to as the
diffusive subrange.

In this paper, we analyse the spectral behaviour of random sawtooth waves in the inner
surf zone. We show that the energy spectrum, made up of the inertial and diffusive
subranges, follows a universal shape. Based on analogies between inner surf zone waves
and Burgers turbulence (i.e. ‘Burgulence’), we derive a theoretical law for the energy
spectrum, and assess its validity from laboratory data. Within this theoretical framework,
we analyse the properties of the dissipation spectrum and propose ways to improve its
parametrization in stochastic spectral wave models.
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2. Physical background

As waves propagate shoreward in decreasing water depth, wave height and nonlinearities
increase, leading to wave breaking. After the initiation of breaking (spilling or plunging),
a rapid change occurs in the wave shape over a relatively short distance. Shoreward of
this region, the wave field reorganizes itself into a succession of relatively stable bore-like
waves. This region, referred to by Svendsen, Madsen & Hansen (1978) as the inner surf
zone (ISZ), covers a significant part of the surf zone for beaches of regular shape and
gentle slope. The ISZ is a self-similar region, where waves are locally depth controlled
(Thornton & Guza 1982). Specifically, the ratio of wave height to water depth remains
nearly constant. As ISZ waves propagate, they maintain almost the same shape, consisting
of a turbulent wave front and a quasi-linear back slope (e.g. Svendsen & Putrevu 1996).

Due to the quasi-linear back slope, the non-hydrostatic effects are very small except
at wave fronts (Martins et al. 2020). It has been shown that ISZ waves are nearly
frequency non-dispersive (e.g. Thornton & Guza (1982), and Martins et al. (2021) and
their figures 4g,h). This explains the presence of sawtooth waves (see figure 1), which are
a characteristic feature of nonlinear non-dispersive wave phenomena, such as nonlinear
acoustic waves (Gurbatov, Rudenko & Saichev 2012). A sawtooth wave (SW) is a coherent
structure that results from the competition between dissipation and nonlinearities. Another
well-known coherent wave structure, occurring in nonlinear weakly dispersive regimes, is
the solitary wave, which results from the balance between dispersion and nonlinearities.
However, stable solitary waves occur only in idealized situations, whereas quasi-stable
SWs occur in complex natural environments such as the ISZ.

Our study aims to comprehend the spectral behaviour of random SW fields in the ISZ.
Our approach is based on the fact that basic characteristics of energy and dissipation
spectra within the inertial frequency subrange can be inferred from the SW geometry.

For instance, deriving the w =2 power law for the energy spectrum, from a periodic SW
signal with discontinuities at wave fronts, is a straightforward process. Furthermore,
Kirby & Kaihatu (1997) showed an equipartition of the dissipation over the spectrum
(i.e. ‘white spectrum’) within the inertial subrange. These authors proposed that this
phenomenon arises from the fact that dissipation manifests in the space-time domain
as a sequence of isolated spike-like processes. To gain a deeper understanding of ISZ
energy and dissipation spectra, particularly in the diffusive frequency subrange, we will
use the nonlinear shallow-water model, the simplest possible, capable of reproducing the
SW shape and localized dissipation at wave fronts. The mathematical simplicity of the
model is crucial in order to be able to derive analytical spectral laws.

Bonneton (2007) derived a one-way nonlinear shallow-water model, wherein wave
fronts are represented by discontinuities (i.e. shocks) that describe correctly the dynamics
of ISZ waves on gently sloping beaches. This model enables a good description of both the
nonlinear wave distortion and the energy dissipation. We simplify the model by neglecting
bottom variations, resulting in the equation

s g 3 ¢ ¢

» + co ™ + 5 co he ax 0, 2.1)
where ¢ is the surface elevation, hg is the mean water depth, ¢y = 4/ghg, and g is
the acceleration due to gravity. Even though shoaling effects are not considered, wave
solutions provided by (2.1) bear a strong resemblance to waves in the ISZ, characterized
by their sawtooth shape and localized energy dissipation at wave fronts. However, in
essence, this shock-wave approach cannot describe the wave front structure, thus the
energy spectrum in the diffusive subrange. In order to overcome this limitation, turbulent
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processes can be parametrized by including a diffusivity term v;(82¢/8x%) on the
right-hand side of (2.1), with v; a turbulent diffusion coefficient.
In the frame of reference moving at velocity cg, and making the change of variable

_ Ren)

= Z, 2.2)

(2.1) can be rewritten as

Jv Jv 9% 2.3)
—_— V— = Vy —=. .
at ax | ax2

Throughout this paper, we will use this idealized one-way nonlinear shallow-water model
as a toy model to infer the SW spectral behaviour.

3. Burgers turbulence

3.1. Burgers model
To further simplify our wave problem, we consider in § 3 that the diffusion coefficient
vy is constant (v; = v). Equation (2.3) is then the well-known Burgers equation. It was
introduced originally as a simple one-dimensional model to contribute to the study of

turbulence (Burgers 1948). A synthesis on Burgers turbulence, also known as Burgulence,
is presented in Frisch & Bec (2002).
In this subsection, we consider freely decaying random waves v (x, ¢) that are statistically

homogeneous in space, with zero mean. The equation for the mean energy E, = (v?) is

9E, _ D (3.1)
ar " ’

where D, = 2v ((dv/ 9x)%) is the energy dissipation, and ( - ) is the spatial mean.

A striking feature of Burgers solutions is the formation of shocks. Due to the nonlinear
term, negative v slopes are steepened in time until they build up into diffusive shocks,
where nonlinear and diffusive effects are balanced. For initial random conditions, the wave
field tends towards an irregular sawtooth profile, quite similar to that of SWs in the ISZ
(figure 1).

Two main characteristic scales are involved in the SW regime: 4,, is the mean distance
between adjacent wave fronts, and V. is the characteristic scale of velocity jumps at wave
fronts. The wave field is then controlled by two length scales: a macroscopic one, 4,,, and
a small one, the average shock thickness § ~ v/V,. Consequently, the problem is governed
by one dimensionless parameter, the Burgers-type Reynolds number Rg = V A,,/v. It
is well established that for wavenumbers ranging from k,, = 2m/4,, to the diffusive
wavenumber k, (k, ~ 8~1), the Burgers energy spectrum follows a k=2 power law (e.g.
Tatsumi 1969). This k=2 subrange is followed at high k by a diffusive subrange where the
energy decreases more rapidly.

We will see later that ISZ waves are characterized by moderate Reynolds numbers of
approximately a few hundreds (Rp ~ 100-500). In this section, we analyse the spectral
characteristics of Burgers waves for this Rp range. It should be noted that most studies
on Burgulence, unlike ours, focus on regimes with very high Rp. When referring to an
ISZ wave, Rp must be distinguished from the classical Reynolds number based on the
kinematic viscosity. Before analysing random waves, we start by studying the nonlinear
dynamics of periodic SWs. This idealized case is very useful, first for understanding basic
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nonlinear and dissipative processes in the spectral space, and second by serving as a basis
for the development of a random SW theory.

3.2. Periodic sawtooth waves

In the non-diffusive case (v = 0), the derivation of the periodic SW Burgers solution,
v;(x, 1), from the method of characteristics is straightforward and gives

= 0 (%x _ sgn(x)) xe [—g ﬂ , (32)

where A is the wavelength, V(1) = Vp/(1 + Vpt/A) is the velocity jump across the inviscid
shock (located in x = 0), and Vj is the velocity jump at t = 0. Khokhlov derived an exact
SW solution of the diffusive Burgers equation (see Gurbatov et al. (2012)):
Vj(t) (2)6 V](t)x)
V= —— .

— — tanh
2

A v G-

This solution is not periodic, but for large Reynolds numbers it becomes quasi-periodic
between x = —A/2 and x = A/2, with a diffusive front located in x = 0. The dimensionless
velocity jump vy = (v(/l/2_) — v(/l/2+)) /Vy=1—tanh(Rp/8) is an exponentially
decreasing function of Rp. For the Rp values that concern us, we can consider the solution
(3.3) as periodic due to the small value of vy, (vp < 10~

For large Rp, an approximate relationship of total dissipation D,, can be derived. Using
(3.3) and retaining only the leading terms in an expansion in powers of Rp gives

2 3
<(a_v) >=L& 64
ox 12 va

1y

6 A

This shows that for Rp of interest, the total dissipation is virtually independent of v.
One of the main objectives of this paper is to analyse the spectral behaviour of SWs.

In the case of periodic waves, it is possible to derive an expression for the energy

spectral density from the Khokhlov solution (3.3) (see § A.1 in the supplementary material
available at https://doi.org/10.1017/jfm.2023.878). This expression is written as

and then

(3.5)

v

k
v, = 202 k2 csch? (), 3.6
Un 14 ku ( )
where &, = v,zl /2 is the energy spectral density, v, is the nth Fourier coefficient of v,
k, =2m/A, k, = nk, and k, = V;/2mv. For k, /k, < 1, &,, follows a k-2 power law:

2v;
&y, = TZJk" 2, (3.7)
This last relation is also the exact energy spectral density of the non-diffusive SW solution
(3.2). For k,/k, > 1, &,, decreases exponentially with k,. In the following, the inertial

and diffusive subranges will be defined respectively as k € [kp, k,] and k € [k, o<].

977 A48-6
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The dimensionless width of the inertial subrange, (k, — k) /kp, increases linearly with
Rp, since k, /k, = Rg/(47?).

Substituting the Fourier series representation of v into the Burgers equation, we obtain
the spectral energy equation

d
d_tg”” + 7Ty, = =D,,, (3.8)

where D,,, = 2vk2E,, is the dissipation spectrum, and 7, the nonlinear transfer function.
This last can be expressed as

k n—1 k o0
Ty, = tn Zl Umtnm = ' U Zl Un U, (3.9)
m= m=

where the first term on the right-hand side represents the triad sum interactions of
components (m, n — m), and the second term represents the triad difference interactions
of components (m, n 4+ m).

In order to better understand the spectral behaviour of dissipation and nonlinear
interactions, we analyse the different terms in (3.8). Substituting (3.6) into D,, = 2vk,215vn,
we get the dissipation spectrum

k
D, = 4v’k k; csch’ (k—) : (3.10)
which is a decreasing function of k,,. For &k, /k, < 1, the dissipation spectrum given by
41)VJ2
Dy, = = (3.11)
is constant. The nonlinear transfer function can be obtained from 7,, = —((d&,,/dt)+
Dy,,), which results in
kn
Ty, = —2vk, | k, — k, coth . Ev,- (3.12)
1%

Figure 3 illustrates the contribution of each term in the spectral energy equation (3.8).
We consider two SW fields with the same V; and A but two contrasting Reynolds numbers
Rp = 100 and Rp = 500 (respectively, minimum and maximum Rp values observed in the
ISZ experiments discussed in § 5). This means that we analyse two similar wave fields that
have almost the same shape except at the wave front. Figure 3 shows that the temporal rate
of change of the energy spectrum, d&,, /d 1, is virtually independent of Rp. This temporal
rate of change follows the approximate relation for large Rp

d D,

—&, =——&,,, 3.13
dr Un Ev Un ( )

where E, = VJ2 /12, and D, and &, are given by (3.5) and (3.7), respectively. This explains
why the energy spectrum shape is practically preserved as SWs evolve with time. Contrary
to d&,,/dt, the dissipation spectrum D,, and the nonlinear transfer function 7,, are

strongly dependent on Rp. For the highest Rp (Rg = 500), figure 3 shows that 7,,, > D,,,
meaning that for the first wave mode (the most energetic), the rate of change of the energy

spectrum is controlled mainly by energy transfer to higher wavenumbers. By contrast, for
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Figure 3. Dissipation spectrum and nonlinear transfer function for two SW solutions with the same V; and
A but distinct Reynolds numbers: Rgp = 100 (continuous lines) and Rp = 500 (dash-dotted lines). Red lines
indicate D,, (3.10); black lines indicate 7, (3.12); blue lines indicate d&,, /dt = —(D,, + 7y,); dotted lines
indicate positions of k, /k,. For the sake of clarity, we use lines (continuous or dash-dotted) to represent the
discrete spectra.

the lower Rg (Rg = 100), 7,, is of the same order of magnitude as D,,,, thus the nonlinear
energy transfer and the energy dissipation contribute nearly equally to the energy decrease
with time. We can see in figure 3 that D,, is nearly constant in the inertial subrange
following (3.11), and decreases strongly in the high wavenumber tail of the spectrum (i.e.
the diffusive subrange). In the diffusive subrange, |d&,, /d t| is much smaller than D, and
|7,,|. This means that for high wavenumbers, there is a balance between the dissipation
and the nonlinear energy transfer from low wavenumbers. This result seems in line with
surf zone field observations by Herbers, Russnogle & Elgar (2000).

To summarize this part, d&,, /d¢ is governed primarily not by nonlinear interactions,
even at low k,, but rather by the competition between D, and 7, , which are both
strongly dependent on diffusion processes at wave fronts. This conclusion, obtained for
periodic SW, cannot be applied directly to ISZ random SW, which are a more complex
phenomenon. However, these results may give ideas on how diffusive processes could
affect the dissipation and the nonlinear interactions of ISZ SWs.

3.3. Random sawtooth waves

We now consider freely decaying random solutions wv(x,t) that are statistically
homogeneous in space with zero mean. The power spectral density @ (k, ?) is the Fourier
transform of the autocorrelation function R(r):

Dk, t) = % /OO R(r) exp(—ikr) dr, (3.14)

—00

977 A48-8
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where R(r,t) = (v(x, ) v(x+r,1)). As @(k, 1) is an even function of k, we limit our
analysis to k > 0, and denote E, (k, 1) = 2P (k, 1) the power spectral density function. With
this notation, the total energy E, = (vz) = ffooo @ (k) dk can be expressed as

E, = /ooEv(k) dk. (3.15)
0

Throughout the paper, E, will denote the energy spectrum. In the spectral space, the
energy equation is given by
JoE,
ot
where Dy (k, t) = 2vk? Ey(k, t) is the spectral energy dissipation, Ty(k,t) = —k ffooo
Im(B) d/ is the nonlinear transfer term, and B(k, [, t) is the bispectrum.
Saffman (1968) assumed that the periodic solution (3.3) reproduces the qualitative
features of the small-scale behaviour of random SWs. From this hypothesis, he derived
an expression for the energy spectrum, which is consistent with (3.6) obtained for the

energy density function of periodic SWs. The equation for the energy spectrum is given
by

+T, =-D,, (3.16)

E,(k, t)=2v2km(t)csch2( ) k € [k, 0], (3.17)

ky (1)
where k, = V./2mv is the diffusive wavenumber, V. is the characteristic scale of v-jumps
at wave fronts, k,, = 2w/4,, and 4, is the mean distance between adjacent wave
fronts. The Reynolds number Rp = V,:4,,/v can be expressed as Rp = 4n2(kv /km). The
derivation of Saffman (1968) equation is presented in § A.2 of the supplementary material,
where we have both clarified the definition of the characteristic horizontal length scale and
corrected an error in the hyperbolic cosecant term. This theory applies to short waves (i.e.
SW scale) and not to wavenumbers smaller than approximately k,,. For the sake of clarity,
explicit reference to time has been omitted in the following equations.

For periodic SWs, the definition of the characteristic scale of v-jumps, Vj, is
straightforward. It is the non-diffusive v-jump associated with the diffusive SW solution
(3.3). The characteristic v-scale, V., in random SW fields is not explicit. It can be obtained
implicitly from E v = f k?: E, (k) dk, the total energy over the wavenumber range [k, 00].

By integrating (3.17) from k,, to co, we obtain
E, = 20%k,k, (coth(ky,/k,) — 1). (3.18)

Given k,;, and E v = f ,;O E, (k) dk, the implicit equation (3.18) yields k,, and then V.. Thus,

for a given random SW field characterized by k,, and E,, (3.17) can predict the energy
spectrum.
For k <« k,, E, (k) follows a k2 power law independent of the diffusion coefficient v,

ki V2
Ey(k) = | 225 ) k2, (3.19)
2m2
and for k > k,, E(k) decreases exponentially with &,
) k
E,(k) = 8vkyexp | —2 o) (3.20)
v
977 A48-9
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The dissipation spectrum D, (k, t) = 20k Ey(k, 1) is given by

k
Dy (k) = 403 kk? csch? (17) , k€ [k, oo, (3.21)
vV
and its asymptotic form for small k is
ke V2
Dy (k) = 2e (3.22)
T

It is worth noting that at large scale, the dissipation spectrum is constant, which means
that there is equipartition of dissipation over the spectrum. The exponential decay of E, (k)
at large wavenumbers guarantees that the k-integrated dissipation, D, = /i kfno Dy (k) dk, is
finite. To my knowledge, the theoretical model (3.17) has never been validated. In order
to test the validity of this model, we have computed numerically random SW solutions
of the Burgers equation. It is solved with a spectral method where aliasing is avoided by
using the so-called 3/2 rule. The initial random v-field, vo(x) = v(x, 0), is specified in the
Fourier space by the energy spectrum

k 1
Eo(k) = Eo -~ exp (—5 ((k/kp)* — 1)) : (3.23)
P

where k;, = 27/ 4, is the peak wavenumber, and E is the energy at k,,. The phase of each
wavenumber is assigned a random value in the range [0, 2wt]. The length of the domain
covers 28/lp and is discretized over 2'¢ grid points. The computed spectra E, (k, f) are
estimated by an ensemble average over 1000 realizations.

Figure 4 illustrates the time evolution of the energy spectrum. The cascade of energy
towards high wavenumbers, due to nonlinear triad interactions, leads to a rapid transition
to an established SW regime. In this regime, the theoretical law (3.17) gives a very good
description of the numerically computed spectra. The inertial and diffusive subranges
are well represented by the k=2 power law (3.19) and by an exponential decrease (3.20),
respectively. However, (3.17) tends to slightly underestimate the numerically computed
spectrum at large wavenumbers (k > 20k;,), whatever the numerical resolution. Contrary
to the monochromatic case, the wavenumber k,, is not constant and decreases with time
due to shock merging. Consequently, the inertial subrange width, and thus the Reynolds
number, decreases at a slower rate than in the monochromatic case. The time evolution of
the dissipation spectrum is shown in figure 5. We observe very good agreement between
the theoretical law (3.21) and the numerically computed dissipation spectra. In the inertial
subrange, the dissipation is constant, in agreement with the non-diffusive SW theory
(3.22). Then, in the diffusive subrange, the dissipation decreases exponentially. It is worth
noting that for Burgers turbulence, the dissipation occurs mainly in the inertial subrange,
unlike the classical hydrodynamic turbulence where dissipation occurs at smaller scale.

4. Analytical energy spectrum for ISZ waves

The above results for the Burgers equation apply directly to the one-way shallow-water
equation (2.1). Therefore, we can describe the spectral behaviour of irregular SWs,
statistically homogeneous in space, propagating freely in a constant water depth at

celerity co = «/gho. However, ISZ waves are not statistically homogeneous in space,
since they are forced at the offshore limit of the ISZ and propagate over a varying mean
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Figure 4. Time evolution of the power spectral density for an initial condition given by (3.23).
Dashed line indicates initial condition; cyan lines indicate numerical simulations at dimensionless times

t/t, = 1.45,2.90, 4.85 (corresponding to Reynolds numbers Rp = 443, 380, 363), where t, = 1/(kp/1Tn);
black line indicates theoretical model (3.17) starting from k = k;;,; red line indicates k2 power law (3.19); red
plus symbol indicates position of k, /k,. The length of the domain covers 28/lp and is discretized over 2'° grid
points. Spectra have been averaged over 1000 realizations.
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Figure 5. Time evolution of the dissipation spectrum for an initial condition given by (3.23). Cyan lines
indicate numerical simulations at dimensionless times #/t, = 1.45,2.90, 4.85 (corresponding to Reynolds

numbers Rp = 443, 380, 363), where t, = 1/k;,/ET,; black lines indicate the theoretical model (3.21) starting

from k = ky,; red lines indicate (3.22). The length of the domain covers 28/1,, and is discretized over 2'® grid
points. Spectra have been averaged over 1000 realizations.
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water depth /p(x). Subsequently, we will make the strong assumption that for slowly
varying bathymetry, the shape of the energy spectrum in the wavenumber space can be
estimated using the corrected Saffman equation (3.17). It should also be noted that unlike
Burgers-like waves, ISZ waves are asymmetric with respect to the mean water level (i.e. are
skewed). In fact, their back slope is not linear but convex. However, the curvature is small
enough not to affect the k=2 tendency of the energy spectrum in the inertial subrange.

Laboratory and field experiments (Thornton & Guza 1982; Elgar & Guza 1985a;
Martins et al. 2021) showed that in the ISZ, most wave components of the spectrum
are bounded and propagate to the same celerity ¢, close to the non-dispersive celerity
in shallow water, cg. From laboratory experiments analysed in § 5, we have verified that
this spectral behaviour also holds for high frequencies in the diffusive subrange. The ISZ
celerity can be estimated by the relation ¢, = a.cg, where a, >~ 1.1-1.2 (Tissier et al.
2011; Martins et al. 2021). Using the dispersion relation w = ¢k, we can estimate the
energy spectrum in the frequency domain, £, (), from that in the wavenumber domain.
The spectrum E, (w) can then be written

202
Ey(@) = 22 esch? (3) . € [on, 0, (@.1)
(o Wy

where v.(x) is a characteristic turbulent diffusion coefficient that varies in space, and
wp = 271 /T,,, with T, the mean time between adjacent wave fronts, and w, the diffusive
angular frequency. For the sake of simplicity, the empirical coefficient o, which is close
to 1, does not appear in the spectrum equation. It has been integrated into the diffusion
coefficient, resulting in the actual diffusion coefficient being equal to o v,.

Making the change of variable (2.2) to come back to the physical scale ¢, we obtain the
following expression for the energy spectrum in the frequency domain E(w):

8 12 G @
E(w) =- —wycsch” | — ), w € [wy, 0], 4.2)
9 ¢ Wy

where w, = (3/4mn)(gH./v.), and H, is the characteristic scale of elevation jumps at wave

fronts. This scale is related to the characteristic scale of v-jumps V. by H, = %(ho /co)Ve.
Contrary to the Burgers case, the turbulent diffusion coefficient v, is here an unknown of

the problem. The total wave energy is defined by E = @ = fooo E(w) dw, where (-) is
the time average operator. For v < w,, E(w) follows an ™2 power law,

2
E(w) = (g‘;’”gc ) w2, (4.3)

and for v > w,, it decreases exponentially with w,

32 1?2
Ew) = Y tom exp (-2 ﬁ) . (4.4)
g

Wy
The energy spectrum can be expressed in a dimensionless form as
E 2
ﬂ — (a)_m) csch? (% ﬂ) , (4.5)
E,, wy wy Wy

where E,, = ng /21%w,,. The shape of the energy spectrum is thus controlled
entirely by the dimensionless number w,,/w,, or equivalently by the Reynolds number
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H; (cm) h; (cm) fp Hz) Spectrum y s fs (Hz)
vNO03-C3 Hy0 =10 70 0.5 JONSWAP 3.3 1/35 25
vNO03-D3 Hy,o =10 70 0.65 JONSWAP 33 1/35 25
MK93 Hyps =4 47 0.6 Pierson—Moskowitz 1 1/20 25
BK94-7 Hyps =17 44 0.5 TMA 3.3 1/35 25
BK94-8 Hyps = 8 44 0.225 TMA 3.3 1/35 25
BK94-9 Hyps =9 44 0.225 TMA 33 1/35 25

Table 1. Experimental parameters: H;, incident wave height; h;, water depth; f,, peak frequency; y,
peak-enhancement factor; s, bottom slope; f, sampling rate.

Rp = 413 (w, Jwm) = %(gHCTm /v¢). In the following, the inertial and diffusive subranges
will be defined respectively as w € [wy,, ] and w € [w,, co]. The dimensionless width
of the inertial subrange, (w, — ®y,,)/wp, increases linearly with Rp.

The nonlinearities of shallow-water waves are usually characterized by the
dimensionless parameter € = H./2/hg, which quantifies the relative importance of
nonlinearities over the linear advection. For waves propagating in the ISZ over a regular
low slope bottom, the nonlinearity parameter € changes very little and has a value of
approximately 0.2-0.3 (e.g. Svendsen et al. 1978; Thornton & Guza 1982). Reynolds
number Rp, on the other hand, quantifies the relative importance of nonlinearities with
respect to turbulent diffusion. We will see in the next section that this second nonlinearity
parameter, contrary to €, evolves strongly as waves propagate in the ISZ.

5. Application to laboratory experiments
5.1. Description of datasets

The theoretical approach developed above is now evaluated against laboratory experiments
on random wave propagation and breaking on a uniform slope. Six laboratory datasets
are used: one from Mase & Kirby (1993) (hereafter MK93), three from Bowen & Kirby
(1994) (BK94), and two from van Noorloos (2003) (vNO03). These experiments cover a
large variety of incident random wave conditions in terms of frequency peak f,, wave
height H;, and spectral shape. The random waves were generated at the wave paddle using
random realizations of analytical single-peaked spectra. Mase & Kirby (1993) chose a
Pierson—Moskowitz spectrum that can be seen in figure 6(c) (blue line). van Noorloos
(2003) used a JONSWAP spectrum with a peak-enhancement factor y = 3.3, which
provides a much sharper frequency peak than that of the Pierson—-Moskowitz spectrum
(see blue lines in figures 6a,b). Bowen & Kirby (1994) chose a TMA spectrum, which
is an extension of the JONSWAP spectrum describing waves in finite depth. In shallow
water, the TMA spectrum follows an @~ power law, which results in a broader spectrum
than the JONSWAP spectrum (see blue lines in figures 6d4—f). In all these experiments,
the wave gauges are sampled at frequency 25Hz. For our spectral analysis, we will

consider frequency lower than half the Nyquist frequency, i.e. @ < @pax = 40rads™!. The
smallest wavelength, associated with wy, is approximately 10 cm, a scale much larger
than capillary wave scales. The experimental parameters of the six datasets are given in
table 1.

As incoming waves shoal, energy is transferred from the most energetic portion of
the energy spectrum (around the spectral peak) to both higher and lower frequencies
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Figure 6. Energy spectra for (a) vNO3-C3, (b) vN03-D3, (¢) MK93, (d) BK94-7, (¢) BK94-8, and (f) BK94-9.
Blue line indicates incident wave spectrum; grey line indicates spectrum at the breaking point; cyan line
indicates ISZ spectrum in a mean water depth sp = 5.5 cm; black line indicates (4.2); red line indicates (4.3).
Blue cross indicates position of w,,; red cross indicates position of w,,.

(figure 6). At the breaking point, the spectrum shape depends strongly on the incident
wave spectrum. For instance, narrow-band spectra (see figures 6a,b) develop harmonic
peaks of the fundamental frequency and infragravity waves (i.e. waves with frequency
lower than approximately 0.5f,) that are both significantly larger than those associated
with broad-band incident wave spectra. By contrast, in the ISZ, the high-frequency part

(w > w,,) of the wave spectrum always has a regular shape with an w2 tendency in
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the inertial subrange, whatever the incident wave conditions. The w2 tendency of ISZ
wave spectra was already noticed by Kirby & Kaihatu (1997). While the shape of the
high-frequency part of the ISZ spectrum is almost independent of the incident wave
conditions, this is not the case for the frequency bounds of the inertial subrange. The
lower bound w,, is an increasing function of the frequency peak of the incident wave
spectrum ;. Moreover, the time evolution of w, is controlled in the surf zone by the
wave front merging phenomenon. Tissier, Bonneton & Ruessink (2017) showed that this
phenomenon is favoured by the presence of infragravity waves whose intensity depends
on incident wave conditions.

5.2. Assessment of the analytical wave energy spectrum

To apply the theoretical spectrum (4.2) to a laboratory dataset, it is necessary to know
the three parameters w,,, @, and v.. The parameter v, can be substituted by the energy

E= fa?: E(w) dow using the equation
V2
< wpw, (coth(w,/w,) — 1) . (5.1)

E=_--*¢
8

O | oo

For each dataset, the mean time 7,, between adjacent wave fronts is obtained from a

wave-by-wave analysis that identifies each SW front. The energy E is then calculated by
integrating the experimental energy spectrum from w,, = 21 /T), to the Nyquist frequency.
The diffusive frequency w, is an unknown of the problem. To evaluate this frequency, we
use a nonlinear least squares method to fit the measured spectrum with the theoretical one,

rewritten in the form
w
csch? [ —
E(w) _ wy

E oy (coth(wp/wy) — 1)

For the whole dataset, the diffusive frequency w, ranges from 14.5 to 25.8rads™! (i.e.
fr =w,/(27) € [2.3,4.1]Hz). Knowing w,,, we obtain finally v, from (5.1).

Figure 6 shows ISZ spectra measured in 5 cm water depth for the six contrasting datasets
(see table 1). Whatever the random wave forcing, the ISZ spectral shape is well described
by the theoretical spectrum (4.2). The w2 tendency is identifiable on all measured spectra.
However, this tendency is, of course, less marked for a small inertial subrange, i.e. small
Rp (e.g. see figure 6b) than for large Rp (see figure 6f).

We are now interested in the evolution of the ISZ wave spectrum as waves propagate
shoreward in decreasing water depth. The measured wave spectra are very well described
by (4.2) irrespective of the dataset and the water depth (see figures 7 and 8, and in the
supplementary material, figures 3—6). As illustrated in figure 9, by scaling measured wave

spectra by E, = 8vcza)m /9g, data collapse on a single curve given by the dimensionless

universal spectrum equation
E
= = csch? (3) . (5.3)
E

(5.2)

a wy

Spectra differ only in their dimensionless inertial range width (w, — w,,)/w,. We focus
our analysis on two contrasting datasets: BK94-9 (figure 7) and vNO3-C3 (figure 8). In both
cases, we observe a decrease in w,, as waves propagate (i.e. hg decreases), which is due
to the bore merging phenomenon. This decrease is much stronger for vINO3-C3 (from 3.53
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Figure 7. Energy spectra at different locations in the ISZ for the BK94-9 experiment: (a) x = 24.50m,
ho =7.6cm; (b) x =24.72m, hg = 6.8cm; (¢) x =24.97m, hy = 6.2cm; (d) x =25.22m, hy = 5.5cm;
(e) x =25.50m, hg = 4.9 cm; and (f) x = 25.76 m, hy = 4.0 cm. Grey line indicates spectrum at the breaking
point; cyan line indicates ISZ spectrum at water depth /o; black line indicates (4.2); red line indicates (4.3).
Blue dashed line indicates position of w,; red dashed line indicates position of w,,.

to 1.99 rad s~!) because large-amplitude infragravity waves favour bore merging (Tissier
et al. 2017). However, as for the Burgers case (see figure 4), the shape of the energy
spectrum at the SW scales, w > wy,, is not affected by low-frequency waves. The diffusive
frequency w,, which marks the transition between the inertial and diffusive subranges,
increases significantly for BK94-9 (from 18.7 to 24.1rads™!) and slightly for vN03-C3
(from 14.9 to 16.1 rad s~ ). For both experiments, we observe an increase in the inertial
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Figure 8. Energy spectra at different locations in the ISZ for the vNO3-C3 experiment: (a) gauge 60,
hy = 8.4cm; (b) gauge 61, hop = 7.6cm; (¢) gauge 62, hop = 6.8cm; (d) gauge 63, hp = 6.1 cm; (e) gauge
64, hg = 5.3 cm; (f) gauge 65, ho = 4.5 cm; (g) gauge 66, hy = 3.7 cm; and (h) gauge 67, hy = 3.0 cm. Grey
line indicates spectrum at the breaking point; cyan line indicates ISZ spectrum at water depth /hg; black line
indicates (4.2); red line indicates (4.3). Blue dashed line indicates position of w,,; red dashed line indicates
position of w,,.

subrange width as waves propagate, and thus an increase in the Reynolds number Rp. This
evolution is observable for all datasets, as can be seen in figure 10. This figure also shows
that the Reynolds number is controlled primarily by the peak period 7}, of the incident
wave field and is an increasing function of 7,. The increase of Rp in decreasing water depth
means that the relative importance of nonlinearities with respect to turbulent diffusion
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Figure 9. Dimensionless energy spectra E/E, (E, = SVfwm /9g) at different locations in the ISZ for the
vNO3-C3 experiment. Grey lines indicate measurements from gauges 60-67 (i from 8.4 cm to 3 cm); black

line indicates (5.3); red line indicates w2 power law.
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Figure 10. Evolution of the Reynolds number Rp as a function of water depth hy.
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Figure 11. Evolution of the diffusion coefficient as a function of g/ 2H3./ 2,

increases as waves propagate and thus as broken wave height decreases. This differs from
what we have observed above for Burgers turbulence, where Rp is an increasing function
in H.. It means that in the ISZ, the characteristic wave height H,. decreases less rapidly
than v, as hg decreases. Assuming that the turbulent diffusion coefficient is controlled
mainly by H,, dimensional analysis leads to the following relationship between v, and H.:

ve = a8 PH?, (5.4)

where o, is a dimensionless coefficient. Similar scalings are used commonly to estimated
eddy viscosity in the surf zone (e.g. Svendsen, Schiffer & Hansen 1987). Figure 11 shows
that the turbulent diffusion coefficient v, follows an Hg /2 power law in agreement with
(5.4). However, the value of the coefficient «,, depends on incident wave conditions. The
relation (5.4) implies that Rp evolves approximately as H, 172 T,, and is indeed a decreasing
function of hg. It is worth noting that our approach applies only to the ISZ. Indeed, the
increase in v, with H, should not be valid in the vicinity of the onset of wave breaking.

6. Energy dissipation

Breaking-wave energy dissipation is one of the most important processes in the nearshore.
In particular, it controls the mean wave-induced circulation (Biihler & Jacobson 2001;
Bonneton et al. 2010). However, wave dissipation in the surf zone remains poorly
understood and is modelled heuristically in stochastic spectral wave models (Cavaleri

et al. 2018). The commonly used method in spectral models is in two steps: first,
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total dissipation D is estimated using a parametric random wave model (e.g. Battjes
& Janssen 1978; Thornton & Guza 1983) based on an analogy between broken waves
and non-diffusive (i.e. Rp = 00) hydraulic jumps; and second, D is redistributed over
frequencies following D(w) = I' (w) E(w), where I" () is an ad hoc function satisfying
the condition fooo I' (w) E(w) dw = D. In most stochastic spectral models (e.g. operational
wave models SWAN and WWIII), I" is given by the parametrization proposed by
Eldeberky & Battjes (1996)

r b 6.1
() = E (6.1)
where E is the total energy.

This method assumes implicitly that D is independent of turbulent diffusion processes
at wave fronts and thus independent of the Reynolds number Rp. Even if the dynamics of
random SWs in the ISZ is more complex than that of periodic SWs, it is worth noting that
for the latter, the dissipation spectrum is strongly dependent on Rp. In the periodic case, it
is the sum of D and the nonlinear transfer function 7 that is nearly independent of Rp and
can be approximated by 7'(w) + D(w) = I' E(w), where I" = D/E (see (3.13)), in a form
resembling the parametrization (6.1).

Parametrization (6.1) is also based on the assumption that I" is independent of w.
However, several studies have shown that I" is an increasing function of w (Mase &
Kirby 1993; Chen, Guza & Elgar 1997; Elgar et al. 1997; Kirby & Kaihatu 1997,
Herbers et al. 2000; Kaihatu er al. 2007; Smit et al. 2014). Mase & Kirby (1993) and
Elgar et al. (1997), based on laboratory and field observations, respectively, identified a
frequency-squared tendency for I". Mase & Kirby (1993) noticed that this > dependence
appears similar to that of the viscous damping term of the Burgers equation. Kirby
& Kaihatu (1997) and Smit er al. (2014), by performing numerical simulations with a
time-dependent Boussinesq model and a non-hydrostatic model, respectively, confirmed

the w? dependence for I" in the ISZ. In this context, I" can be written as

I'(w) = otpwz, (6.2)
where o is given by
D (6.3)
or = —————. .
r fooo w? E(w) dw

Based on laboratory and field data, Chen et al. (1997) demonstrated that spectral
Boussinesq model predictions of wave skewness and asymmetry are more accurate
with the dissipation parametrization given by (6.2) than by frequency-independent
parametrization (6.1).

However, neither parametrization takes into account turbulent diffusion processes at
wave fronts. On the other hand, the Burgers-like theory presented in § 4 and validated in
§ 5 allows us to obtain a relation between D(w) and E(w),

20 5
o’ E(w), (6.4)
gho

D(w) =

which takes into account the turbulent diffusion through v.. The frequency-squared
dependence of (6.4) is in agreement with observations described just above. We have
shown in § 5.2 that the diffusion coefficient is controlled mainly by the characteristic wave
height (see (5.4) and figure 11). However, an accurate parametrization of v, will require the
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Figure 12. Dissipation spectrum in the ISZ. Cyan line indicates dissipation computed from a measured energy
spectrum (see figure 8g) and (6.4), vNO3-C3 experiment, gauge 66; solid black line indicates theoretical
dissipation law (6.6) for w € [w,,, 00]; black dashed line indicates theoretical law (6.6) for w € [0, w,,], outside
of its range of applicability; black dotted line indicates (6.7); blue dotted line indicates position of w,,; red
dotted line indicates position of w,,.

analysis of a larger dataset, including field observations. Relation (6.4) does not require an
ad hoc parametrization of the total dissipation as is the case for previous approaches (cf.
(6.1) and (6.2)). On the contrary, D is given explicitly by integrating (6.4) over frequencies,
ie. D= (2v./gho) fooo w? E(w) dw. By substituting the energy spectrum equation (4.2)
into the last integral, we can obtain an approximate relation for the total dissipation for
large Rp:

8 3
= ThoT, H:. (6.5)
If we replace the characteristic wave height H. by the root-mean-square wave height H,,;,
this expression is similar to the empirical expression based on an analogy between broken
waves and non-diffusive hydraulic jumps (Battjes & Janssen 1978). The approximate
relation (6.5) is not useful in itself, but it is very interesting because it highlights a
connection between our approach and the classical non-diffusive one (Battjes & Janssen
1978). Equation (6.4) applies only to the ISZ, but it could serve as a theoretical basis for
developing new parametrizations of the dissipation spectrum in stochastic spectral models
for the entire surf zone.
By combining the energy spectrum law (4.2) and (6.4), we obtain a theoretical law for
the dissipation spectrum:

16 v}
D(@) = — —— wpwtesch? (), € [ ool. (6.6)
9 g2h0 wy
The asymptotic form of (6.6) for v <« w, is given by
vca)mH2
D(w) = ——<. 6.7
(@ == 3 6.7)
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We now analyse the main characteristics of D(w), but without direct experimental
validation of theoretical dissipation spectra. A dissipation spectrum computed by applying
(6.4) to a measured energy spectrum is presented in figure 12. This dissipation spectrum
compares well with the theoretical one in (6.6). We can see that D(®) is not proportional
to E(w) but is nearly constant in the inertial subrange [w;,, w, ], with a value in agreement
with (6.7). In other words, there is an equipartition of energy dissipation over the inertial
subrange. This result is in agreement with observations by Kirby & Kaihatu (1997) and
Kaihatu et al. (2007). Kirby & Kaihatu (1997) proposed that this phenomenon arises from
the fact that dissipation manifests in the space—time domain as a sequence of isolated
spike-like processes. Contrary to energy, dissipation D(w) is large up to high frequencies
of approximately w,. For example, at large Reynolds numbers (Rp ~ 400), the dissipation
D(w,) is approximately 0.72 times the maximum dissipation D(w,,), while the energy ratio
E(w,)/E(wy) is approximately 102, In our datasets, w, can reach values up to 17w, (see
figure 7f). This means that a proper modelling of dissipation needs to consider a frequency
range much larger than the one that is sufficient to properly estimate total energy. This is
an important result in the context of spectral wave model development.

7. Conclusion

The spectral behaviour of random SWs propagating in the ISZ has been analysed. We
show that the elevation spectrum exhibits a universal shape. A theoretical spectrum has
been derived based on the similarities between SWs in the ISZ and Burgers SW solutions.
Very good agreement between this theoretical model and laboratory experiments covering
a large range of incident random wave conditions is shown. The energy spectrum shape
is determined by three parameters: w,, = 27/T,,, the diffusive frequency w,, and the
turbulent diffusion coefficient v.. It is thus controlled by one dimensionless number
defined as Rp = 472 (w, /), or equivalently as Rp = %(gHCTm /Vve), where H, is the
characteristic wave height. This Reynolds number quantifies the relative importance of
nonlinearities with respect to turbulent diffusion. In the inertial frequency subrange,
defined as w € [wy,, w,], the energy spectrum follows an w2 tendency. An exponential
decay of E with w is observed in the high-frequency diffusive subrange w € [w,, 00].
We have shown that the turbulent diffusion coefficient is controlled mainly by the

characteristic wave height, following (5.4). Consequently, the Reynolds number evolves

. -1/2 . o . .
approximately as H, / T,,. The nonlinearities thus increase as waves propagate in

decreasing water depth. This explains why the inertial subrange and its w2 tendency are
more marked at the end of the ISZ than at the beginning. It is worth noting that information
on turbulent processes in the ISZ can be provided indirectly by applying our theoretical
model to high-frequency wave elevation measurements.

In stochastic spectral wave models, it is crucial to have a good parametrization of the
dissipation spectrum D(w). Within the framework of our theoretical approach, we have
derived an explicit relation between D and E (see (6.4)), showing a frequency-squared
dependence in agreement with previous laboratory and field studies. Contrary to usual
dissipation parametrizations, our relation does not require an empirical estimation of total
dissipation D. We must keep in mind that our approach has been developed for the SW
regime in the ISZ and not for the entire surf zone. However, our model (6.4) could
nevertheless be useful for developing new parametrizations of the dissipation spectrum
for the entire surf zone.
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An equation has been derived for describing the universal shape of the dissipation
spectrum in the ISZ. It highlights that D remains nearly constant within the inertial
subrange, and decreases exponentially within the diffusive subrange. The equipartition
of dissipation over the inertial subrange is in agreement with previous observations.
Contrary to energy, dissipation D(w) is large up to high frequencies of approximately
w,. Consequently, a proper modelling of the dissipation needs to consider a much larger
frequency range than the one containing most of the energy. Therefore, to characterize
the spectral behaviour of surf zone waves in the field, it is crucial to be able to
quantify accurately the surface elevation spectrum at high frequencies, up to approximately
1-2 Hz. Developments on both nonlinear reconstruction of wave elevation from pressure
measurements (Bonneton & Lannes 2017; Bonneton et al. 2018; Martins et al. 2020) and
lidar methods (Brodie et al. 2015; Martins et al. 2017) should help to achieve this goal.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2023.878.
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