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Holomorphic diffeomorphisms of semisimple

homogeneous spaces

Árpád Tóth and Dror Varolin

Abstract

We study the infinite-dimensional group of holomorphic diffeomorphisms of certain Stein
homogeneous spaces. We show that holomorphic automorphisms can be approximated by
generalized shears arising from unipotent subgroups. For the homogeneous spaces this
implies the existence of Fatou–Bieberbach domains of the first and second kind, and the
failure of the Abhyankar–Moh theorem for holomorphic embeddings.

1. Introduction

Complex analytic manifolds whose group of holomorphic diffeomorphisms acts transitively have
been at the center of much research since Klein’s Erlangen program. Almost as early on, studying
these symmetries proved itself a useful tool in the function theory of several complex variables.
When the homogeneous space can be represented as a bounded symmetric domain in C

n, the group
of holomorphic diffeomorphisms preserves a natural metric, and is therefore finite dimensional.
Poincaré computed these groups in the case of the ball and the bidisk, and was led to the failure of
the Riemann mapping theorem in higher dimensions.

In this paper we study the analytic geometry of Stein manifolds that support a transitive action,
by holomorphic diffeomorphisms, of a complex semisimple Lie group. Unlike the aforementioned
bounded symmetric domains, these manifolds have holomorphic diffeomorphism groups that are
infinite dimensional, and thus a different approach is required for their study. This work is based on
certain connections between representation theory and properties of the entire group of holomorphic
diffeomorphisms that we establish through further development of our earlier work [TV00].

Past work in the study of affine homogeneous spaces has concentrated mainly on algebraic
automorphisms, invariant theory, and applications to algebraic geometry. Even in the simplest case
of C

n, the group of holomorphic diffeomorphisms had not been well understood until the ground-
breaking work of Andersén and Lempert [And90, AL92]. Recall that a shear is a transformation of C

n

that, after an affine change of coordinates, has the form (w, z) �→ (z,w+b(z)), where (z,w) ∈ C
n−1⊕

C and b ∈ O(Cn−1). A slight, but important, generalization of these maps, that we called overshears
in previous work, is to allow maps of the form (w, z) �→ (z, ea(z)w + b(z)), where (z,w) ∈ C

n−1 ⊕ C

and a, b ∈ O(Cn−1). The Andersén–Lempert theorem states that when n � 2 every holomorphic
diffeomorphism of C

n can be approximated uniformly on compact sets by compositions of overshears.
In a manner similar to C

n, semisimple homogeneous spaces such as the smooth affine quadrics
Qn = SO(n + 1, C)/SO(n, C) = {x2

0 + · · · + x2
n = 1} ⊂ C

n+1 are very symmetric and large in
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Holomorphic diffeomorphisms of homogeneous spaces

the complex analytic sense, and so it is difficult to say things about the group of holomorphic
diffeomorphisms.

The density property is a notion capturing the intuitive idea that the group of holomorphic
diffeomorphisms is as large as possible. Let X be a complex manifold, and XO(X) the Lie algebra
of holomorphic vector fields on X. We say that X has the density property if the Lie subalgebra
generated by the complete vector fields on X is dense in XO(X):

〈ξ ∈ XO(X); ξ is complete〉 = XO(X).

(See § 2 for the definition of complete vector fields.)
In fact, we establish the density property for a large collection of semisimple homogeneous spaces,

i.e. complex homogeneous spaces that are obtained as quotients of complex semisimple Lie groups
by closed complex subgroups. We will be only interested in the case where the quotient space is
Stein, which, by a result of Matsushima, occurs if and only if the cosets are translates of a reductive
complex subgroup . The main result of this paper is the following theorem.

Theorem 1.1. If G is a complex semisimple Lie group of adjoint type and K a reductive subgroup,
then the homogeneous space X = G/K has the density property.

Recall that a semisimple Lie group is of adjoint type if its center is trivial or, equivalently, if
the adjoint representation is faithful. We were not able to establish the density property for all
semisimple homogeneous spaces; the proof of our main theorem uses the adjoint condition in a
crucial way.

The density property is of fundamental significance, and governs the geometry of the underlying
space in various respects, some of which were discussed in [Var00, Var01]. By results of [Var00], we
have the following corollaries of Theorem 1.1.

Corollary 1.2. Let X be as in Theorem 1.1, and let n = dimCX.

(i) There is an open cover of X by open subsets each of which is biholomorphic to C
n, i.e. is a

Fatou–Bieberbach domain.

(ii) The space X is biholomorphic to one of its proper open subsets.

(iii) Let Y be a complex manifold with dim(Y ) < dim(X), such that there exists a proper holo-
morphic embedding j : Y ↪→ X. Then there exists another proper holomorphic embedding
j′ : Y ↪→ X such that, for any ϕ ∈ DiffO(X), ϕ ◦ j(Y ) 	= j′(Y ).

Here and below, DiffO(X) refers to the group of holomorphic diffeomorphisms of the complex
manifold X. We avoid the more standard notation Aut(X), and use the words holomorphic diffeo-
morphisms in place of the more common automorphisms for fear that, when Lie groups are in the
picture, use of the word automorphism may cause confusion.

Knowing the density property for a given space has applications not only to the geometry of
that space, but also to some associated spaces on which the density property is not known to hold.
There are many results of this kind, but for the purpose of illustration we restrict ourselves to the
following theorem, which is our second main result of this paper.

Theorem 1.3. Let X be a semisimple homogeneous space of dimension n and Y a complex manifold
of dimension less than n such that there exists a proper holomorphic embedding j : Y ↪→ X. Then
there exists another proper holomorphic embedding j′ : Y ↪→ X such that, for any ϕ ∈ DiffO(X),
ϕ ◦ j(Y ) 	= j′(Y ).

It is not known if the spaces X to which Theorem 1.3 applies have the density property. They
are all finite covers of the spaces in Theorem 1.1, and the proof of Theorem 1.3 uses only this fact.
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It is an open problem whether finite covers of Stein manifolds with the density property have the
density property, and vice versa. If this turns out to be true, it would greatly simplify the proof of
the main result of [TV00]. In fact, the general relationship between the density property and covers
(finite or not) is still not well understood, with the most famous open problem being the question
of whether or not there is a Fatou–Bieberbach domain in C

∗ × C
∗.

One of the two central ingredients in the proof of Theorem 1.1 is the general notion of shears,
introduced in [Var99]. This notion, whose key ideas are recalled in § 2, turns the verification of the
density property on homogeneous spaces into a problem in representation theory of semisimple Lie
groups – the second central ingredient.

The density property was introduced so as to allow generalization to other complex manifolds
of the previously mentioned results of Andersén and Lempert [And90, AL92]. In the process, this
definition also simplified the proofs of those results, even in the original setting. The theorems of
Andersén and Lempert began as answers to questions raised by Rosay and Rudin in their foun-
dational paper [RR88]. It was also realized (in part in [AL92], and more fully in the joint work of
Forstnerič and Rosay [FR93]) that the density property could be used in many interesting analytic
geometric constructions in C

n. In this regard, there are definitions of the density property for more
general Lie algebras of vector fields (see [Var01]), taking into account whatever additional geometry
one cares about. For more details on this side of the story, we recommend the survey papers [Fors96]
and [Ros99].

As it turns out, the notion of the density property transcends generalization for its own sake,
bringing to light new features of the complex manifolds possessing this property; witness Corol-
lary 1.2 and further results in [Var00].

The density property on a Stein manifold X is a meaningful statement about the size of the
group DiffO(X). Indeed, one way of measuring the size of this group is to look at its formal tangent
space: the closure of the Lie algebra generated by the complete vector fields on X. The density
property is the statement that this formal tangent space is as large as possible.

Some additional remarks are of interest.

Remark 1. Previously, there was some hope that the ‘largest’ spaces were determined by their topol-
ogy and the identical vanishing of the Kobayashi infinitesimal pseudometric. This was formulated
precisely as the following question by Diederich and Sibony [DS79] for the case of C

n, n � 2:
If X is a Stein manifold that is diffeomorphic to R

2n and has identically vanishing Kobayashi
infinitesimal pseudometric, is X biholomorphic to C

n?
A recent counterexample of Fornæss [Forn03] answered this question in the negative. In view of
Corollary 1.2 part (i), we have the following conjecture.

Conjecture 1.4. If X is a Stein manifold that is diffeomorphic to C
n and has the density property,

then X is biholomorphic to C
n.

Remark 2. From the analytic geometry point of view, Stein manifolds with the density property
seem to share many geometric properties of rational algebraic varieties, and thus it is natural to
ask the following question.

Question 1.5. Does every Stein manifold with the density property have a Moishezon compactifi-
cation? Is there a compactification that is bimeromorphic to Pn?

By combining Corollary 1.2 part (i) with a famous theorem of Kodaira [Kod72], one has that
a surface with the density property that also admits a compactification must be rational. This is
generally false in higher dimensions.
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This paper is organized as follows. In § 2 we recall various known results that are needed in the
proofs of our main theorems. Some of these results are standard, and others were developed in [Var99]
and [TV00]. In § 3 we extend results in [TV00] to reduce the study of the density property on complex
semisimple homogeneous spaces of adjoint type to a problem in representation theory. Although
much of § 5 is a collection of facts, it is technically the most demanding part of the paper, and so in § 4
we show how, in some specific cases, the density property can be established without recourse to the
technical arguments and full-blown root system machinery of § 5. The homogeneous spaces we use as
examples are ubiquitous, appearing naturally in many mathematical constructions. The conclusion
of the proof of Theorem 1.1 occupies § 5, using a case-by-case analysis of the representation theoretic
problem established in § 3. The proof of Theorem 1.3 occupies the sixth and final section.

2. Background material

In this section, we state various results that are needed later. This is also an opportunity to establish
some notation. Since all of the material in this section is contained elsewhere, we omit almost all
proofs.

2.1 Holomorphic vector fields
A holomorphic vector field ξ on a complex manifold X is a holomorphic section of T 1,0

X , the holomor-
phic part of the complexified tangent bundle. We let XO(X) denote the set of holomorphic vector
fields on X. Since T 1,0

X is naturally isomorphic to the real tangent bundle TX , we can identify ξ
with a real vector field that we continue to denote by ξ. As such, there is a flow ϕξ associated to
ξ, which is defined on an open subset U of R × X containing {0} × X in the following way: For
(t, p) ∈ U , ϕt

ξ(p) = c(t), where c : (−a(p), b(p)) → X is the unique maximal solution of the initial
value problem

dc

dt
= ξ ◦ c, c(0) = p. (∗)

It follows from general ordinary differential equation theory that the map p �→ ϕt
ξ(p) is holomorphic.

We say that ξ is complete if U = R × X, i.e. if for each p ∈ X one can solve (∗) for all t ∈ R. In
this case {ϕt

ξ | t ∈ R} is a one parameter group of holomorphic diffeomorphisms of X. We say that
ξ is C-complete if both ξ and iξ are complete. Define the C-flow of ξ to be

gs+it
ξ := ϕs

ξ ◦ ϕt
iξ.

If ξ is C-complete, then {gζ
ξ | ζ ∈ C} defines a holomorphic C-action. In this paper, all complete

vector fields are C-complete, so we shall often drop the prefix C, and still refer to gξ as the flow of
ξ, even though it is defined for ‘complex time’.

With the operation [ξ, η] = ξη−ηξ, XO(X) forms a Lie algebra. We can generate a Lie subalgebra
of XO(X) using complete vector fields on X. We shall call any vector field in the closure of this
subalgebra completely generated. In general, this subalgebra will not consist of complete vector fields.
However, completely generated vector fields have the extraordinary property that their flows can be
approximated (in the locally uniform and hence Ck topology) by holomorphic diffeomorphisms of X
[Var01]. This result can be proved as a combination of an approximation method, often attributed
to Euler, and the following formulas. Let ξ and η be vector fields with flows ϕξ and ϕη respectively:

d

dt

∣∣∣∣
t=0

ϕt
ξ ◦ ϕt

η = ξ + η,

d

dt

∣∣∣∣
t=0+

ϕ−√
t

η ◦ ϕ−√
t

ξ ◦ ϕ
√

t
η ◦ ϕ

√
t

ξ = [ξ, η].
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The approximation method of Euler can be stated as follows.

Theorem 2.1. Let X be a manifold, and let ξ be a vector field with flow ϕξ on X. Suppose that
Ft : X → X is a C1 family of self maps such that F0 = idX and

d

dt

∣∣∣∣
t=0

Ft = ξ.

Then, in the compact-open topology, one has

lim
N→∞

Ft/N ◦ · · · ◦ Ft/N︸ ︷︷ ︸
N times

= ϕt
ξ.

Putting all of this together, we have the following theorem.

Theorem 2.2. Let ξ be a vector field that lies in the closure of the Lie algebra generated by the
complete vector fields on X. Let K ⊂ X be compact, and let t be such that the flow of ξ is defined up
to time t on K. Then ϕt

ξ|K can be approximated, uniformly on K, by holomorphic diffeomorphisms
of X.

2.2 General shears
In [Var99] the following fundamental proposition was proved.

Proposition 2.3. Let ξ ∈ XO(X) be C-complete, and let f ∈ O(X). Then f · ξ is C-complete if
and only if ξ2f = 0.

One is thus naturally led to study the function spaces

I1(ξ) = {f ∈ O(X) | ξf = 0} and I2(ξ) = {f ∈ O(X) | ξ2f = 0}
consisting of holomorphic first and second integrals respectively.

Definition 2.4. Let ξ ∈ XO(X) be C-complete. We call f · ξ a ξ-shear (respectively ξ-overshear)
if f ∈ I1(ξ) (respectively f ∈ I2(ξ)).

We will often refer to ξ-shears simply as shears, and similarly with overshears.

Remark. Let X = C
n, let ξ be a constant vector field and let f ∈ Ij(ξ) for j = 1, 2. In this case, it

is the time-1 map of fξ, rather than fξ itself, that is called a shear and overshear in the literature.
In a sense, our shears are infinitesimal shears.

For a given complete vector field, the existence of first integrals is a classical problem and a
highly nontrivial matter. The orbits of the vector field must sit fairly nicely together, generally
speaking. For the existence of second integrals that are not first integrals, almost all the orbits must
be biholomorphic to C, and the orbit space must be extremely regular [Var99]. Nevertheless, in the
case of complex (semisimple) Lie groups, many left invariant vector fields have a lot of first and
second integrals.

2.3 Semisimple Lie algebras
The following notation will be used throughout the paper. We denote by sl(2, C) the three-
dimensional complex Lie algebra with basis {E,F,H} satisfying the commutation relations

[H,E] = 2E [H,F ] = −2F [E,F ] = H. (1)

By a representation ρ of a Lie algebra g, we mean a vector space V and a linear map ρ : g →
End(V ) satisfying

ρ([ξ, η]) = ρ(ξ)ρ(η) − ρ(η)ρ(ξ).
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Holomorphic diffeomorphisms of homogeneous spaces

We will refer to such V as g-spaces, or g-modules. Let ad : g → End(g) be the adjoint representation,
i.e. the representation of g on itself given by ad(ξ)η := [ξ, η] for all ξ, η ∈ g.

For a general semisimple Lie algebra g, we fix a Cartan subalgebra h, i.e. a commutative
subalgebra all of whose elements can be simultaneously diagonalized in the adjoint representation,
say, and whose dimension is maximal.

Given any representation V of g, a weight of V is a linear functional λ : h → C such that the
subspace

Vλ := {v ∈ V ;Hv = λ(H)v for all H ∈ h}
is nonzero.

The roots of h are the weights α of the adjoint representation, and their union forms a root system
Φ. (See [Bou81] for more on root systems.) We choose an ordering of the roots as follows. Let H ∈ h

be such that no root vanishes on H. If a root α satisfies α(H) > 0, we say that α is positive, and
write α ∈ Φ+. Among the positive roots, there is a subset ∆ of so called simple roots, with the
property that any positive root can be written as a linear combination of the simple roots, with
nonnegative integer coefficients.

The simple roots form a basis for h∗, the dual vector space of h. Moreover, given a root α, −α
is also a root, and there are vectors Eα ∈ gα, Fα ∈ g−α and Hα ∈ h such that the following hold.

(i) The Lie algebra spanned by Eα, Fα and Hα is isomorphic to sl(2, C), i.e. Eα, Fα and Hα satisfy
the commutation relations (1). We define the Lie algebra isomorphism

φα : sl(2, C) → span{Eα, Fα,Hα} by φα




E
F
H


 =




Eα

Fα

Hα


 .

(ii) For all linearly independent roots α, β,

α(Hβ) =
2B(α, β)
B(β, β)

,

where B(α, β) = tr(adHα adHβ) is the form on the root system associated to h induced by
the Killing form of g.

The collection of Hα, α ∈ Φ, is thus also a root system Φ∗, called the dual of Φ.

2.4 Homogeneous spaces
A homogeneous space X is a manifold that has a transitive action by a Lie group G. In our
main theorems, we assume that G is semisimple and of adjoint type. Thus we are dealing with
groups having trivial center. On occasion, when it is more convenient to do so, we might represent
homogeneous spaces in the form G̃/K, where G̃ has finite center contained in K. It is known
that every complex semisimple Lie group is algebraic, i.e. it is isomorphic to a closed subgroup of
SLN (C) defined by the vanishing of certain polynomials. By Cartan’s theorem A, the algebra C[G],
of polynomial functions on G (where G is viewed as a closed submanifold of End(CN )), is dense in
O(G). If K is a subgroup of G, the quotient manifold G/K = {gK : g ∈ G} admits a transitive
action by G, h : gK �→ hgK, and every manifold that admits a transitive action by G arises in this
way. By Matsushima’s theorem [Mat60], such a quotient G/K is Stein if and only if K is reductive.

We now turn to the realization of G/K in the case when K is a reductive subgroup of G. This
is the ‘if’ part of the theorem mentioned above, and is a classical theorem going back to Weyl and
Hilbert. We use the word reductive in an analytic sense: K is reductive if it contains a compact
subgroup K0 such that k = k0 + ik0, where k and k0 are the Lie algebras of K and K0 respectively.
With this definition, we shall need following result of Weyl. For the proof, see [Mum74].
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Theorem 2.5 (Weyl). Let G be a semisimple group, and K a reductive subgroup. Then there is
a representation of G in a finite dimensional vector space V , and an element v ∈ V , such that the
orbit X = G · v of v by G is closed, and biholomorphic to G/K.

The realization of G/K, via Theorem 2.5, as an orbit in a finite dimensional representation is
used in the proof of our theorems. To see how, let ρ be a linear representation of G in a vector
space V . To every ξ ∈ g, we can associate a complete holomorphic vector field �ξ on V defined by

�ξf(p) =
d

dt

∣∣∣∣
t=0

f(ρ(e(tξ))p) f ∈ O(V ), p ∈ V.

Evidently �ξ is C-complete. If we now let f be a (holomorphic) defining function for a G-invariant
closed submanifold X of V , in a neighborhood U (in V ) of a point p ∈ X, then

(df�ξ )p = �ξf(p) =
d

dt

∣∣∣∣
t=0

f(ρ(e(tξ))p) = 0,

since, for t small enough, ρ(e(tξ))p ∈ U ∩ X. This proves the following proposition.

Proposition 2.6. For every ξ ∈ g, the vector field �ξ is tangent to any smooth G-orbit in V .

Remark. Note that Weyl’s construction provides and embedding of G/K into a linear space on
which G, an adjoint group, acts. It follows that the weights admitted by this representation are in
the root lattice.

3. Reduction to representation theory

The first part of this section reviews some of our work in [TV00]. We present a number of technical
refinements that will be used in the proof of Theorem 1.1.

3.1 Polynomial vector fields
We begin by introducing an algebraic version of Definition 2.4. To this end, let V be a g-module via
a representation ρ : g → End(V ). The vector space V ⊗ g has a natural g-module structure, given
by

(ρ ⊗ ad)(ξ)v ⊗ η = ρ(ξ)v ⊗ η + v ⊗ [ξ, η].

Definition 3.1. We call f⊗ξ ∈ V ⊗g a g-shear (respectively g-overshear) if ρ(ξ)f = 0 (respectively
ρ(ξ)2f = 0).

Our goal, then, is to study whether or not, for a given g-space V , overshears generate V ⊗ g.
The simplest case to consider is the case g = sl(2, C), and we did so in [TV00]. We now recall several
results from there, beginning with the following theorem.

Theorem 3.2. If g = sl(2, C) and V is either C
2 or an irreducible module whose dimension is odd,

then V is generated by its sl(2, C)-overshears.

Now, given a g-space V , we can also form the g-space C[V ] ⊗ g, where C[V ] is the algebra of
polynomial functions on V . Remarkably, using Theorem 3.2 one has the following result.

Theorem 3.3. Let g be semisimple and let V be a g-space. Assume that V ∗⊗ g is generated by its
g-overshears. Then C[V ] ⊗ g is generated by its g-overshears.

In our applications elements of g are linear vector fields on V , and so when f ∈ C[V ] we write
fX for f ⊗ X. Definition 3.1 was extracted from this setup.
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Proof. We choose a basis xi of V ∗ consisting of weight vectors. This choice defines monomial basis
(consisting of weight vectors) of the finite dimensional vector spaces of polynomials of a given degree.
It suffices to check that, for every monomial f ∈ C[V ] and X ∈ g of the form Fα, Eα or Hα, fX is
completely generated. In this case, X lies in some subalgebra of g that is isomorphic to sl(2, C) via
φα.

Note that if, with respect to Hα, each xi has even weight or f has even weight, then there
is nothing to prove; the result follows from Theorem 3.2. Thus we may assume without loss of
generality that x1 has odd weight λ and that f = x1 · g where g ∈ C[V ] has even weight 2k.
Moreover, we note that it suffices to assume that X = Eα, Hα or Fα.

Case 1: (X = Hα). Then

[gHα, x1Hα] = (λ − 2k)x1gHα = (λ − 2k)fHα.

Since gHα has even weight, it is generated by shears. The result follows from the fact that λ − 2k
is odd and hence not zero.

Case 2: (X = Eα). Then

[gHα, x1Eα] = gHα(x1)Eα + f [Hα, Eα] − x1Eα(g)Hα

= (λ1 + 2)fEα − x1Eα(g)Hα.

As in Case 1, gHα is generated by shears. By Case 1, x1Eα(g)Hα is completely generated. This case
now follows from the fact that λ + 2 is odd and hence not zero.

Case 3: (X = Fα). The case where X = Fα is handled in a fashion similar to Case 2.

Let M be a Stein manifold, which we think of as already embedded in some C
n. Suppose we are

given a Lie algebra g < XO(Cn) of holomorphic vector fields on C
n that are all tangent to M and

that span the tangent space to M at every point. We denote by OAff(M) the restriction to M of
polynomials in C

n, and write XAff(M) := OAff(M) · g, i.e. XAff(M) consists of those vector fields
that are linear combinations of the vector fields in g with coefficients in OAff(M). The next result,
established in [TV00], is a useful sufficiency criterion for the density property.

Theorem 3.4. Suppose the Lie algebra g has the following properties.

(i) The Lie algebra g consists of linear vector fields (i.e. if f is a linear function and ξ ∈ g, then
ξf is linear).

(ii) The Lie algebra g is semisimple and consists of complete vector fields.

(iii) We have O(M) · g = XO(M).

(iv) If f is a linear function and ξ ∈ g, then fξ is in the Lie algebra generated by complete vector
fields.

Then XAff(M) is generated by complete vector fields. Thus, in particular, M has the density
property.

Proof. Cartan’s theorem A implies that XAff(M) is a dense subset of XO(M) in the locally uniform
topology. By Theorem 3.3, C[V ]⊗ g is generated by g-overshears, and this remains true in XAff(M)
because restriction to M preserves Lie brackets. Since the elements of g are complete, so are their
overshears, by Proposition 2.3.

Remark. We do not ask for M to be parallelized by a basis of g; it may happen that dim g > dimCM .

As an immediate corollary of Theorem 3.4, we have the following result.
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Theorem 3.5. Let G → End(V ) be a representation such that V ∗ ⊗ g is generated by its
g-overshears. Then any closed orbit of G has the density property.

We make use of this theorem by realizing our manifold as a closed orbit of G via Weyl’s
theorem 2.5. (Recall that a closed submanifold of a Stein manifold is Stein.)

3.2 Quadratic vector fields
In [TV00] Theorem 3.2 was sufficient for establishing criterion (iv) of Theorem 3.4, and thus the
density property on complex semisimple Lie groups. We now proceed to analyze the situation in
greater depth. Recall that criterion (iv) requires vector fields of the form

fξ, f ∈ V ∗, ξ ∈ g

to be completely generated. After choosing a basis of V consisting of weight vectors, and the base
{Eα, Fα : α ∈ Φ+}∪ {Hα : α ∈ ∆} of g, we are led to checking finitely many vector fields. However,
deciding whether any of these vector fields is completely generated could be fairly difficult. In this
section we investigate to what extent we can reduce the number of vector fields to be checked so as
to obtain the desired result.

To present our sharpening of Theorem 3.4 we introduce the following definition.

Definition 3.6. Let g be a semisimple Lie algebra. A weight is called extremal if its orbit under
the Weyl group contains a multiple of a fundamental weight. Given a representation V of g a weight
vector v ∈ V is called extremal if the corresponding weight is extremal.

The term extremal comes from the fact that the dominant extremal weights lie in the extremal
lines of the dominant Weyl chamber (the cone of linear functionals that are positive with respect
to the ordering).

Let M and g be as in Theorem 3.4, and fix a Cartan subalgebra h of g.

Theorem 3.7. Suppose the Lie algebra g has the following properties.

(i) The Lie algebra g is semisimple and consists of complete vector fields that are linear (in the
sense of part (i) in Theorem 3.4).

(ii) We have O(M) · g = XO(M).
(iii) If f is a linear function that is an extremal weight vector, with extremal weight λ, and Hi ∈ h

is a simple co-root such that λ(Hi) 	= 0, then fHi is in the Lie algebra generated by complete
vector fields.

Then XAff(M) is generated by complete vector fields. Thus, in particular, M has the density
property.

Remark. The reduction to h is natural from the geometric point of view: the problematic vector fields
are those whose orbit is C

∗. The extremality condition exploits the extra structure of semi-simple
Lie algebras, and does not seem to have a geometric interpretation.

The proof of Theorem 3.7 is a series of somewhat technical observations. We will state these
results for general g-modules W , since they do not rely on any specific properties of the g-space
at hand, but the reader should keep in mind that in our application W is the dual of this g-space.
We begin with the following lemma.

Lemma 3.8. Let g be a semisimple Lie algebra, h < g a Cartan subalgebra, and ρ : g → End(W ) a
representation of g in W . Then

W ⊗ g

is generated by W ⊗ h as g-module.
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Proof. Let W0 be the submodule of W⊗g generated by W⊗h. Given a root α and the corresponding
co-root Hα, choose a nonzero Xα ∈ g so that [Hα,Xα] = 2Xα. The set of all such Xα, together with
h, span g. If now w ∈ W , then

2w ⊗ Xα = (Xαw) ⊗ Hα − Xα(w ⊗ Hα) ∈ W0,

as desired.

The next lemma shows that the weights for only a few of the sl(2, C)-subalgebras 〈Xα,Hα〉 need
to be even.

Lemma 3.9. Suppose ρ : g → End(W ) is a representation of a semisimple Lie algebra g, and h is
a Cartan subalgebra of g. Let λ be a weight of h in W and Wλ = {w ∈ W ;Hw = λ(H)w} the
corresponding subspace of W . If there exists a co-root Hα so that λ(Hα) is even and nonzero, then
Wλ ⊗ h is contained in the submodule generated by the g-overshears.

Proof. Let α be such that λ(Hα) is positive and even. Since λ(Hα) 	= 0, we have that

h = CHα ⊕ ker λ.

Let W ′ be the smallest subspace of W that is invariant under φα(sl(2, C)) and contains Wλ. Under
the action of φα(sl(2, C)), W ′ has only even weights, and thus by Theorem 3.2 it is generated by the
φα(sl(2, C)) overshears. These are automatically g-overshears, showing that

Wλ ⊗ CHα

is generated by g-overshears. On the other hand, the elements of

Wλ ⊗ ker λ

are overshears for the trivial reason that, for H ∈ ker λ and w ∈ Wλ, Hw = 0.

Lemma 3.10. Let λ be a weight that is not a multiple of a fundamental weight. Then there exists
a co-root Hα such that λ(Hα) is positive and even.

Proof. Without loss of generality we may assume that λ is dominant. We will use the notation of
the Planches (Tables) of [Bou81]. We let Φ denote the root system of g. For a root α, let Hα be the
corresponding co-root in h. The set {Hα;α ∈ Φ} is a root system dual to Φ. For a simple root
αi, we denote Hαi by Hi. With λ as in the hypothesis, one may choose simple roots αi, αj , so that
λ(Hi) > 0, λ(Hj) > 0. Choosing i, j minimal with respect to this property, we have that λ(Hk) = 0,
for all i < k < j. Assume that λ(Hi) and λ(Hj) are odd. No matter which root system is being
considered, Hij =

∑
i�k�j Hk is a co-root (although it might not be the co-root corresponding to∑

i�k�j αk). Then

λ(Hij) = λ(Hi) + λ(Hj),

so that λ(Hij) must be positive and even.

Proof of Theorem 3.7. By Lemma 3.8 it is enough to show that fH is completely generated for
f ∈ V ∗, H ∈ h. We may assume without any loss of generality that f is a simultaneous eigenvector
of h with weight λ, and that H = Hα, for some α ∈ ∆. If λ is extremal then fH is either complete
(if λ(H) = 0) or else, by assumptions (i) and (ii) in Theorem 3.7, it is completely generated. We may
therefore assume that λ is not a multiple of a fundamental weight. Lemma 3.10 shows that there is
a co-root H ′ ∈ h so that λ(H ′) is even. By Lemma 3.9 the vector fields in V ∗

λ ⊗ h are completely
generated in view of Proposition 2.3. Therefore condition (iii) of Theorem 3.7 implies condition (iv)
of Theorem 3.4, and the result follows.
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4. Examples

In this section we provide simplified proofs of the density property for some special examples.
Interestingly, some of these examples lie beyond the scope of Theorem 1.1.

4.1 Small representations
Definition 4.1. A representation V of sl(2, C) is said to be bounded by 2 if every weight n satisfies
|n| � 2. More generally, a representation V of a complex semisimple Lie group G is bounded by 2
if, for any root α, the restriction of V to φα(sl(2, C)) is bounded by 2.

Remark. (i) The notion of boundedness by 2 is independent of the choice of Cartan subalgebra. (ii)
Since the weights of V ∗ are the negatives of the weights of V , V ∗ is also bounded by 2.

The next proposition shows that one can use representations bounded by 2 to produce examples
of affine homogeneous spaces with the density property. In [TV00] we established that, if V is a
representation bounded by 2, then V ⊗ g is generated by its g-overshears. In view of Theorem 3.4,
we therefore have the following proposition.

Proposition 4.2. If G is a semisimple Lie group admitting a representation V that is bounded
by 2, then every closed G-orbit in V has the density property.

Proposition 4.2 can be used to establish the density property in many cases. We now proceed
to do this in several examples.

4.2 Affine quadrics
Consider the smooth affine subvariety of C

n+1 given by

Qn = {x2
0 + · · · + x2

n = 1}.
Theorem 4.3. For any n � 2, the affine quadric Qn has the density property.

This follows from Proposition 4.2 and the fact that Qn is a closed orbit of the standard
representation

SO(n + 1, C) → End(Cn+1),
which is bounded by 1. Note that this homogeneous space is not of adjoint type.

We will describe this example in some detail. The n(n + 1)/2 vector fields Xij , 0 � i < j � n,
given by

Xij := xi∂j − xj∂i, 0 � i < j � n,

are tangent to Qn and generate the module XAff(Qn). The relation

[Xij ,Xkl] = δjkXil − δikXjl + δilXjk − δjlXik,

where δij is the Kronecker delta, shows that the Lie algebra

g = span{Xij ; 0 � i < j � n}
is isomorphic to so(n + 1, C). Let k be the largest integer such that 2k < n. A Cartan subalgebra
of g is

span{√−1X0,1, . . . ,
√−1X2k,2k+1}

and the weight vectors with nonzero weights are

x0 ±
√−1x1, . . . , x2k ±√−1x2k+1,

showing that this representation is bounded by 1.
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4.3 The space of Lagrangian splittings

Let V = C
2n with the standard symplectic form

〈x, y〉 := xtJy,

where xt is the transpose of x and

J =
[
0 −I
I 0

]
,

with the entries 0 and I signifying the n × n zero and identity matrices. The symplectic group

Sp(2n, C) := {g ∈ GL(2n, C) : gtJg = J}
acts transitively on the Lagrangian subspaces of V , i.e. the subspaces of V that are isotropic for 〈 , 〉
and have maximal dimension. The set of all Lagrangian subspaces is a projective manifold, called the
Lagrangian Grassmannian, and thus the stabilizer of any single Lagrangian is parabolic. Choose,
for example, V1 to be the span of the first n standard basis vectors e1 = [1, 0, 0, . . . , 0, 0]t, e2 =
[0, 1, 0, . . . , 0, 0]t, . . . , en = [0, 0, 0, . . . , 0, 1]t. The stabilizer of V1 is the subgroup

P =
{[

a b
0 d

]
∈ Sp(2n, C)

}
.

Consider the set L(V ) of Lagrangian decompositions of V , i.e. ordered pairs of Lagrangian subspaces
(L1, L2), so that V = L1⊕L2. This set can also be given a holomorphic and even algebraic structure,
and the resulting manifold M is Stein, supporting a transitive action by Sp(2n, C). If V2 is the
subspace generated by en+1, . . . , e2n, then the stabilizer

L =
{[

a 0
0 d

]
∈ Sp(2n, C)

}
=

{[
a 0
0 (at)−1

]
; a ∈ GL(n, C)

}
of the pair (V1, V2) is a Levi component of P . Indeed, L is reductive,

U =
{[

I b
0 I

]
∈ Sp(2n, C)

}
is unipotent, and P = LU .

Now L is the centralizer of

λ =
[
I 0
0 −I

]
∈ M2n(C),

and so M can be identified with the orbit of λ in M2n(C), the space of 2n× 2n matrices, on which
Sp(2n, C) acts by conjugation. One checks that λ ∈ sp(2n, C), the Lie algebra of Sp(2n, C), and so
the orbit of λ lies entirely in sp(2n, C). The orbit is closed and is described as{[

x y
z −xt

]
: yt = y, zt = z, x2 + yz = I

}
.

Since the adjoint representation of sp(2n, C) is bounded by 2, Proposition 4.2 implies the
following theorem.

Theorem 4.4. For every symplectic vector space V , the manifold L(V ) of all Lagrangian splittings
of V has the density property.

The space of Lagrangian splittings is an example of a symplectic homogeneous space, which we
now discuss more generally.
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4.4 Symplectic homogeneous spaces
For more details on this brief overview, we refer the reader to [Bou81]. Let G be a semisimple Lie
group. A closed subgroup P is called parabolic if G/P is projective. We give a very brief description
of P in terms of the root system of the Lie algebra of G.

Let Φ+ denote the set of positive roots, and ∆ the set of simple roots. Let n be the subalgebra
generated by Xα, α ∈ Φ+, and b the subalgebra generated by n and h.

Let B denote the connected closed subgroup of G associated to the Lie algebra b. The quotient
G/B is a projective manifold, and, by a famous theorem of Borel, B is a minimal parabolic subgroup
in the sense that every parabolic subgroup is conjugate to one that contains B. Therefore, up to
inner automorphisms, it is enough to describe those subgroups P whose Lie algebra p contains b.
This is done as follows. Since p contains h, there is basis of p consisting of eigenvectors of h, and
the set of negative roots admitted by p, i.e. the set

{α ∈ Φ;∃Xα ∈ p such that ∀H ∈ h, [H,Xα] = α(H)Xα and −α ∈ Φ+},
must be closed under addition. Let H be an element of h such that α(H) � 0 for all α ∈ Φ+, and
let Φ′ = {α ∈ Φ : α(H) = 0}. Then the subspace with basis

{Xα : α ∈ Φ′} ∪ {Hα : α ∈ ∆} ∪ {Xα : α ∈ Φ+\Φ′}
is a subalgebra, and so it is the Lie algebra of a parabolic subgroup. This is the only way parabolic
subalgebras can arise. Moreover, when H 	= 0, the algebra constructed here is proper. In that case
P = LU , where the Lie algebra of L is generated by

{Xα : α ∈ Φ′} ∪ {Hα : α ∈ ∆},
and thus L is reductive. The Lie algebra of U is generated by {Xα : α ∈ Φ+\Φ′}, showing that U
is unipotent. Therefore the Levi component L is the centralizer of the semisimple element H used
in the construction of p.

For the rest of this section we view G as a subgroup of End(g) through the adjoint representation.
Let P = LU be a parabolic subgroup, where L arises as the stabilizer of a semisimple element H ∈ h.
Since, at the Lie algebra level, our representation is the derivative of the group action at the identity,
the Lie subgroup of G with Lie algebra equal to the centralizer of H is the stabilizer of H in the
adjoint action. Therefore M := G/L is realized as the orbit of H in g under Ad, and it is well known
that the adjoint orbit of a semisimple element is an algebraic submanifold of g (see [Bou81]).

Theorem 4.5. The closed adjoint orbit M = G/L ⊂ g described above has the density property.

To prove Theorem 4.5 it is enough to show that the conditions of Theorem 3.4 are satisfied.
Note that if g has no factors of type G2, the adjoint representation is bounded by 2 and we could
apply Proposition 4.2 to these cases. However, the following result covers all the cases and employs
a uniform argument that avoids using the classification of complex semisimple Lie algebras. The
techniques are modifications of those used in the proof of Theorem 6.3 in [TV00].

Theorem 4.6. The adjoint representation is g-completely generated.

Proof. Let G be the adjoint group with Lie algebra g. In view of Theorem 3.3, it suffices to show
that, for each x ∈ g and ϕ ∈ g∗, ϕ ⊗ x is generated by overshears.

Recall that for a representation V , the action of g on the dual V ∗ is given by xϕ(v) = −ϕ(xv).
Because g is semisimple, it admits a nondegenerate Killing form, and thus an isomorphism

between the adjoint representation and its dual. Using the notation of § 2, this isomorphism is given
explicitly as follows. Let

eα(x) = B(Eα, x) for all x ∈ g,

and define fα and gα similarly.
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Without loss of generality, we may assume that ϕ is any of the eα, hα, fα where α ∈ Φ+.
Moreover, because of the symmetry between eα and fα, it suffices to prove only that hα ⊗Eβ , hα ⊗
Hβ, fα ⊗ Eβ , eα ⊗ Hβ and eα ⊗ Eβ are generated by overshears. In what follows, n will be used to
denote some integer that may vary from case to case.

Case 1: hα ⊗ Hβ is a shear and hα ⊗ Eβ is an overshear. For the first,

Hβhα(x) = −hβ([Hα, x]) = −B(Hβ, [Hα, x]) = B([Hα,Hβ], x) = 0,

and for the second,

E2
βhα(x) = −B(Hα, [Eβ , [Eβ , x]]) = −B([[Hα, Eβ ], Eβ ], x) = 0.

Case 2: fα ⊗ Eβ = 1
2(Fα(hα ⊗ Eβ) + nhα ⊗ Hβ), so in view of case 1, fα ⊗ Eβ is generated by

overshears.

Case 3: eα ⊗ Hβ = −1
2(Eα(hα ⊗ Hβ) + nhα ⊗ Eβ), so in view of case 1, eα ⊗ Hβ is generated by

overshears.

Case 4: eα ⊗ Eβ = −1
2(Eβ(eα ⊗ Hβ) + ceα+β ⊗ Hβ) for some constant c, so in view of cases 1 and

3, eα ⊗ Eβ is generated by overshears.

This completes the proof.

It is known [GS77] that, if X is a semisimple homogeneous space that admits a symplectic
form, then there is a semisimple homogeneous space of the type G/L described above, and a finite
holomorphic covering map π : X → G/L. Thus one can apply Theorem 1.3 to obtain the following
corollary, which we believe is worth stating separately.

Corollary 4.7. Let X be a semisimple homogeneous space that admits a symplectic form and Y
a complex manifold with dim(Y ) < dim(X) such that there exists a proper holomorphic embedding
j : Y ↪→ X. Then there exists another proper holomorphic embedding j′ : Y ↪→ X such that, for
any ϕ ∈ DiffO(X), ϕ ◦ j(Y ) 	= j′(Y ).

5. Proof of Theorem 1.1

In this section we establish Theorem 1.1 using Theorem 3.7. In order to reduce the former to the
latter, we provide proofs for a number of simple but perhaps more esoteric facts about root systems.

We start with some obvious reductions, whose proofs are left to the reader.

Lemma 5.1.

(a) If V and W are g-spaces such that V ⊗ g and W ⊗ g are generated by their g-overshears, then
(V ⊕ W ) ⊗ g is generated by its g-overshears.

(b) Suppose Lie algebras g1 and g2, and gi-spaces Vi, i = 1, 2, are given, so that Vi⊗gi are generated
by their gi-overshears. Then (V1 ⊗ V2) ⊗ (g1 ⊕ g2) is generated by its g1 ⊕ g2-overshears.

The representation ρ of g1 ⊕ g2 on V1 ⊗ V2 is given by

ρ(ξ1 ⊕ ξ2)(v1 ⊗ v2) = ρ1(ξ1)v1 ⊗ v2 + v1 ⊗ ρ2(ξ2)v2.

Using Lemma 5.1, it suffices to consider the case where g is simple and V is an irreducible
g-module. To this end, the main result of this section is the following theorem.

Theorem 5.2. Let g be a simple Lie algebra, and let V be an irreducible g-space whose highest
weight is in the root lattice of g. Then V ⊗ g is generated by its g-overshears.
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In view of Theorem 3.7 the main task is to handle the case of multiples of the fundamental
weights. Such weights are sparse in the root lattice, but they do arise. In the case of representations
with highest weight in the root lattice, the situation is dealt with by making use of the following
facts. (Again, we use the notation of the Planches (Tables) of [Bou81].)

Lemma 5.3. Let Φ be a simple root system, B = {α1, . . . , αl} a set of simple roots in Φ, and
{ω1, . . . , ωl} the corresponding set of fundamental weights. Let m 	= 0 be such that λ = mωi is in
the root lattice.

(a) Assume that Φ is of type A2l+1, Bl, Cl,Dl, E7, E8, F4 or G2 and that ωi is arbitrary. Then there
exists some root α, so that λ(Hα) is a nonzero even integer.

(b) Assume that Φ = E6, and that λ = mωi for i = 2, 3, 4, 5, 6. Then there exists some root α, so
that λ(Hα) is a nonzero even integer.

(c) If Φ = A2l and λ = mωi for some i, or if Φ = E6 and λ = mω1, then mωi±αi is not an integral
multiple of a fundamental weight.

Proof. (a) and (b). Recall that, for any λ ∈ h∗,

λ(Hα) =
2(λ, α)
(α,α)

,

where (·, ·) is some multiple of the Killing form. To simplify the computations, when working with
the Planches (Tables) of [Bou81], we will use the ordinary scalar product in R

n, which in all cases
is a scalar multiple of the Killing form.

(i) When Φ = A2l+1, and λ = mωi is in the root lattice, then (2l + 2)|m, and so m is even.

(ii) When Φ is of type Bl, then ω1(He1) = 2 and, for all i > 1, ωi(He1+e2) = 2.

(iii) When Φ is of type Cl, then, for all i > 1, ωi(He1+e2) = 2. When i = 1, ω1 /∈ Φ, but 2ω1 ∈ R,
forcing m to be even.

(iv) When Φ is of type Dl and 1 < i < l − 1, e1 + e2 still works for ωi. None of ω1, ωl−1, ωl is in Φ,
and their index in the root lattice is either 2 or 4, forcing m to be even if mω1,mωl−1 or mωl

is to be in the root lattice.

(v) When Φ is of type E6, E7, E8 or G2 we use the fact that

Φ̌ =
{

2α
(α,α)

: α ∈ Φ
}

= Φ.

First assume that the pair (Φ, ωi) is different from the pairs (E6, ω6) and (E7, ω7). Then one
finds roots α =

∑
j cjαj so that ci is even. For (E6, ω6), note that m must be divisible by 3,

and that 1
2(

∑5
j=1 ej − e6 − e7 + e8) works. When Φ = E7, once again mω7 will be in the root

lattice only for even m.

(vi) Finally, when Φ is of type F4, e1 works when i = 1, 2 and 4, and 1
2(e1 + e2 + e3 − e4) works

when i = 3.

(c) This follows from the Euclidean geometry of the root systems A2� and E6. One could also consult
the relevant Planches (Tables) in [Bou81].

The last detail we need is the following generalization of Theorem 3.2.

Proposition 5.4. Let V be an irreducible representation of sl(2, C), and suppose v ∈ V is such
that Hv = λv for some λ 	= 0. If neither E nor F annihilates v, then V ⊗ sl(2, C) is generated by
v ⊗ H and the sl(2, C)-overshears of V ⊗ sl(2, C).
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Proof. If j is the largest integer so that Ejv 	= 0, then Ejv ⊗E and Ej−1v ⊗E are overshears, and
so F j+1(Ejv⊗E) and F j(Ej−1v⊗E) are in V . Since FEjv = (λ+ 2j)Ej−1v, one can easily prove,
using induction, that

F j+1(Ejv ⊗ E) = (F j+1Ejv) ⊗ E − (j + 1)(F jEjv) ⊗ H + j(j + 1)F j−1Ejv ⊗ F

and

F j(Ej−1v ⊗ E) = (F jEj−1v) ⊗ E − j(F j−1Ej−1v) ⊗ H − j(j − 1)F j−2Ej−1v ⊗ F.

These identities make sense, as j � 2. It follows that the three vectors

v ⊗ H, F j+1(Ejv ⊗ E) and F j(Ej−1v ⊗ E)

are linearly independent. Since V ⊗ sl(2, C) is generated by its three-dimensional λ eigenspace, the
proof is complete.

Proof of Theorem 5.2. Let W be the submodule of V ⊗g generated by g-overshears. By Lemma 3.8
we need to show that, when H ∈ h and v is a weight vector of weight λ, v⊗H ∈ W . By Lemmas 3.9
and 3.10 we know that this is true if λ is not an integral multiple of a fundamental weight. The same
arguments show that v ⊗ H ∈ W even when λ = mωi when m = 0, or when ωi is one of the
fundamental weights listed in Lemma 5.3(a).

In the remaining cases, we can assume that H is one of the co-roots corresponding to a simple
root; these were denoted Hi above. Consider the subalgebra generated by the elements Ei, Fi,Hi,
which we denote φi(sl(2, C)). Let M be the smallest subspace of V that contains Vλ and is invariant
under φi(sl(2, C)), and write M =

⊕
ν Mν , where each Mν is irreducible as a φi(sl(2, C))-module.

By complete reducibility, Vλ =
⊕

ν Mν ∩ Vλ. Choose vν ∈ Vλ ∩ Mν .
If both E2

i vν and F 2
i vν are zero, but Eivν and Fivν are nonzero, then the representation Mν is

isomorphic to the adjoint representation of sl(2, C), and so Hivν = 0, i.e. m = 0. When Eivν = 0,
vν ⊗Hi = Fi(Eivν ⊗Ei)− vν ⊗Ei ∈ W , and a similar computation works if Fivν = 0. Therefore, we
may assume that either E2

i vν 	= 0 or F 2
i vν 	= 0. Moreover, by symmetry, it suffices to assume that

E2
i vν 	= 0. In this case, since λ + αi is not a multiple of a fundamental weight (Lemma 5.3), we can

apply Proposition 5.4 with v = Eivν , and conclude from Lemmas 3.9 and 3.10 that Vλ+αi
⊗H ⊂ W ,

as desired.

Taking into account the remark at the end of § 2 and the remark following Theorem 3.3,
Theorem 1.1 now follows from Theorems 3.5, 2.5 and 5.2.

6. Lifting arguments – proof of Theorem 1.3

In the proof of Theorem 1.3 we make use of two ideas, due respectively to Winkelmann [Win01] and
to Forstnerič, Globevnik and Rosay [FGR96]. We shall describe the needed versions of these ideas
below, but we will be brief with certain parts of the proof, as the proofs that appear elsewhere can
be modified to produce the facts that we need here.

We say that two discrete sets S and T on a complex manifold M are equivalent if there exists
f ∈ DiffO(M) such that f(S) = T . If no such diffeomorphism exists, we say that S and T are
inequivalent. A theorem of Winkelmann [Win01] asserts the existence of inequivalent sets on any
Stein manifold. All discrete sets we deal with are assumed to be infinite.

We begin with the following proposition, which can be established easily from Winkelmann’s
theorem and a counting argument.

Proposition 6.1. Suppose that π : X̃ → X is a covering map between Stein manifolds. Then there
exist discrete sets S, T ⊂ X̃ that are not equivalent, such that π|S and π|T are one-to-one.
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Following the method of [FGR96], one needs next to prove the following result.

Theorem 6.2. Let π : X̃ → X be a finite normal covering map of Stein manifolds with deck group
Γ, and suppose X has the density property. Suppose K ⊂ X̃ is compact, holomorphically convex,
and satisfies γK = K for all γ ∈ Γ. Let A ⊂ K be a finite set, p, q ∈ X̃ − K and ε > 0. Then there
exists F ∈ DiffO(X̃) such that

(i) F (p) = q,

(ii) F |A = id, and

(iii) supx∈K dist(F (x), x) < ε.

The proof of Theorem 6.2 is based on Theorem 2.2. We start with the construction of a vector
field on a cover from a vector field on the base, in such a way that completeness is inherited. In fact,
this is the situation with the usual lifting of maps in covering space theory: dπ : TX̃ → TX is also
a covering space, and the section ξ : X → TX lifts to a map ξ′ : X → TX̃ because there are no
topological obstructions. The map ξ′ then factors through π, and the factor ξ̃ : X → TX is actually
a section. Rather than proving all of this topologically, we shall construct the vector field ξ̃ directly
in the case where the cover is normal. This is the only case needed in our setting.

To this end, let p ∈ X̃. Suppose that π−1πp = {p, q2, . . . , qd}, and let U1, . . . , Ud be neighbor-
hoods of p, q2, . . . , qd, respectively, that are mutually disjoint and such that π|Uj : Uj → U is a
diffeomorphism. (In particular, π(Ui) = π(Uj).) We set

ξ̃p := d(π|U1)−1ξπp.

We leave it to the reader to check that this vector field is well defined. Let Γ be the deck group of
the covering π. Since for any γ ∈ Γ one has πγ = π, the vector field ξ̃ so defined is invariant, and
thus is the lift mentioned above.

Lemma 6.3. Let ξ be a holomorphic vector field on X. If ξ is sufficiently close to zero on a compact
set K ⊂ X, then ξ̃ is small on the compact set π−1K. Moreover, if ξ is complete, then the vector
field ξ̃ is complete on X̃ .

Proof. The size assertion is obvious. To see the completeness assertion, note that, in fact, one can
lift every integral curve of ξ to M . It is then an easy calculation to see that the lifted curve is an
integral curve of ξ̃. Thus the latter is complete.

Proof of Theorem 6.2. Consider the set πK ⊂ X and the two points πp, πq ∈ X. First observe that
πK is holomorphically convex. Indeed, if this is not so, then there is a function f ∈ O(X) such that,
for some x 	∈ πK, |f(x)| < supπK |f |, and then f ◦ π would show that K is not holomorphically
convex, which is a contradiction.

Let c : [0, 1 + δ] → X be a smooth curve such that

(a) c(0) = πp and c(1) = πq,
(b) the lift of c to X̃ starting at p reaches q at time 1, and
(c) c([0, 1 + δ]) ∩ πK = ∅.

We define Ft : K × {c(t)} → X by

Ft(x) =

{
x, x ∈ K,

c(t), x = p.

Consider the time-dependent vector field

ηt =
dFt

dt
◦ F−1

t .
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Let η(x, t) = ηt(x). Since πK is holomorphically convex, a theorem of Stolzenberg implies that
πK × [0, 1 + δ] is holomorphically convex. It follows that we can approximate η(x, t) by some
ξ ∈ O(X × C, TX) uniformly on πK × [0, 1 + δ]. Let ξt(x) = ξ(x, t). Since X has the density
property, we may assume that ξt is completely generated. Also, by approximation, the integral
curve of ξt starting at πp at t = 0 is arbitrarily close to πq at time t = 1.

We now lift ξt to a time-dependent, Γ-invariant vector field ξ̃t on the cover X̃. By Lemma 6.3
and the functoriality of XO with respect to mappings we see that ξt is completely generated.
An application of Theorem 2.2 gives a holomorphic diffeomorphism Φ that carries p arbitrarily
close to q. By using a lifting of an implicit function-type argument as in [Var00, Theorem 3.1], we
may correct Φ so that it carries p exactly to q. This completes the proof.

Theorem 1.3 is an immediate consequence of Proposition 6.1 and the following theorem.

Theorem 6.4. Let f : Y ↪→ X̃ be a proper holomorphic embedding of Stein manifolds with
dim(Y ) < dim(X̃), and let S ⊂ X̃ be any discrete subset such that π|S is 1 − 1. Then there exists
an embedding f ′ : Y ↪→ X̃ such that f ′(Y ) ⊃ S.

Proof. Let

L0 = ∅ ⊂ L1 ⊂ interior(L2) ⊂ L2 ⊂ interior(L3) ⊂ L3 ⊂ · · · ⊂ X̃

be a nested family of compact, holomorphically convex sets such that

X̃ =
⋃
��1

L� and γL� = L� for all γ ∈ Γ.

(Such an exhaustion is easy to construct. Indeed, one takes an exhaustion by Γ-invariant compact
sets, and then replaces these invariant compact sets by their holomorphic hulls. It is elementary to
see that the hull of an invariant compact set is also invariant.)

We decompose S into disjoint finite sets S1, S2, . . . defined by the requirement that

Sj ⊂ Lj − Lj−1.

Let f0 := f , and suppose we have obtained an embedding fj−1 : Y → X̃ such that

fj−1(Σ) ⊃ S1 ∪ · · · ∪ Sj−1.

We now apply Theorem 6.2 repeatedly to get fj. To this end, enumerate

Sj = {s1,j , . . . , sNj ,j}.
Let K1,j = Lj, let A1,j = S1 ∪ · · · ∪ Sj−1, and let p ∈ fj−1σ − K1,j and q = s1,j. An application of
Theorem 6.2 gives us Fj,1 ∈ DiffO(X̃) with the properties stated there. Next, let 2 � � � Nj and
suppose we have obtained Fj,�−1. Let K�,j = K�−1,j ∪ s�−1,j and A�,j = A�−1,j ∪ s�−1,j, let

p ∈ F�−1,j ◦ · · · ◦ F1,j ◦ fj−1(Σ) − K�,j,

and let q = s�,j. Then, again, Theorem 6.2 gives us F�,j ∈ DiffO(X̃) with the properties stated
there.

We now define

fj := FNj ,j ◦ · · · ◦ F1,j ◦ fj−1.

It takes some additional care, in the construction of the Fk,j, to guarantee that fj → f ′ and that
f ′ is proper. The details can be carried out in exactly the same way as in [FGR96].
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FR93 F. Forstnerič and J.-P. Rosay, Approximation of biholomorphic mappings by automorphisms of Cn,
Invent. Math. 112 (1993), 323–349.

GS77 V. Guillemin and S. Sternberg, Geometric asymptotics, Mathematical Surveys, vol. 14 (American
Mathematical Society, Providence, RI, 1977).

Kod72 K. Kodaira, Holomorphic mappings of polydiscs into compact complex manifolds, J. Differential
Geom. 6 (1971/72), 33–46.
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